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Abstract String-pulling by rodents is a behavior in which animals make rhythmical body, head,

and bilateral forearm as well as skilled hand movements to spontaneously reel in a string. Typical

analysis includes kinematic assessment of hand movements done by manually annotating frames.

Here, we describe a Matlab-based software that allows whole-body motion characterization using

optical flow estimation, descriptive statistics, principal component, and independent component

analyses as well as temporal measures of Fano factor, entropy, and Higuchi fractal dimension.

Based on image-segmentation and heuristic algorithms for object tracking, the software also allows

tracking of body, ears, nose, and forehands for estimation of kinematic parameters such as body

length, body angle, head roll, head yaw, head pitch, and path and speed of hand movements. The

utility of the task and software is demonstrated by characterizing postural and hand kinematic

differences in string-pulling behavior of two strains of mice, C57BL/6 and Swiss Webster.

Introduction
String-pulling is a proto-tool behavior in which an animal pulls on a string to obtain a reward. Varia-

tions of the behavior are observed in over 160 species of animals including birds, bees, rodents and

primates and humans (Jacobs and Osvath, 2015; Singh et al., 2019). The task has been used to

assess cognitive function, motivation, brain and spinal cord injury and disease consequences and

work/reward relations in animals and as a therapy and exercise tool in humans. If animals are pre-

sented with an overhanging string, they adopt a standing or sitting posture and use hand-over-hand

movements to reel in the string (Blackwell et al., 2018a; Blackwell et al., 2018b; Blackwell et al.,

2018c). Mice will even spontaneously reel in a string, but the behavior becomes more reliable when

reinforced by a food reward attached to the string (Laidre, 2008). The movement is an on-line act,

guided by sensory information from snout vibrissea, and features four hand shaping movements for

grasping and releasing the string, and five arm movements for retreiving and advancing the string

that are similar in mice, rats, and humans (Blackwell et al., 2018a; Singh et al., 2019).

The reaching/grasping movements of string-pulling resemble the movements of reach-to-eat

movements displayed by rodents in other tasks, including the staircase (Dunnett, 2010) and the sin-

gle-pellet reaching task (Whishaw, 1996) but additionally both hands can be assessed concurrently

and many reach movements can be collected rapidly. The organized structure of string-pulling

makes the task useful for investigating sensory, motor, cognitive and social learning, as well as study-

ing pathophysiology of motor deficits in animal models of motor disorders (Blackwell et al., 2018c).

The string-pulling task for mice has promise as an unconditioned motor task for phenotyping the

growing number of transgenic mouse models of neurological and other diseases but requires an

analytical method for its systematic analysis. Although most of the work of advancing the string by a

mouse is done with the arms and hands, the movements rely on online sensory control and
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appropriate postural support. Associated with strain differences or neurological impairment, any of

these aspects of behavior may be impaired and compensated for by a variety of sensorimotor adjust-

ments in not just the hands but by the entire body. Thus, the analysis of complex changes in behav-

ior require sophisticated whole-body behavioral analysis in addition to the analysis of skilled hand

movements. Currently, most of the analysis is carried out with manual annotation of frames leading

to low yield of experiments. Automated analysis of mouse string-pulling is useful way for obtaining

an objective kinematic assessment of movements, for identifying the contributions of different body

parts to string-advancement, and for gaining insights into inter hand coordination (Whishaw, 1996;

Dunnett and Brooks, 2018). The objective of the present paper is to describe a state-of-the-art

method for analyzing mouse string-pulling.

We present a Matlab-based toolbox to facilitate the analyses of video data of different strains of

intact or neurologically compromised mice engaged in string pulling. The toolbox features a graphi-

cal user interface for video data analysis and follows the analysis framework with two major compo-

nents, a global assessment of whole-body position and speed and fine kinematic assessment of

movements of body, ears, nose, and hands (Figure 1). As a first step, the user can run optical flow

analysis on video data (image sequence) to estimate velocity vector fields and speed frames. Next

using descriptive statistics and temporal measures of Fano factor, entropy, and Higuchi fractal

dimension, the user can characterize whole-body position, speeds, and their temporal variability.

With principal and independent component analyses of the image sequence and speed frames, the

user can assess global position and speed patterns to observe regions of significant motion. Addi-

tional spatial measures of entropy, sharpness, and Hausdorff fractal dimension allow the user to

quantify randomness, edges, and geometrical complexity respectively and use these quantifications

to statistically compare groups of animals. We demonstrate that with the whole-body measures men-

tioned above, we can detect overall differences in position and motion patterns of two different

strains of mice, C57BL/6 (Black) and Swiss Webster Albino (White). Furthermore, using color-based

image segmentation and heuristic algorithms, the software allows detailed automatic tracking of

body, ears, nose, and hands for kinematic analyses (Video 1 and Video 2). The software also allows

the user to manually curate and correct automatic tagging of body parts. Finally, the user can either

utilize Matlab scripts provided with the software for comparison of groups of mice or export data to

Microsoft Excel for further flexible data analyses. A modular approach has been used to build the

toolbox, allowing users to add additional analytical probes.

Results

Characterization of position with central-tendency descriptive statistics
of image sequence shows larger number of distinct positions for white
compared to black mice
Position characterization of a mouse during the string-pulling behavior (representative frames shown

in Figure 2A and C for Black and White mice, respectively) can be grossly done using central-ten-

dency descriptive statistics that is mean, median, and mode, of the image sequence. By observing

the mean, median, and mode frames (Figure 2B and D), one can infer the average to most frequent

positions of the mouse during string-pulling. These frames of the representative Black and White

mice show sitting and standing positions, respectively. For statistical comparison of these frames

between groups of Black (N = 5) and White (N = 5) mice, spatial entropy, sharpness, and Hausdorff

fractal dimension (HFD) measures were calculated and compared using Student’s t-tests. Spatial

entropy is measured from 1D projection of the frames while sharpness and HFD operates directly on

a 2D frame. Spatial entropy, sharpness, and HFD quantify randomness, edges, and complexity of a

frame, respectively. The measures were similar for both groups except that the spatial entropy of

the mean frames was larger for White compared to Black mice (p=0.0092, effect size = 2.157,

Figure 2E). This suggests that the mean frame of White mice had more random values as compared

to Black mice owing to larger number of distinct positions.
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Figure 1. String-pulling video analysis framework. Characterization of whole-body position and speed and their temporal variability is assessed with

descriptive statistics, Fano factor, entropy, and Higuchi fractal dimension. Speed is estimated with optical flow estimation. Principal and independent

component analysis of frames of image sequence and speed frames provide overall assessment of position and speed patterns. Measures of spatial

entropy, sharpness, and Hausdorff fractal dimension on frames obtained in earlier steps are used to statistically compare global position and motion

patterns of groups of animals. For fine kinematic assessment of the motion of body, ears, nose, and hands, they are tracked using image segmentation

and heuristic algorithms. Shaded boxes represent methods.

