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Intensity-curvature functional based digital
high pass filter of the bivariate cubic
B-spline model polynomial function
Carlo Ciulla1* and Grace Agyapong2

Abstract

This research addresses the design of intensity-curvature functional (ICF) based digital high pass filter (HPF). ICF is
calculated from bivariate cubic B-spline model polynomial function and is called ICF-based HPF. In order to
calculate ICF, the model function needs to be second order differentiable and to have non-null classic-curvature
calculated at the origin (0, 0) of the pixel coordinate system. The theoretical basis of this research is called intensity-
curvature concept. The concept envisions to replace signal intensity with the product between signal intensity and
sum of second order partial derivatives of the model function. Extrapolation of the concept in two-dimensions (2D)
makes it possible to calculate the ICF of an image. Theoretical treatise is presented to demonstrate the hypothesis
that ICF is HPF signal. Empirical evidence then validates the assumption and also extends the comparison between
ICF-based HPF and ten different HPFs among which is traditional HPF and particle swarm optimization (PSO) based
HPF. Through comparison of image space and k-space magnitude, results indicate that HPFs behave differently.
Traditional HPF filtering and ICF-based filtering are superior to PSO-based filtering. Images filtered with traditional
HPF are sharper than images filtered with ICF-based filter. The contribution of this research can be summarized as
follows: (1) Math description of the constraints that ICF need to obey to in order to function as HPF; (2) Math of
ICF-based HPF of bivariate cubic B-spline; (3) Image space comparisons between HPFs; (4) K-space magnitude
comparisons between HPFs. This research provides confirmation on the math procedure to use in order to design
2D HPF from a model bivariate polynomial function.
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Introduction
Recently, we reported a methodology to design digital
HPFs from three model polynomial functions. This
methodology benefits from the intensity-curvature con-
cept and is based on the calculation of the intensity-
curvature functional (ICF). The ICF replaces the image
intensity value with the product of the image intensity
and the sum of second-order partial derivatives of the
model function fitted at each pixel. We propose the ICF
of the bivariate cubic B-spline model function as a HPF
to extend the earlier study [1], and to reinforce the use
of the intensity-curvature concept for calculating the

polynomial HPF from a model polynomial function
which, in the present study, is the bivariate cubic B-
spline. The originality of this study is thus to hypothesize
that the ICF of an image is its HPF, and to describe a
mathematical model which corroborates, both theoretic-
ally and empirically, that the ICF is indeed a HPF. From
the aforementioned mathematical model, it is possible to
derive the equations for the input and output functions
of the filter. The novel ICF-based filter is compared with
the traditional HPF and the PSO-based HPF. A compari-
son of the image space and the k-space magnitudes indi-
cates that the three filters behave differently. Although
the data provided in this study does not allow
generalization, traditional HPF filtering and ICF-based
filtering are find to be superior to PSO-based filtering.
Further, the images filtered with the traditional HPF are
sharper than that with the ICF-based filter. The novel

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: cxc2728@njit.edu
1Faculty of Information Systems, Visualization, Multimedia, and Animation,
University of Information Science and Technology, St. Paul the Apostle,
Partizanska B.B., Ohrid 6000, Republic of North Macedonia
Full list of author information is available at the end of the article

Visual Computing for Industry,
Biomedicine, and Art

Ciulla and Agyapong Visual Computing for Industry, Biomedicine, and Art
            (2019) 2:9 
https://doi.org/10.1186/s42492-019-0017-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-019-0017-6&domain=pdf
http://orcid.org/0000-0002-5563-6036
http://creativecommons.org/licenses/by/4.0/
mailto:cxc2728@njit.edu


contributions of this study can be summarized as fol-
lows: (1) Reasoning to elucidate the mathematical condi-
tions that the ICF needs to obey, in order to behave as a
HPF; (2) Mathematical description of ICF-based HPF of
the bivariate cubic B-spline; (3) Comparison between the
image spaces of the three HPFs; (4) Comparison be-
tween the k-space magnitudes of the three HPFs.
This section comprises a literature review on HPF and

the ICF. The originality of the approach is then dis-
cussed in terms of the implications of the mathematical
model.