Inayat et al. eLife 2020;9:e54540. DOI: https://doi.org/10.7554/eLife.54540 3 of 31

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.54540


Characterization of temporal
changes in position with variability
descriptive statistics, Fano factor,
entropy, and Higuchi fractal
dimension of image sequence
depicts larger variability of
positions of White compared to
Black mice
To assess the temporal changes in the position of

the mouse and the string, we found measures of

the time series of individual pixels including vari-

ability descriptive statistics (standard deviation,

skewness, and kurtosis), Fano factor, temporal

entropy, and Higuchi fractal dimension (Figure 3).

The standard deviation frame shows a summary

of spatial variation of the mouse position over

time for example how the body of the represen-

tative Black mouse was in a sitting as well as

standing position (Figure 3A). Conversely, the

White mouse remained in a standing position

and moved its head left and right that is yaw motion (Figure 3B). The skewness and kurtosis frames

conveyed similar information and captured rare events such as positions of the string in relation to

the mouse body. Both skewness and kurtosis had large values around the mouse body. Like the stan-

dard deviation frame, the Fano factor frame also showed change in position over time but with

respect to the mean position. Fano factor frame highlighted the changes more than the standard

deviation frame; for example for both representative Black and White mice, there is large variation

at the top of the head region where the ears are. The temporal entropy of the image sequence

quantified randomness of the time series of individual pixels and hence could also be translated to

the change in position that is quantity of motion at the individual pixel location. For the representa-

tive Black mouse, it is largest around the boundary of the mouse (note the thin red layer near body

edge in the Entropy frame). For the lower half of the body, the thickness of the red band, signifying

value, is thin whereas it is large in the upper half of the body where it captured the change in

mouse’s sitting to standing posture (Figure 3A). For the White mouse, the temporal entropy value

was quite large within the mouse’s body depicting large motion of the body. In the upper half of the

body, it also revealed a yaw motion of the head. The Higuchi fractal dimension (HiFD) quantified the

complexity of the time series of individual pixels in the image sequence. For the representative Black

and White mice, HiFD captured changing positions of the string with larger values (hot regions) out-

side the mouse body. Within the mouse body, it also captured the position of hands which were

colocalized with the string in most of the frames (at least one of the hands). The smaller HiFD values

(colder regions) for the Black mouse depict the gradual transition in mouse positions from sitting to

standing while for the White mouse, they depict its head’s yaw motion.

To assess temporal changes in positions of Black versus White mice, we compared the distribu-

tions of values of the above-mentioned parame-

ters. The values of parameters were obtained

from their respective frames (e.g. values of HiFD

from the HiFD frame) using a mask obtained

from the mean frame (see

Materials and methods) depicting average loca-

tion of the mouse. The outline of this mask for

the representative Black mouse is shown in the

mean frame in Figure 2B (for White mouse in

Figure 2D). For each animal, the probability

density function (PDF) of the values of a parame-

ter were estimated using Gaussian Kernel den-

sity estimation. The cumulative density function

Video 1. Video of the representative. Black mouse

pulling string overlayed with tracked body, ears, nose,

and hands also showing frame number and time of

frames. Temporal progression of the measured

parameters, body length, body angle, head roll angle,

head yaw, the X and Y positions of hands from the

lower left corner (origin) in the original frames.

https://elifesciences.org/articles/54540#video1

Video 2. Same as Video 1 but for White mouse.

https://elifesciences.org/articles/54540#video2
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(CDF) was then determined from PDF. The Mean ± SEM CDFs from 5 Black and 5 White mice are

shown in Figure 3C–H: standard deviation, skewness, kurtosis, Fano factor, temporal entropy, and

HiFD respectively. Alongside the CDF curves, means over animals are also shown that were obtained

by first finding a mean (single value for each animal) of the distribution of a parameter. The means of

skewness, temporal entropy, and HiFD were significantly larger for White compared to Black mice

(individual Student’s t-tests, p<0.001, p=0.008, and p=0.007 with the following effect sizes: 4.035,

2.219, and 2.737, respectively). The opposite was the case for Kurtosis values (p=0.009, effect

size = 2.138). Together, these significant differences highlight the differences underlying dynamics

of pixel intensities that depict changes in positions of Black and White mice for example more nega-

tive skewness and smaller temporal entropy and HiFD values for Black mice show more stable and

gradual changes in positions.

We also calculated the spatial measures of entropy, sharpness, and Hausdorff fractal dimension

for all the individual frames depicting variability and then used individual Student’s t-tests

(Figure 3I). Note that these measures are for the whole frames in contrast with above-mentioned

analysis where values of parameters for example temporal entropy and HiFD were extracted using a

mask representing average position of mouse. Thus, these measures take into account motion of

string along with that of mouse. The measures of spatial entropy and sharpness for the standard

deviation frames were significantly larger for the White compared to Black mice (p=0.023 and

p=0.017 with the following effect sizes: 1.825 and 1.910, respectively Figure 3I). The spatial entropy

of HiFD frame was significantly larger for the Black compared to White mice (p=0.023, effect

size = 1.776). Finally, the sharpness of the Fano factor, temporal entropy, and HiFD frames was sig-

nificantly larger for the Black compared to White mice (p=0.007, p<0.001, and p=0.007 with the

 

A B 

C D 

E 

Figure 2. Characterization of whole-body position using central-tendency descriptive statistics. (A) Representative subset of image frames of a string-

pulling epoch of a Black mouse. (B) Central-tendency descriptive statistics: mean, median, and mode of string-pulling image sequence for a Black

mouse. Mean, median, and mode frames represent average to most frequent position of mouse. Shown below each frame are the respective values of

measures of spatial entropy, sharpness, and Hausdorff fractal dimension separated by hyphens. The black line in the mean frame shows the boundary

of a mask generated by selecting all pixels with values above the average value of the mean frame. (C) and (D) same as (A) and (B) respectively but for a

White mouse. Descriptive statistics of representative Black mouse show sitting as most frequent posture while that of the White mouse is upright

standing. (E) Mean ± SEM spatial entropy, sharpness, and Hausdorff fractal dimension shown for frames of descriptive statistics from 5 Black and 5

White mice.
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following effect size: 2.261, 3.305, 2.580, respectively). Combined these results suggest larger

changes in positions of White compared to Black mice.

Characterization of speeds with central-tendency descriptive statistics
reveals larger speeds of White compared to Black mice
By using the CLG optical flow algorithm, velocity vector fields were determined for each consecutive

pair of image frames and then speed frames were obtained by finding the magnitude of velocity

 

A 

B 

 

 

D E 
C 

H F 

I 

G 

Figure 3. Characterization of changes in position with variability descriptive statistics, Fano factor, entropy, and Higuchi fractal dimension. (A)

Representative variability descriptive statistics – standard deviation (Std. Dev.), skewness, and kurtosis, Fano factor, Entropy, and Higuchi fractal

dimension of string-pulling image sequence of a Black mouse. Standard deviation depicts summary of spatial variation over time (mouse posture from

sitting to standing). Skewness and kurtosis capture regions of rare events around the mouse body such as position of string. Shown below each frame

are the respective values of spatial entropy (SE), sharpness (S), and Hausdorff fractal dimension (HFD) separated with a hyphen. (B) same as (A) but for

White mouse. The White mouse has greater yaw and pitch head motion as seen in the standard deviation. (C) Mean ± SEM cumulative distribution

function (CDF) of the standard deviation values within a mask obtained for each individual mouse from their respective mean frames. For the

representative Black and White mice, outline of these masks is shown in Figure 2B and D, respectively. (D–H) Same as (C) but for other parameters. (I)

Mean ± SEM SE, S, and HFD shown for frames of parameters mentioned above.
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vectors. The algorithm faithfully captured the motion dynamics of video frames (Figure 4A and C).

The mean, median, and mode speed frames exhibited the spatial distribution of average to most fre-

quent speeds (Figure 4B and D). Observation of the respective frames for representative Black and

White mice show clear similarities as well as differences. For example, the peak values of mean and

median frames for the White mouse are larger than those for the Black mouse but peak location is

similar for both, and close to the center of mouse’s body where the hands release the string. Similar

conclusions can be derived from the median and the mode frames.

To compare the distributions of speeds for Black and White mice, speed values were chosen from

the mean speed frames using a mask (depicting the average position of mouse, see outline in the

mean frames in Figure 2). The mean speed frame was used because the number of frames in a

string-pulling epoch can be different from mouse to mouse. Therefore, normalization is done for

comparison purpose. The mask was used to get a better estimate of mouse speeds rather than

those of spurious speeds of background pixels. The average cumulative distribution of speeds for

White and Black mice is shown in Figure 4E. The mean speed for White mice was significantly larger

than that for Black mice (Student’s t-test, p=0.003, effect size = 2.607). Comparison of White and

Black mice was also done with measures of spatial entropy, sharpness, and Hausdorff fractal dimen-

sion for the mean, median, and mode frames. These measures were not different for groups of Black

and White mice except that the spatial entropy of mode frames was significantly larger for Black

mice compared to White (Student’s t-test, p=0.017 and effect size = 1.894) highlighting that for

White mice most frequent speeds are those of hands positioned around the center of body. Overall,

 

A B 

C D 

E F 

Figure 4. Characterization of speed with central-tendency descriptive statistics reveals White mice have larger speeds compared to Black mice. (A)

Output of the optical flow analysis overlayed on three representative image frames. Velocity vector is shown for every fifth pixel (along both

dimensions). For a pixel, the magnitude of the velocity vector shows instantaneous speed (cm/s). For the same image frames, respective speed frames

are shown on the right. (B) Descriptive statistics of the speed frames. Shown below each frame are the respective values of spatial entropy (SE),

sharpness (S), and Hausdorff fractal dimension (HFD) separated with a hyphen. The unit of color code is cm/sec. (C) and (D) same as (A) and (B)

respectively but for White mouse. (E) Average cumulative distributions of speeds from the mean speed frames of Black (N = 5) and White (N = 5) mice.

Shaded regions show SEM. Bar graph show Mean ± SEM over animals of mean speeds. (F) Mean ± SEM SE, S, and HFD shown for frames of descriptive

statistics from 5 Black and 5 White mice.
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these results suggest that White mice had faster movements than Black mice more localized on their

body.

Characterization of temporal changes in speed with variability
descriptive statistics, Fano factor, entropy, and Higuchi fractal
dimension of speed frames shows larger variability of speeds of White
compared to Black mice
Changes in speed were characterized by using variability descriptive statistics, Fano factor, entropy,

and Higuchi fractal dimension (HiFD) of speed Frames (Figure 5) in a similar manner as shown above

for image sequence. For both representative Black and White mice, the standard deviation frame

showed the largest variation in speeds around the center of body where the hands release the

string. For the Black mouse, variation in speeds can also be seen in the upper left corner where the

string appeared and moved in a subset of frames. For the White mouse, large variation can also be

seen around the head depicting its yaw motion. The skewness and kurtosis frames show large values

around the mouse body showing the distribution of speeds is more non-normal around the mouse

(same as for the image sequence). The Fano factor frames measured dispersion of speeds in time

relative to the mean or noise-to-signal ratio. For both White and Black mice, the dispersion appears

to be greater around the mouse body. The temporal entropy was greater within the mouse body as

compared to outside and vice versa for HiFD.