Literature on ICF
HPFs are electronic devices which allow signals with a
frequency higher than a particular cutoff frequency,
while removing other signals with a frequency lower
than the cutoff frequency. The degree of attenuation for
each frequency depends on the filter design [2]. The de-
sign of digital filter algorithms can be classified into two
main categories: finite impulse response (FIR) and infin-
ite impulse response (IIR). The FIR filter design is char-
acterized by the product of the ideal impulse response
with a window function (Butterworth, Chebyshev, Kaiser,
and Hamming among others) or a gradient-based
optimization method [3–5]. In contrast, the IIR filter de-
sign is characterized by a non-zero impulse response
function of an infinite time duration [3]. The FIR filters
can be optimally designed by a careful selection of coef-
ficients for the frequency response, which can be written
as a trigonometric function of the frequency [6, 7]. The
state-of-the-art design of optimization techniques for
implementing FIR digital filters includes the evolutionary
and swarm optimization approaches, such as the PSO
algorithm [5, 8]. ICF-based digital HPFs have been re-
cently realized [1], where they were tested and character-
ized using two-dimensional images, and were observed
to be belonging to the category of HPFs based on the
polynomial functions [9]. The ICF is a property of the
model polynomial function which is fitted to the image
data on a pixel-by-pixel basis. The essence idea of ICF is
to replace the image intensity with the product of the
image intensity and the sum of second-order partial de-
rivatives of the model polynomial function fitted at each
pixel. Since this concept is enforced on a pixel-by-pixel
basis, the ICF is an image. The original hypothesis of the
above study was that the ICF is a HPF. The rationale of
the present study is to revisit the aforementioned hy-
pothesis using a new model polynomial function and to
validate it through the methodological approach used
earlier [1]. The visual appearance of the ICF, which is a
high pass (HP) filtered signal, was first observed while
investigating the ICF of the bivariate linear model func-
tion. Since then, this investigation has been extended to

other model polynomial functions such as bivariate
cubic and Lagrange polynomials [1]. In this study, we
extend the methodological approach used for the design
of a digital HPF to the bivariate cubic B-spline model
function. As will be discussed in section 2, the ICF and
pixel intensity are set as the output and input functions
of the filter, respectively. To evaluate the novel ICF-
based HPF, its k-space is compared with that of the trad-
itional HPF and the PSO-based HPF.

Novelty of the approach used to design the digital HPF
The main issue addressed in this study is the calculation
of the digital HPF from a model polynomial function.
This section presents the contribution of our approach
for solving it. Customarily, HPF is mathematically de-
fined in terms of image gradients. However, fitting a
model polynomial function to an image on a pixel-by-
pixel basis is not sufficient because of the prevalence of
the numerical value of the image intensity over the nu-
merical value of the gradients. Therefore, the design of
the HPF is envisioned here as a resampling problem that
entails: (1) modeling the image intensity with a measure
that embeds both image intensity and gradients and (2)
allowing numerical predominance of image intensity or
gradients. To this end, the first task is to devise the
measure. This measure is a ratio of two conditions, non-
resampling and re-sampling, and is known as the ICF
[1]. As discussed in the next section, the ICF is a valid
measure because it incorporates image intensity and
gradients in the same function due to which it can deter-
mine the prevalence of the gradients on the image inten-
sity under some conditions. The academic nature of this
work necessitates development of a theoretical back-
ground necessary to support the empirical evidence.
Therefore, the development of a theoretical framework
is the second main task of the proposed approach. The
fact that ICF is a HPF [1] can be demonstrated if ICF
satisfies the following two constraints: (1) the output
term of the transfer function (TF) of the filter is the ICF
[see eq. (12)] and (2) both the input and output func-
tions of the filter can be designed from the mathematical
expression of the ICF [see eqs. (15) and (16)]. In the next
section, it is proved that the model polynomial function
considered here satisfies the above constraints. Both of
the aforementioned constraints are consequential to the
definition of the TF of the HPF. Though the theoretical
framework employed in this study was used earlier [1],
the unique model polynomial function (the bivariate
cubic B-spline) considered here can be used to design a
novel HPF. Another novel contribution of this study is
the table of the comparison between the numerical value
of the gradients and the numerical value of the image
intensity (Table 1).

Ciulla and Agyapong Visual Computing for Industry, Biomedicine, and Art             (2019) 2:9 Page 2 of 18



Theory
ICF of bivariate cubic B-spline model function
Let us consider the bivariate cubic B-spline model func-
tion as defined in eq. (1). This function benefits from 1.
The property of second-order differentiability in its do-
main of definition (the pixel) and 2. The non-null
classic-curvature of the model function calculated at
the origin (0, 0) of the pixel coordinate system [10]. It
uses the pixel intensity value f(0, 0) and eight neighbor-
ing pixel intensity values: f (1/2, 1/2), f (− 1/2, − 1/2), f
(2/3, 2/3), f (− 2/3, − 2/3), f (− 1, − 1), f (1, 1), f (3/2, 3/2)
and f (− 3/2, − 3/2).

h4ðx; yÞ ¼ fð0; 0Þ þ α3 �
" 

1
2

!
ðxþ yÞ3−ðxþ yÞ2 þ

 
2
3

!#

þα2 �
"
−ð1=6Þðxþ yÞ3 þ ðxþ yÞ2−2ðxþ yÞ þ

 
4
3

!#

ð1Þ

where:

α2 ¼
"
fð0; 0Þ− f

 
1
2
;
1
2

!#
ð2Þ

α3 ¼
"
fð0; 0Þ− f

 
−
1
2
;−

1
2

!#
ð3Þ

The first order partial derivatives of h4(x) with respect
to the x and y variables are given in eq. (4):
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The second order partial derivatives of h4(x) are given in

eq. (5): 
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Let the intensity-curvature term before interpolation
be defined as:

Eo ¼ Eoðx; yÞ ¼
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From eq. (5), it follows that:

Table 1 Characterization of intensity-curvature functional

Image intensity gradients f (0, 0) f (0, 0) f (0, 0) f (0, 0)

ζ (α2, α3) << >> << <<

γ (α2, α3) << << >> <<

λ (α2, α3) << << << >>

Behavior of ICF image-like gradient-like gradient-like gradient-like

Image intensity gradients f (0, 0) f (0, 0) f (0, 0) f (0, 0)

ζ (α2, α3) >> << >> >>

γ (α2, α3) >> >> << >>

λ (α2, α3) << >> >> >>

Behavior of ICF image-like gradient-like gradient-like gradient-like

Image intensity gradients f (0, 0) f (0, 0) f (0, 0) f (0, 0)

ζ (α2, α3) ! < < AND ! >> ! > > AND ! < < ! < < AND ! >> ! < < AND ! >>

γ (α2, α3) ! < < AND ! >> ! < < AND ! >> ! > > AND ! < < ! < < AND ! >>

λ (α2, α3) ! < < ! < < AND ! >> ! < < AND ! >> ! >>

Behavior of ICF gradient-like or image-like gradient-like or image-like gradient-like or image-like gradient-like or image-like

This table can be read by considering: 1. The term in the first column (which is ζ (α2, α3) or γ (α2, α3) or λ (α2, α3)); 2. The inequality sign (in the cell of the table); 3.
The value of the pixel intensity f(0, 0). For instance: ζ (α2, α3) < < f(0, 0). The symbols: ‘!’, ‘<<’, ‘>>’, ‘AND’; mean different, largely smaller than, largely bigger than,
and the logical and, respectively. Thus, the symbol ‘! < < AND ! >>’ reads: not largely less than and at the same time not largely greater than. Moreover, the
symbol ‘! > > AND ! < <’ reads: not largely greater than and at the same time not largely smaller than
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Let the intensity-curvature term after interpolation be
defined as:

EIN ¼ EIN ðx; yÞ ¼
Z Z
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From eq. (5) it follows that:
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The ICF of h4(x, y) is defined as:

ΔE x; yð Þ ¼ E0 x; yð Þ
EIN x; yð Þ ð11Þ

Input function x[n] and output function y[n] of ICF-based HPF
The TF(x, y) of the ICF-based HPF calculated from the
bivariate cubic B-spline is given in eq. (12):
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Therefore the input function x[n] and the output func-
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The procedure outlined in eqs. (12) through (16) is de-
scribed in Fig. 1, where:
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Fig. 1 Flowchart for the calculation of ICF-based HPF
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Characterization of ICF of bivariate cubic B-spline model
polynomial function (H42D)
The behavior of the ICF is highly dependent on the pre-
dominance of gradients on the pixel intensity values. Thus,
an immediate comparison between the ICF and the image
gradients along the X and Y directions indicates that the
similarities between the ICF and the HPF may be attributed
to the finite differences (gradients) that appear in the for-
mulae of ICF and HPF [11]. However, further investigations
show that there exists a case where the two intensity curva-
ture terms (ICTs) appear similar to the departing image
(Fig. 2). This happens when the image intensity f(0, 0) pre-
vails (both in the numerator and denominator) over the
gradient-like components in the ICF formula.

In order to characterize the ICF as a HPF, mathematical
formalism is needed so to categorize the ICF as the output
function of the equation that defines the transfer function
TF of the filter. This mathematical formalism needs to
break the ICF formula in components and to analyze each
component separately. The mathematical form of the ICF
of the bivariate cubic B-spline model polynomial function
(H42D) is:
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In general, as can be deduced from the ratio of eqs. (8)

and (10), the ICF can be reduced to the following
representation:

Fig. 2 Intensity-curvature functional of the three model functions. The intensity-curvature functional (ICF) is the ratio of the intensity curvature
terms (ICT) before (Eo (x, y)) and after interpolation (EIN (x, y)). Here, the ICF appears as the HPF even though the ICTs are not HPFs. These
correspond to the cases when the convolutions of pixel intensity values in the defining equation of the ICF are not responsible for the creation
of the high pass (HP) filtering effect, which shows up in the ICF images. The HPF-like appearance of the ICF in such cases can be attributed to
the effect of the ratio between ICTs. This figure demonstrates that the gradients embedded in the formulation of the ICTs are not the reason for
this appearance
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ΔEðx; yÞ ¼ fð0; 0Þ � ζðα2; α3Þ
½ fð0; 0Þ � γðα2; α3Þ þ λðα2; α3Þ�

¼ ζðα2; α3Þ(
γðα2; α3Þ þ

"
λðα2; α3Þ
fð0; 0Þ

#)
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where it is posited that:

ζðα2; α3Þ ¼ e12 ð32Þ

γðα2; α3Þ ¼ ½4 � α3 � e1 þ 4 � α2 � e2� ð33Þ

λ α2; α3ð Þ ¼ ω ð34Þ

The gradient-like appearance of the ICF is thus deter-
mined by the numerical prevalence of the terms that are
function of the convolutions (ζ (α2, α3), γ (α2, α3) and λ
(α2, α3)). Otherwise, when f(0, 0) prevails, the ICF ap-
pears similar to a magnetic resonance image (MRI).

In eq. (31), we assume that ζ (α2, α3) < < f(0, 0) and γ
(α2, α3) < < f(0, 0) and λ (α2, α3) < < f(0, 0). In this case,
the prevalent term in the numerator and denominator is
the image intensity f(0, 0) (this case is illustrated in Fig. 2).
On the contrary, if we assume that ζ (α2, α3) > > f(0, 0) and
γ (α2, α3) > > f(0, 0) and λ (α2, α3) > > f(0, 0), the prevalent
terms are ζ (α2, α3) and γ (α2, α3) and the ICF image ap-
pears as a HPF. Table 1 indicates that all the remaining
cases can be reduced to either of the two listed above.
To summarize, when f(0, 0) is the prevailing term, the

ICF reflects the predominant influence of the pixel in-
tensity value f(0, 0). On the contrary, when α2 and α3
are both larger than f(0, 0), the ICF behaves as a HPF
because of the gradient-like components α2 and α3.
In essence, the characterization of the ICF as a HPF ac-

knowledges that when the convolutions of pixel intensity
values in the defining equation of the ICF are tuned as the
finite differences operating as gradients, they (the convolu-
tions) create the HP filtering effect. This happens under the
condition that the convolutions are prevalent on the image

Fig. 3 (a), (a1), (a2) Original images. Here, (a) is calculated using spherical light source, (a1) is the calculated light torus, and (a2) is the calculated
elliptical light. (b), (b1), (b2) ICF of the bivariate cubic B-spline model function (eq. (11)). (c), (c1), (c2) TF of ICF-based HPF (eq. (12)). (d), (d1), (d2) k-space
magnitude of ICF
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intensity value. To break the ICF formula into components
(as illustrated in eq. (31)) and to build the table, may be ex-
tended to other model polynomial functions in order to in-
vestigate the effect of gradient-like components and image
intensity on the appearance of the ICF image.

Ethics approval and consent
The MRI scans were conducted with the sole purpose of
this study and not for clinical purpose. The study partic-
ipants were anonymized. Informed consent to participate
in the study was obtained from the participants, and this
consent allows to publish the MRI images while protect-
ing the privacy of the participants.

Results
Comparison between ICF and traditional HP filtering and
PSO filtering approaches
The data set consisted of ten theoretical images and two
MRIs. This section illustrates, for the selected cases, the
results of filtering with the ICF, the traditional HPF, and
the PSO. For the remaining cases, the three filters per-
formed in a similar manner. For each of the three filters,
the TF and the k-space magnitude of the filtered images is
shown in Figs. 3, 4 and 5, respectively. Moreover, to
reinforce the difference between the three filters, we show
the k-space magnitude images of the filtered images, the
difference calculated between the filtered images, and the
difference calculated between the k-space images.
It is noteworthy from Figs. 3 and 4 that the ICF images

are well behaved, however, the HPF images are sharper
than the ICF images. The difference between the HPF and
ICF images is of particular significance, and it is remark-
ably visible in the k-space magnitude [compare Figs. 3(d),
(d1), (d2) with Figs. 4(c), (c1), (c2), respectively].
The images presented in Figs. 3, 4, and 5 show the super-

iority of the traditional HPF and the ICF-based filter over
the PSO-based filter, and this is noticeable if we compare
the filtered images in Fig. 4(a), (a1), and (a2) with that in
Figs. 5(a), (a1), and (a2), respectively. There exist similarities
between the k-space magnitude of the HPF filtered images
and that of the PSO filtered images (compare Fig. 4(c), (c1),
and (c2) with Fig. 5(c), (c1), and 5(c2), respectively).
The images displayed in Fig. 6 are a clear and

straightforward presentation of the existing differences
between the filters discussed in this paper. These im-
ages show the difference between the image space and
k-space.