To assess the temporal changes in speed for groups of Black and White mice, we compared the

values of above-mentioned parameters using distributions of values obtained from each animal using

its respective mask calculated from the mean frame of image sequence (see outline in mean frame in

Figure 2B and D for representative Black and White mice). The Mean ± SEM cumulative distributions

are shown in Figure 5C–H along with Mean ± SEM over animals for standard deviation, skewness,

kurtosis, Fano factor, temporal entropy, and HiFD. The mean skewness (positive) and Fano factor

were larger for Black compared to White mice (Student’s t-test, p=0.028 and p=0.023 with the fol-

lowing effect sizes: 1.686 and 1.781, respectively) owing to smaller means (see representative mean

frames in Figure 4). The opposite was true for temporal entropy and HiFD measures (p=0.003 and

p=0.008 with the following effect sizes: 2.700 and 2.495, respecctively). The spatial measures of

entropy (spatial), sharpness, and Hausdorff fractal dimension for the frames of above-mentioned

parameters were not significantly different between the Black and the White mice (Figure 5I); how-

ever, they have been included here for the sake of demonstration of analysis. Some of the measures

likely would become significant with larger sample size. Taken together, these results suggest larger

variability, temporal randomness, and temporal complexity of speeds within the mouse body for

White vs Black mice.

Principal component analysis of image sequence and speed frames for
assessment of spatial patterns of position and speed
Principal component analysis of the image sequence and speed frames revealed orthogonal compo-

nents representing regions with the largest variance in intensity and speeds, respectively (Figure 6).

The first principal component (PC1) of the image sequence showed the most dominant position of

the mouse and was similar to frames obtained by first-order descriptive statistics. For the Black

mouse, PC2 mostly captured the difference between sitting and standing posture of the mouse.

Higher order components captured other dominant features of images for example, positions of

head and string. PC1 of the speed frames mostly represented motion of the hands, which consti-

tuted significant motion. Motion of the string body, head, and ears appeared in higher principal

components. For the Black mouse, PC1 of speed also captured dominant speed of the string in the

upper left-hand corner. Since, PC1 captures the largest variance, we compared the characteristics of

PC1 for groups of Black and White mice. For PC1s of both image sequence and speed frames, the

spatial entropy, sharpness, and Hausdorff fractal dimensions of Black and White mice were similar

(Student’s t-test, Figure 6E), except the spatial entropy of PC1 of image sequence was larger for

White compared to Black mice (p=0.011, effect size = 2.095). However, the mean explained variance

of PC1 of the image sequence for Black mice was significantly larger than that of White mice com-

pared with a Student’s t-test (p<0.0001, effect size = 6.363), whereas the explained variance of PC1

of the speed frames was smaller for Black mice compared to White mice (p=0.032, effect
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size = 1.636). These findings corroborate results reported above that White mice have larger vari-

ability of positions and higher speeds compared to Black mice.

Independent component analysis of image sequence and speed frames
for detecting events with high spatiotemporal contrast
Independent component analysis (ICA) allows extraction of statistically independent information

within a data set by decomposing it into non-Gaussian components. For the string-pulling motion

sequence, the most dynamic movements are those of the hands and the string and they contribute

to the non-gaussianity of the data set. When applied directly on the image sequence, ICA extracts
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C 
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G 

Figure 5. Characterization of changes in speed with variability descriptive statistics, Fano factor, entropy, and Higuchi fractal dimension. (A)

Representative variability descriptive statistics – standard deviation (Std. Dev.), skewness, and kurtosis, Fano factor, Entropy, and Higuchi fractal

dimension of speed frames of a Black Mouse. Shown below each frame are the respective values of spatial entropy (SE), sharpness (S), and Hausdorff

fractal dimension (HFD) separated with a hyphen. (B) Same as (A) but for a White mouse. (C) Mean ± SEM cumulative distributions (CDF) of standard

deviation values within a mask obtained for each individual mouse from their respective mean frames. For the representative Black and White mice,

outline of these masks is shown in Figure 2B and D, respectively. (D–H) Same as (C) but for other parameters. (I) Mean ± SEM SE, S, and HFD shown

for frames of parameters mentioned above.
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events that have high spatiotemporal contrast that is where there are sudden changes in an image.

Sudden changes include the appearance and disappearance of a hand or string in a frame.

Figure 7A and C show representative independent components (ICs) of image sequences for the

representative Black and White mice, respectively. The heat maps show small regions with red and

dark blue colors identifying regions of high spatiotemporal contrast (red and blue colors for positive

and negative values respectively indicate appearance and disappearance of objects in frames). The

ICs of speed frames were similar in appearance to the ICs of image sequence as they picked events

with high spatiotemporal changes in speeds that is mostly movements of the hands and the string.

In order to obtain a global picture of the independent components over time, maximum (Max) and

minimum (Min) projections were determined (Figure 7B and D) for ICs of both image sequence and

speed frames. For both White and Black mice, Max and Min projections of independent components

show regions where the hands and string were located. In order to validate these observations, ICA

was applied to a synthetic mouse data set in which only the hands moved, and this revealed the

prominent appearance of hand locations in Max and Min projections of independent components

(Figure 7E and F). ICA was also done on the principal components of image sequence and speed

frames obtained earlier. These analyses yielded results and conclusions similar to those for ICA on

the image sequence and speed frames. For the Max and Min projections of ICs, spatial entropy,

sharpness, and Hausdorff fractal dimension measures were determined and compared for groups of

Black and White mice. In comparisons where differences were significant (with Student’s t-test) are

shown in Figure 7G. The spatial entropy as well as sharpness was larger for White mice compared

to Black supporting results reported above (p-values for comparison of spatial entropy of Max-IC-

Position and Max-IC-Speed are 0.012 and 0.011 with the following effect sizes: 2.043 and 2.091,

A B 

C  

 Speed Frames  

D 

E 

 

Image Sequence 

Figure 6. Principal component analysis of image sequence and speed frames for assessment of patterns of positions and speeds. (A) The first four

principal components (PC) of the image sequence of the representative Black mouse. The number in parentheses indicates the value of explained

variance. Shown below each frame are the respective values of spatial entropy (SE), sharpness (S), and Hausdorff fractal dimension (HFD) separated with

a hyphen. (B) First four PCs of speed frames for the Black mouse. (C) and (D) same as (A) and (B) respectively but for the representative White mouse.