Comparison of proposed approach with similar existing
methods
Figure 7 shows a comparison across ICF-based HPFs
and the traditional HPF. The model functions and the
characterization of the B32D ICF-based HPF and the

G42D ICF-based HPF are reported elsewhere [1].
Through the comparison of the k-space magnitude of
the HP filtered images, Fig. 7 clearly shows that these
filters are not similar, and their difference can be attrib-
uted to the mathematical form of the departing polyno-
mial from which the ICF is obtained.
Figures 7, 8, and 9 show a comparative study between

imaging modalities involving the ICF of several model
functions as k-space filters. The MRIs are compared
with ICFs, and the ICFs are used as k-space filters
through the signal processing technique, known as the
inverse Fourier transformation [12]. Figure 8 provides
two important aspects of this study. The first aspect is
the reproducibility of the HPF behavior of the ICF for
six model polynomial functions (including the bivariate
cubic B-spline which is the model used in this paper).
The other aspect is to verify that the inverse Fourier
transformation technique facilitates MRI signal recon-
struction. The signal reconstruction highlights the ves-
sels of the human brain. Figure 8 also presents the
comparison of ICFs with traditional HPF and PSO-
based HPF. Figure 9 shows the difference between the
k-space of each imaging modality. Through the histo-
gram plots of the k-space images, Fig. 10 provides a
quantitative outlook of the difference between the fil-
tering techniques.
Figures 8 and 9 show the filtered signals and their k-

space magnitudes, respectively. Figure 10 shows the re-
sults of statistical analysis performed on the filtered im-
ages [see (a)] and the k-space magnitude images [see (b)].
The histogram was calculated for each image, and the cor-
responding value of the mean and standard deviation were
also computed. The plots in Fig. 10 show cumulative lines.
Each line represents an image and connects the value f(x,
μ, σ) of the normal distribution obtained from each of the
‘x’ histogram values. For instance, the histogram value ‘x’
provides the value f(x, μ, σ), which is the integral of the

normal distribution from -∞ to ‘x’, expressed as fðx; μ; σÞ
¼ ð 1ffiffiffiffiffiffi

2πσ
p Þe−½ðx−μÞ2=ð2σ2Þ� . The graphs shown in Figs. 10(a)

and (b) are thus cumulative normal distribution values.
The plots of f(x, μ, σ) confirm that the filtered signals (Fig.
8) are Gaussian distributed, whereas the k-space signals
(Fig. 9) are not.
Figure 11 shows the comparison between HP filtered

signals with the aim of validating PSO-based filtering
technique. Indeed, the visual appearance of the PSO-
based filtered image is quite similar to the classic filtered
signals obtained with Bessel, Butterworth and Chebyshev
HPFs. This paper offers a comparison between PSO
filtering and ten different HPF methods: traditional HPF,
B32D, G42D, H32D, H42D (bivariate cubic B-Spline),
LGR2D, SRE2D, Bessel, Butterworth, and Chebyshev
HPFs.
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Discussion
Applications of digital filters literature
The literature on digital filters is extensive. This section
provides a compendium of studies corresponding to two
most important themes. One theme is related to the ef-
fort of the scientific community towards the design of
digital filters, with an emphasis on the hardware imple-
mentation. The other theme reports on the application
of digital filters in academic research and industry set-
tings. Table 2 provides a list of authors who have con-
tributed to this topic. Study of electroencephalography

(EEG) traces was motivated by the identification of inter-
ictal high frequency oscillations (HFOs). This research
raised a methodological issue which comes into play
when HFOs are filtered because they embed sharp tran-
sient frequency components, which result in the so-
called confounding false ripples of EEG signal [13] while
being filtered. Thus, the identification and quantification
of false ripples was pivotal for the correct analysis of
broadband activity of various frequency bands. It is also
important to determine a strategy that can be used to re-
duce the influence of the false ripples on the analysis of

Fig. 4 (a), (a1), (a2): Traditional HPF images of Figs. 3 (a), (a1), (a2), respectively. (b), (b1), (b2): Transfer function images of the traditional HPF
images. (c), (c1), (c2): k-space magnitude of the traditional HPF images

Ciulla and Agyapong Visual Computing for Industry, Biomedicine, and Art             (2019) 2:9 Page 8 of 18



the EEG signals. Therefore, this study demonstrated that
the false ripple occurs during band-pass filtering of the
EEG signal, and the false ripple consists of a signal
whose frequency is close to the impulse response of the
filter, and which appears as a transient signal similar to a
short duration oscillation [13]. Another report on appli-
cation of digital filters in human technology [14] demon-
strated the benefits of filtering out the raw surface
empirical mode decomposition (sEMD) signal while esti-
mating the muscle forces in the human body. This study
found a novel use of the HPFs that can remove up to

90% - 99% of the sEMD signal power, and this can im-
prove the force estimates of the specific muscles in the
body. Another technological application of high-pass
electrical mobility filter (HP-EMF) [15], which is related
to the size of nanoparticles in the gaseous media, was
also reported. The HP-EMFs have shown a potential to
serve as a viable technology for diverse applications ran-
ging from the synthesis of nanomaterials to monitoring
atmospheric nanoparticles. An industrial application of
HPFs, i.e., a methodology for the production of metama-
terials, was reported in ref. [16]. The metamaterial

Fig. 5 (a), (a1), (a2): PSO-based HP filtered images of Figs. 4(a), (a1), (a2), respectively. (b), (b1), (b2): Transfer functions of PSO filter. (c), (c1), (c2): k-
space magnitude of the PSO based filtered images shown in (a), (a1), (a2), respectively
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Fig. 6 (See legend on next page.)
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explored in this study consisted of engineered subwave-
length microstructures, and it exhibited ‘plasmonic’ re-
sponse to the electromagnetic waves in the terahertz
(THz) range. This property caused the metamaterial to
behave as a HPF. The purpose of the study was to dem-
onstrate the efficiency of the THz plasmonic HPF which
consists of high-aspect-ratio micron-sized wire arrays

that are fabricated by micro-stereo-lithography. This
study provided a method to tune the plasma frequency
by adjusting the geometric parameters of the metamater-
ial [16]. In the context of infrared focal-plane array
(IRFPA) technology, the significance of the research re-
ported in ref. [17] was to explore the analysis of tem-
poral HPFs. A new non-uniformity correction method

(See figure on previous page.)
Fig. 6 (a), (a1), (a2): Difference between the ICF images (Fig. 3) and the traditional HPF images (Fig. 4). (b), (b1), (b2): Difference between the
k-space magnitude images of ICF (Fig. 3) and that of HPF (Fig. 4). (c), (c1), (c2): Difference between the image space of ICF (Fig. 3) and that of PSO
(Fig. 5). (d), (d1), (d2): Difference between the k-space magnitude of ICF (Fig. 3) and that of PSO (Fig. 5). (e), (e1), (e2): Difference between the image
space of HPF (Fig. 4) and that of PSO (Fig. 5). (f), (f1), (f2): Difference between the k-space magnitude of HPF image (Fig. 4) and that of PSO image
(Fig. 5)

Fig. 7 Comparison across ICF-based HPFs and traditional HPFs. (a) MRI. (b) MRI filtered with bivariate cubic polynomial model function B32D
ICF-based HPF. (c) The k-space magnitude of (b). (d) MRI filtered with the bivariate cubic Lagrange polynomial model function G42D ICF-based
HPF. (e) The k-space magnitude of (d). (f) MRI filtered with traditional HPF. (g) The k-space of (f). (h) MRI filtered with the bivariate cubic B-spline
H42D ICF-based HPF. (i) The k-space magnitude of (h)
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called bilateral filter based temporal high-pass filter
(BFTH) was proposed. The main properties of the HPF
developed in this study were convergence speed and
ghosting artifacts. Through comparison between algo-
rithmic performances, the study demonstrated that the
BFTH has the fastest speed of convergence and the most
stable error. A study aimed towards designing and
implementing computationally efficient two-dimensional
FIR digital filters was reported in ref. [18]. The design

procedure was based on frequency domain analysis be-
cause the Fourier domain favors the analysis of the inter-
polated impulse response. This study demonstrated that,
as compared to an equivalent conventional FIR filter, in-
terpolated finite impulse response (IFIR) filters require
only 1/Lth of the adders and multipliers, while offering
1/Lth noise level and 1/√Lth coefficient sensitivity. The
IFIR filter comprised of two components (called FIR sec-
tions): one generated the sparse set of impulse response

Fig. 8 Comparative study across filtering techniques. Top row (from left to right): MRI, HPF, reconstructed MRI through HPF (R_HPF), PSO-based
HPF, and reconstructed MRI through PSO (R_PSO). Second row: ICF of B32D, ICF of G42D, reconstructed MRI through ICF of B32D (R_B32D), and
reconstructed MRI through ICF of G42D (R_G42D). Third row from the top: ICF of H32D, ICF of H42D, reconstructed MRI through ICF of H32D
(R_H32D), and reconstructed MRI through ICF of H42D (R_H42D). Bottom row: ICF of LGR2D, ICF of SRE2D, reconstructed MRI through ICF of
LGR2D (R_LGR2D), and reconstructed MRI through ICF of SRE2D (R_SRE2D)