(E) Mean ± SEM values of explained variance (Var.), SE, S, and HFD for PC1 of positions and speeds.
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respectively; p-value for comparison of sharpness of Max-IC-Speed is 0.034 with effect size = 1.618,

for IC frames of PCs, p-values for comparison of spatial entropy of Max-IC-Position and Max-IC-

Speed are 0.030 and 0.008 with the following effect sizes:1.661 and 2.204, respectively; p-value for

comparison of sharpness of Max-IC-Speed is 0.025 with effect size = 1.741).

Descriptive statistics on image sequences of masks of body, ears, nose,
and hands
Descriptive statistics on the masks’ image sequence can reveal useful information about the extent

of motion of individual body objects, for example, the standard deviation of body, ears, nose, and

A B  

 C 

 

D 

E F 

G   

Figure 7. Independent component analysis captures regions with high spatiotemporal contrast. (A) Representative independent components for Black

mouse. Individual independent components mostly represent snapshots of position of the hands and strings, as they are most dynamic in the image

sequence. (B) Maximum (Max) and minimum (Min) value projections of all independent components of image sequence and speed frames. Max and

Min projections grossly represent locations of sudden changes happening in an image sequence for example, hand appearing or disappearing at a

new location. Shown below each frame are the respective values of spatial entropy, sharpness, and Hausdorff fractal dimension separated with a

hyphen. (C) and (D) similar to (A) and (B) respectively but for White mouse. (E) Representative image frames of synthetic mouse data in which only

hands moved. (F) Similar to (B) but for synthetic data. (G) Mean ± SEM of spatial entropy and sharpness of Max projections of ICs for image sequence,

speed frames and their respective PCs.
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hand masks as shown in Figure 8A and B for representative Black and White mice provides the vari-

ability in the position of respective objects. One can easily see individual differences between the

representative Black and White mice for example the body positions of a Black mouse are distinct as

seen by crisp standard deviation frame compared to a White mouse which has diffuse appearance.

Comparing the spatial measures between groups of Black and White mice revealed significantly

higher spatial entropy for mean, standard deviation, skewness, and kurtosis frames for White mice

(p=0.006, p=0.008, p=0.006, p=0.009 respectively with the following respective effect sizes; 2.356,

2.198, 2.370, and 2.132, Figure 8C). The sharpness of skewness was also larger for White mice

(p=0.022, effect size = 1.785). The spatial measures were not different for ears, nose, and hands.

Identification of fur, ears, and nose for quantification of body and head
posture of Black mice
Body length, body tilt, head roll, head yaw, and head pitch are estimated from the masks for fur,

ears, and nose (Figure 9). From the mask for fur, the mouse’s body centroid and body fit are esti-

mated. Since in the fur mask, segregated regions may be segmented because of an overlapping

object on the body such as the string in Figure 9 A1, a convex hull (Matlab function bwconvhull)

operation is applied to combine regions and find a cumulative area representing fur (Figure 9 A2,

also see Figure 9—figure supplement 1). Matlab function ‘regionprops’ is then used to identify

regions in the cumulative mask and their properties for example area, centroid, orientation, major

and minor axis length of an ellipse fitted on the region (Figure 9 A7, green). Major axis length and

orientation of the ellipse are then used as estimates of body length and tilt, respectively. In the

example string pulling epoch in the sample video (lasting about eight secs), the starting body length

is about 40 mm and increases by ~1.5% as the mouse stands and elongates its body to virtually walk

up on the string (Figure 9B). The body tilt however remains vertical (between 80˚�90˚) throughout

the epoch (Figure 9C).

To estimate head yaw, roll, and pitch, regions representing the right and left ears and the nose

are first identified using the respective masks and the elliptical fit for the body found earlier. An ellip-

tical mask is generated for the body using the elliptical fit and the intersection of an inverse of the

elliptical mask (converting 0’s to 1’s and vice versa) with that of ears to provide regions that are out-

side the ellipse for body (Figure 9 A4). If segmented regions are close, they are combined (Fig-

ure 9—figure supplement 1) and very small regions are ignored. In data for the Black mouse, only

two regions remained after the end of this procedure and they were easily labeled as the right and

A B 

C 

Black Mouse B White Mouse 

For Body masks 

Figure 8. Image segmentation based on object colors for finding object masks and gross assessment from descriptive statistics of masks. (A–B)

Standard deviation of the masks image sequence of body, ears, nose, and hands for overall assessment of respective motion patterns of Black and

White mice, respectively. Shown below each frame are the respective values of spatial entropy (SE), sharpness (S), and Hausdorff fractal dimension

(HFD) separated with a hyphen. (C) Mean ± SEM SE, S, and HFD shown for Body masks.
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left ears by finding their centroid location relative to body centroid that is regions left and right to

the body centroid would be right and left ears respectively. However, if multiple regions remain after

the intersection procedure, regions overlapping (or closest) to ear regions in a previous frame are

chosen. Spatial clustering is also applied to combine fragmented regions that are close together.

The centroids of the identified ear regions are used to represent their location (Figure 9 A7, cyan

and magenta dots). Next the nose is identified from the nose mask (Figure 9 A5). After identifying

spatial regions, clustering is first used to combine regions that are close together (Figure 9—figure

supplement 1) and then the region closest to the top of the body ellipse is labeled as the nose

region (Figure 9 A6). An ellipse is fitted onto the nose region and the top of this ellipse is used as a

single point to represent nose location (Figure 9 A7, yellow dot). Head yaw is then estimated as the

log of the ratio of distance between the nose and the right ear to the distance between nose and

left ear. A head yaw value of 0 indicates 0 head yaw angle which means that the face of mouse is fac-

ing the camera. In the representative string-pulling epoch of the Black mouse, head yaw values are
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Figure 9. Quantification of body and head posture. (A) Tagging of body, ears, and nose. From masks found with fur color (A1), body region (A2) is

identified and fitted with an ellipse (A7, green). From the ears’ mask (A3), ear regions are identified by using body centroid position found earlier (A4,

cyan and magenta dots in A7). Nose mask (A5) is used to identify the nose region (A6), which is fitted with an ellipse to identify nose position (A7,

yellow dot). (B) Body length vs time. Body length is the length of major axis of the body fitted ellipse. (C) Body Angle vs time. Body angle is that of the

major axis of the body fitted ellipse from horizontal. (D) Head Pitch vs time. Head pitch is estimated as the perpendicular distance between the nose

and a straight line joining the ears (small red line in A7). Positive and negative values correspond to the nose above or below the line respectively. (E)