Fig. 9 Comparative study across filtering techniques. The picture shows the respective k-space magnitude of the images displayed in Fig. 8
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Fig. 10 Normal distribution values, calculated using the formula fðx; μ; σÞ ¼ ð 1ffiffiffiffiffiffi
2πσ

p Þe−½ðx−μÞ2=ð2σ2Þ� , for the filtered images presented in Fig. 8 [see

lines in (a)] and for the k-space images presented in Fig. 9 [see lines in (b)]. The plots show cumulative lines. Each line corresponds to an image,
and displays the value of f(x, μ, σ) calculated using the value of ‘x’ (which is the histogram data of the image)

Fig. 11 Comparison between classic HP filtering techniques (Bessel, Butterworth and Chebyshev) and the PSO-based HPF. The images on the
bottom row are the k-space magnitude images of the signals located in the top row
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values, and the other executed interpolation. The eigen-
filter approach was discussed in ref. [19] as a new
method for designing linear-phase FIR filters. This
method minimized the quadratic cost function of the
error (defined in the passband and stopband of the filter)
by calculating the difference between the actual ampli-
tude response and the desired response of the filter. It
was possible to obtain the equation defining a linear sys-
tem from the defining equation of the cost function. The
eigenvectors, which are the parameters of the filter,
could then be calculated from the definite matrix defin-
ing the linear system.
A recent review paper [7] presented an overview of

methodological approaches for designing hardware effi-
cient finite duration impulse response (FIR) filters. A de-
sign method for FIR digital filters, which has gained
considerable attention recently, is the multiplier-less fil-
ter. This filter is hardware efficient, and is designed with
the optimization (minimization) of the multiplier-less
operations. It was reported that the hardware efficiency
of the multiplier-less filters could be achieved on the
basis of various indices which indicate the number of
hardware components, such as power-of-two-terms,
number of adders, number of multiplier and structural
adders, number of flip-flops, and zero-valued filter coef-
ficients [7]. The theoretical and the implementation as-
pects of FIR and IIR variable digital filters (VDFs) was
reported in ref. [20]. These filters exhibited frequency
characteristics which could be controlled continuously
by tuning some parameters such as the poles and the
zeros of the digital filter. Two main highlights of this
work were as follows: (1) Computational simplicity of
the filter design which only required the calculation of
the singular value decomposition of a Hankel matrix. (2)
Through the aforementioned calculation, the IIR based
VDF was guaranteed to be stable and the frequency re-
sponse was conserved. The algorithm reported in ref.
[21] focused on the design of FIR filters with powers-of-
two coefficients (the 2PFIR filter). The algorithm com-
prised of two methods. The first method maintained the
existing relationships between the coefficients of the
conventional FIR and the 2PFIR filters. This method was
called proportional relation-preserve (PRP) method. The
second method consisted of an application of the simple
symmetric-sharpening (SSS) approach. The SSS method
used the PRP method as sub-filter and preserved the
transition width. Further, it improved the approximation
error of the PRP method. Using the PRP and SSS
methods, the feasibility of designing a 2PFIR filter of
length (N) greater than 200 was demonstrated.
The research work reported in ref. [5] focused on a

linear phase infinite-impulse response filter, which was
designed through the nature inspired population-based
global optimization algorithm known as Cuckoo Search

(CS) [22]. The main aspect of the study was that the
controlling parameter, which quantitatively determined
the ripple (and thus the amount of energy) in the desired
frequency bands (both stop and pass), was experimen-
tally set in such a way that the best performance of the
filter could be obtained. The current relevance of the
study can be attributed to the fact that it presented a
comparative evaluation of three nature inspired
optimization methods for FIR filter design, which are (1)
the Cuckoo search (CS) [22], (2) the PSO [23], and (3)
the artificial bee colony (ABC) [24].

Recent literature
Recent efforts in designing a digital FIR filter can be
classified into two groups. The first one utilizes L1-norm
based optimization techniques for designing the filter,
and the second uses evolutionary approaches which
mimic the organizational behavior of living beings, such
as the well-known PSO algorithm. The essence of the
L1-norm based digital filter design is the formulation of
the cost function, the determination of a suitable algo-
rithm for its minimization, and the acquisition of the fil-
ter equation coefficients [25]. A recent research [26]
uses genetic algorithms to solve the optimization prob-
lem of the L1-norm based filter design, and compares
the filter with a wide array of competing techniques such
as the PSO [3, 4, 8] and conventional methods such as
the least-squares approach [27], the Kaiser window
method [28], and the Parks McClellan algorithm [29].
One of the most compelling and state-of-the-art tech-

niques in current digital filter design is the PSO ap-
proach. This method is essentially an optimization
algorithm, and therefore it suffers from the drawback of
obtaining the most suitable cost function, the most suit-
able parameters to optimize, and the most suitable
optimization rule. As with every adaptive search, the
performance of this optimization algorithm is also af-
fected by the initially chosen parameter values, and can
be stuck in a local minimum of the cost function (in
such a case, the optimization does not progress). Various
solutions have been proposed in the literature to pro-
mote PSO approach as the state-of-the-art technique
[30–33], and these have inspired our implementation of
the PSO as a simple, quick, and effective approach. Our
approach depends on: (1) a least square function as the
cost function of the algorithm, (2) the delta rule as the
optimization algorithm and (3) cardinal parameters that
were chosen on the basis of experience (particle’s pos-
ition, particle’s best position, swarm’s best known pos-
ition and particle’s velocity, as explained in Wikipedia).
In our implementation of the PSO approach, the HPF

equation is developed to mimic the calculation of the
particle’s velocity, which is consistent with the approach
used in ref. [34]. At each iteration of the optimization
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algorithm, the particle’s position is updated with the
sum of its current value and the value of the particle’s
velocity. The initialization of the PSO optimization al-
gorithm provides the starting values of the cardinal
parameters mentioned earlier [35]. The initialization
heuristics set the starting values as random numbers,
whose sum is the value of the image intensity. One
limitation of our implementation is premature conver-
gence [36]. We have chosen to implement the algo-
rithm reported in Wikipedia due to its inter-
application robustness [37]. This means that the algo-
rithm is suitable to be re-engineered with little modi-
fication so that it can be applied for optimization
problems other than the calculation of HP filtered
signal. The flow chart of the procedure is given in
Fig. 12. Figure 13 shows the results of the
optimization process for one case study.
The difference between the present and the earlier [1]

study is that the ICF-based HPF is designed from the bi-
variate cubic B-spline here, whereas in ref. [1], the filters
were designed from other model polynomial functions.
Further, the evaluation method implemented is different,
as the ICF-based HPF reported here is compared to the
PSO-based HPF. Moreover, we have compared the k-
space of three HPFs (ICF-based, traditional HPF, and
PSO-based) to ascertain that the filtered images are sig-
nificantly different.

Contribution
Since its inception, the ICF has been used to study human
brain tumors which are imaged with MRI [38] and human
brain vasculature which is also imaged with MRI [39], and
to mathematically characterize the input and output func-
tions of the ICF-based filters using three different model
polynomial functions [1]. The appearance of the ICF
image as HPF signal demands an explanation. To this end,
the main contribution of this study is the mathematical
characterization of the ICF as an alternative HPF.
Moreover, this study provides two essential results. The

first one is the reasoning that yields the understanding of
the ICF formula. It is observed that the ICF embodies two
main components: the image intensity and the gradients.
The ICF can thus behave according to the prevalence of
one component over the other. The prevalence is obtained
when: (1) the numerical value of the image intensity is lar-
ger than that of the gradients and in such a case the ICF
appears as a departing image; or (2) vice-versa and in such
case the ICF appears as HP filtered signal.
The second contribution is the comparison of the ICF-

based filter with the traditional HPF and the PSO-based
HPF. The comparison is carried out in both image space
and k-space, and it indicates that the three filters behave
differently. Although data provided in this paper does
not allow generalization, traditional HPF filtering and
ICF-based filtering are found to be superior to PSO-

Fig. 12 A flowchart for the implementation of particle swarm optimization
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based filtering. Further, the images filtered with the trad-
itional HPF are found to be sharper than that with the
ICF-based filter.

Conclusion
In order to provide a mathematical formulation for the
characterization of the HPF, the theory section of this
paper presents the steps undertaken and the benefits
obtained from an earlier research [1]. The first step is to
include the ICF into the expression of the TF of the filter
as the output function [see ΔE(x, y) in eq. (12)]. The sec-
ond step consists of including the image pixel intensity
as the input function of the TF of the filter [see f(0, 0) in
eq. (12)]. The solution of this equation in x[n] (filter in-
put) and y[n] (filter output) is outlined in the mathemat-
ical procedure, which starts from eq. (13) and ends at
eqs. (15) and (16) for x[n] and y[n], respectively. This
mathematical formalism allows the ICF to be classified
as a HPF. The validity of the formalism, and thus the
practical evidence of the fact that the ICF is an alterna-
tive HPF, is shown in Figs. 7 and 8. In conclusion, this
paper provides a robust mathematical procedure to de-
sign a 2D HPF from a model polynomial function.
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