Head Yaw vs time. Head yaw is estimated by finding the log of the ratio of distance of right ear from the nose to the distance of left ear from the nose

(ratio of lengths of White lines in A7). A value of 0 indicates 0 yaw angle. (F) Head Roll Angle vs time. Head roll is the angle of the line joining ear

centroids from horizontal using the right ear as the origin. (G). Shortest distance of the nose from the string vs time.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Algorithm to reduce the number of regions by spatial clustering.
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initially greater than 0 and gradually reduce to values less than 0, indicating that the mouse is mov-

ing its head from left to right (Figure 9E). Head roll angle is estimated by finding the angle of line

joining the centroids of the regions representing the right and left ears from the horizontal (Figure 9

A7, long red line). While the mouse pulls the string, the head rolls at a frequency of about three

rolls/s (Figure 9F) in the sample video (Video 1). However, there seems to be a bias for this mouse

to keep its head titled such that the right ear is slightly higher than the left ear. Head pitch is esti-

mated as the perpendicular distance between the nose and line joining the two ear centroids (Fig-

ure 9 A7, small red line). Positive and negative values of head pitch correspond to nose position

above or below the line joining the ears, respectively. In the sample video, the head pitch stays posi-

tive most of the time, as the mouse is moving its nose up for sniffing or using its whiskers to track

the string (Figure 9D). Furthermore, as has been previously shown (Blackwell et al., 2018a), the

nose stays close to the string (Figure 9G).

Identification of right and left hands and kinematic measures of hand
movement of Black mice
Since both hands move rapidly and have similar colors, it is a challenge to distinctly identify the right

and left hands without using a heuristic-based approach. To make automatic identification simpler,

we let the user initialize the location of hands in the starting frame, the first frame of an epoch,

where a user manually marks two regions representing right and left hands, respectively. In the sub-

sequent frames, automatic identification of the hands in a frame is achieved by using information of

the hand location in the previous frame. Automatic identification uses masks for the hands and finds

regions using ‘regionprops’ function of Matlab. As a first step, the number of regions is reduced

such that regions that most likely would represent the hands are kept; for example regions with very

small areas (less than 20 mm2) are neglected (Figure 10 A2 represent selected regions after extra

regions were neglected). Close by regions are also combined using spatial clustering (Figure 9—fig-

ure supplement 1). Once a set of reduced number of regions is obtained, the algorithm (Fig-

ure 10—figure supplement 1) identifies the left and right hands. If only one region remains, the

algorithm assumes that the hands are touching each other. It divides the region into two equal

regions and labels the subregions as left and right hands based on their distances from left- and

right-hand regions in the previous frame (Figure 10—figure supplement 1, Figure 10 A3and A4). If

two distinct regions remain, the same algorithm is used. If more than two regions are identified,

regions are further reduced based on their distances from (and overlaps between) left- and right-

hand regions in the previous frame and the regions are fed to the same algorithm in a recursive

manner.

The regions representing hands were also determined by first finding maximally stable extremal

regions (MSER) in the original frame (Obdrzalek and Mikulik, 2009). Using the Matlab function

‘detectMSERFeatures’ MSERs were found (Figure 10B1). Color definition for the hands was then

used to find MSERs that contained hand colors and a mask was thus generated (Figure 10B2). For

the representative Black mouse video, hand masks generated this way were in general better than

those created with the ‘rangesearch’ function (see Materials and methods); that is they had lesser

number of spurious regions. These masks were then treated as described above to find regions rep-

resenting the left and right hands (Figure 10B3 and B4). Both methods of finding hand regions are

made available in the graphical user interface using choices that can be made with check boxes.

Since the automatic algorithm is not deterministic but rather makes estimates using heuristics, it

is possible that the algorithm incorrectly labels regions as either the right or left hand. In this case,

the user can stop the automatic process and manually choose the appropriate identification in an

individual frame. The automatic identification of hands in a frame depends upon the position of

hands in the previous frame, therefore the user might have to reprocess all subsequent frames.

Once the positions of the hands are identified in all frames in behavioral epochs of interest that is

the x and y coordinates of centroids are found. They can be used to calculate kinematic measures.

For example, paths of hand motions can be visualized or the vertical and horizontal positions of each

hand from an origin point (lower left corner of the original frame) can be determined and plotted

(Figure 10C and D). In the representative epoch of string pulling for the Black mouse, the stroke

length of pulling is initially shorter and gradually grows for both right and left hands. With respect to

the common origin, for the vertical motion, the two hands are alternating, whereas for the horizontal

motion, the two hands move to the right and left together. From the position plots, the speed of
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the hands can be found by finding a time derivative. The vertical speed of the hands is about two to

three times faster than the horizontal speed. During the whole epoch, there are two bouts of rapid

pulling each about two secs long (from 2 to 4 s and from 6 to 8 s). During these bouts, the path

shapes of strokes of one hand were similar to each other and to the strokes of the other hand

(Figure 10G). For each stroke, the rise time that is motion from point of release of the string (near

the bottom) to the point of the grasp (near the top) is smaller than the fall time which is the time

mouse is pulling the string downwards (Student’s t-test, p<0.001, N = 21 cycles, Figure 10H). For

the horizontal motion, however, the strokes are bimodal (Figure 10I), and the rise time is larger than

the fall time (Student’s t-test, p<0.001, N = 22 cycles, Figure 10J).

Quantification of body and head posture and kinematic analyses of
White mice and comparison with Black mice
Distinguishing between the fur and other body parts (hands and ears) was difficult for the White

mice, resulting in the generation of poor-quality masks. This was because of lower contrast between
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Figure 10. Identification of hands and kinematic measures. (A) Representative frame (127) with overlayed regions in hand masks (A1). Regions in A1 are

reduced to find regions that would most likely represent the hands (A2). Note that it includes a region in the nose area. Using the position of hands in

the previous frame (blue and red outlines in A3), the hands are identified in the current frame (A4). (B) same as in A but masks are first found by

identifying maximally stable extremal regions in the original image (B1). (C), (D) Vertical (Vert) and Horizontal (Horz) positions vs time of right (blue) and

left (red) hands, respectively. Positions are measured from the lower left corner of frame as the origin. Where horizontal movements are synchronized,

vertical movements of right and left hands are alternating. (E), (F) Vertical and horizontal speed vs time of right and left hands. Maximum vertical speed

is about three times larger than maximum horizontal speed. (G) Distance vs. time for vertical motion plotted from all reach cycles (lift-advance-grasp-

pull-push-release). Red for left hand and blue for right hand motion. (H) Mean ± SEM rise and fall times for vertical motion reaches. (I) and (J) similar to

G) and H) respectively but for horizontal motion. Also see Video 1 and Video 2.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Algorithm to label right- and left-hand regions from two unlabeled regions.
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body parts and not due to other factors such as lighting conditions. Therefore, using sharpie

markers, we painted the hands and ears of the mice with blue and green colors respectively (Fig-

ure 11 A1). After painting, image segmentation for identifying the ears and the hands was easier

(Figure 11 A3 and A6 respectively). All topographical and kinematic parameters for head posture

and motion of the hands were determined (Figure 11B–E) in a similar fashion as described above.

Whereas the Black mouse gradually stood up, increasing its body length while pulling, the White

mouse moved the whole body in a rhythmic fashion up and down (Figure 11B). The White mouse

occasionally used its mouth to hold the string (Video 2).

There was no significant difference between maximum body length, minimum body length, and

change in body length (max – min) between White and Black mice, Student’s t-test, p>0.05. How-

ever, body linear and angular speeds were significantly larger for White compared to Black mice

(p=0.0198 and p=0.0199 with the following effect sizes: 1.837 and 1.834, respectively, Figure 11F).

The dominant frequency in body length oscillations (determined with Fourier transform of the time

series of body length) was not different between Black and White mice. Similarly, the dominant fre-

quency of motion for hands was not different. The mean amplitude of both hands was smaller for

White mice while mean vertical speed was larger, but neither was statistically significant

(Figure 11G, shown for right hand only). The peak left-hand vertical speed, however, was slightly
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Figure 11. Identification of body parts and quantification of kinematic measures in White mice. (A) Procedure for tagging of body, ears, nose, and

hands was like that used for Black mice except that the ears and hands were colored green and blue respectively. From masks found using fur color

(A2), the body region is identified and fitted with an ellipse. Ear and nose regions (A3 and A4, respectively) are identified and used to measure head

posture (A5). Hand regions (A6) are identified based on the position of the hands in the previous frame (A6, red and blue boundaries), the position of

the hands in the current frame are identified (A7). (B) Body length vs time. (C) Head Pitch vs time. In frames where both ears are not visible, y-distance

between nose and ear is measured as head pitch. D) Vertical position of the hands (from bottom of frame) vs time. (E) Shortest distance of the nose

from the string vs time. (F) Mean ± SEM of body linear and angular speeds from five Black and five White mice. (G) Mean ± SEM amplitude, vertical

speed, and time period of reach cycle of right hand.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. Temporal profiling of reach cycle for black and white mice with Dynamic Time Warping.
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significantly larger for White mice (p=0.0445, effect size = 1.506). Average time of right-hand reach

cycles (see examples in Figure 10G) characterized as lift-advance-grasp-pull-push-release

(Blackwell et al., 2018a) was significantly smaller for White compared to Black mice (p=0.005, effect

size = 2.46) corroborating previous finding that white mice have higher speeds (Figure 11G). Time

warping was also used to find an average reach cycle individually for each animal followed by

another time warping operation to find group average (Figure 11—figure supplement 1). The

amplitudes of time-warped reach cycles were similar for Black and White mice.

Benchmarking of algorithms for finding body parts
To determine the accuracy of heuristic algorithms presented here, the percentage of frames in which

body parts were correctly detected automatically (verified with manual observation) is calculated. To

display the accuracy of tagging of body parts for the data set being analyzed, a push button in the

GUI has been provided. Table 1 shows accuracy results for data from five black and five white mice.

The overall average accuracy for all body parts is ~96%, with higher accuracies for fur and ears com-

pared to those for nose and hands. This is because the nose is sometimes hidden behind the string,

making detection difficult for the algorithm while the hands are moving at a rapid rate and the algo-

rithm cannot differentiate between regions in the mask that belong to hands versus those that

belong to hand-like body parts for example nose.

Neural networks for identifying ears, nose, and hands
We also trained neural networks to analyze string-pulling videos to detect ears, nose, and hands in

Black mice. We used the Python based frame work of Deeplabcut toolbox (Mathis et al., 2018;

Nath et al., 2018) to train the ResNet50 network for identifying ears, nose, and hands (He et al.,

2016). Four separate networks were trained; three for the individual recognition of the ears, nose,

and hands and one for the combined recognition of all three in a single step. Since the first three

networks for individual recognition had better performance (visually observed), they were used in

subsequent analysis. Details of training the network and using it to analyze videos can be found in

Mathis et al., 2018. For training each neuronal network, 54 frames were labelled (18 from three dif-

ferent videos) and used to create the training dataset. For each network, training took about 36 hr

on a GPU (NVIDIA GeForce GTX 1080 with 8 GB memory) and on a 64-bit Windows 10 computer

Table 1. Accuracy of algorithms.

Percentage of frames in which a body part was detected automatically. N indicates the number of

frames of the string-pulling epoch that was analyzed. (N/A indicates not applicable and values were

not used for calculating the overall accuracy. For these situations, either color of a body part was not

separable in masks or due to limitation of the camera, hands were blurry in most of the frames).

Mouse/Body Part Body Ears Nose Hands

Black Mouse 1 (N = 477 of 630) 100 100 98.32 98.74

Black Mouse 2 (N = 132 of 245) 100 100 96.12 87.12

Black Mouse 3 (N = 351 of 1435) 100 97.14 92.88 81.48

Black Mouse 4 (N = 191 of 629) 100 97.38 100 89.53

Black Mouse 5 (N = 171 of 808) 100 100 98.83 93.57

Simulated Black Mouse
(N = 300 of 477)

100 100 100 99.67

Mean (Black Mice) 100 99.08 97.17 91.70

White Mouse 1 (N = 275 of 990) 100 96.36 82.91 94.91

White Mouse 2 (N = 300 of 594) 99.67 99 100 91

White Mouse 3 (N = 251 of 453) 100 94.02 N/A 60.16 (N/A)

White Mouse 4 (N = 166 of 421) 99.40 90.96 N/A 30.12 (N/A)

White Mouse 5 (N = 216 of 930) 100 N/A N/A 0 (N/A)

Mean (White Mice) 99.80 95.10 91.45 92.95
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with two processors (Intel Xeon CPU E5-2620 v4 @ 2.10 Gz) and 256 GB RAM. Training iterations

were 1030000 and the train and test errors were as follows in pixels. For network trained to identify;

1) only hands, errors were 3.3 and 3.94, 2) only nose, errors were 4.19 and 8.74, 3) only ears, errors

were 4.76 and 11.85, and 4) all objects, errors were 5.07 and 10.46.

For the epoch shown in previous figures for the Black mouse, the networks (separate for ears,

nose, and hands) faithfully identified the ears, nose, and hands, although with some errors (Fig-

ure 12). Errors were mostly negligible for the identified position of ears and nose (Figure 12B,C and

F). However, errors were up to ~100 pixels (pix) (10 mm) for the identification of hands in frames

where the speed was large (Figure 12A,D and E). These errors can be reduced if further training of

previously trained networks is done with more frames. For now, we offer an option to correct for

these errors using the provided graphical user interface in which Deeplabcut results can be loaded

and manually curated. Since our procedure (and software) for tagging requires manual validation of

results, it can be used to provide ground truth data for validating the results of neural networks-

based tagging of body parts.

Graphical user interface of toolbox and procedure for processing video
data
The details of the graphical user interface (GUI, Figure 13) of the toolbox and procedure for proc-

essing video data are presented in the online wiki of GitHub. The software can be downloaded from

the following GitHub link along with two sample videos from Black and White mice whose analysis is

presented in this paper (Video 1 and Video 2). https://github.com/samsoon-inayat/string_pulling_

mouse_matlab (Inayat et al., 2019; Inayat, 2020a; copy archived at https://github.com/elifescien-

ces-publications/string_pulling_mouse_matlab).

The tagged videos for the Black and White mice are shown above (Video 1 and

Video 2 respectively) and Youtube links are provided on the online wiki page. https://github.com/

samsoon-inayat/string_pulling_mouse_matlab/wiki.

General applicability of the software (whole-body and kinematic
analysis)
To demonstrate the general applicability of the whole-body analysis and heuristic algorithms for

tracking body parts, two videos not related to string-pulling were analyzed. In the first video, a
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Figure 12. Comparison of identification of ears, nose, and hands with heuristic algorithms and machine-learning-based neural networks. (A)

Representative frames highlighting the differences in position of ears, nose, and hands identified with the two methods. Dots for heuristics and plus for

neural networks. (B–F) Differences in x and y coordinates of ears, nose, and hands identified with the two methods.
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human in a sitting posture is catching and throwing a ball where the face, hands, and ball were

tracked with 100, 99, and 95 percent accuracy respectively (Figure 14). In the second video, a mouse

is tail clasped to freely hang and observed for the motion of hind paws. Here, body and hind paws

were tracked with 100% and 88% accuracy, respectively (Figure 14—figure supplement 1). Links to

both videos tagged with identified objects can be found on the following GitHub Wiki page. https://

github.com/samsoon-inayat/string_pulling_mouse_matlab/wiki.

Processed data sets including whole-body analysis for both above-mentioned videos can be

downloaded from the online folder ‘General Applicability of Software’ on OSF website (please see

link above).

Figure 13. Graphical user interface of the toolbox. Individual steps for processing data are separated into panel

blocks. The video frames can be viewed in the display window using the ‘Control Display of Frames’ panel. Step 0,

the user has to define a zoom window for digital magnification of the video and scale for finding pixels/mm. Step

1, the user specifies epochs in which the mouse pulls the string. Step 2, the user defines colors. Step 3, the user

finds zoom window, a sub region of the frames for which masks are calculated. Step 4, the user processes the

epoch for whole-body analysis through ‘Whole-Body Assessment’ panel and also finds masks and later objects of

interest. Finally, the user can generate plots using the ‘Post-Processing’ panel.
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Discussion
We present a Matlab based toolbox for seamlessly processing mouse string-pulling video data to

perform whole-body assessment of position and speed as well as automatically identify the body,

ears, nose, and hands in individual video frames. Quantification of the body and head postures is

presented using estimates of body length and tilt, and head yaw, roll, and pitch angles while kine-

matic measures are determined for the hands. Because mice track the string with snout sinus hairs,

changes in head posture relative to string motion provides an estimate of sensorimotor integration.

Kinematic measures for body and head can also be calculated from the quantifications provided.

This toolbox is provided under the GNU General Public Licence v3.0, and is open source, free, and

any modifications are allowed as long as this paper is cited when publishing or distributing a modi-

fied version. Here, we discuss phenotypic differences in behavior in exemplar mouse strains used for

Figure 14. General applicability of the software for tracking objects shown in a video of a human catching and throwing a ball.

The online version of this article includes the following figure supplement(s) for figure 14:

Figure supplement 1. General applicability of the software for tracking objects shown in a video of a tail-clasped mouse where hind paws and body

are tracked.
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the analysis, characteristics and limitations of the toolbox as well as comparison with other similar

software.

The description of behavior is central to understanding neural organization and function and

accordingly behavior is frequently fractionated to describe the contributions of different body parts.

The description of motor abnormalities emphasizes the allied contributions in which one body part

compensates for impairment of other body parts (Alaverdashvili and Whishaw, 2013; Jones, 2017).

For example, in using a hand to reach, detailed descriptions of hand movement also require a

description of the contribution of postural adjustments of the body. Optimal string pulling can be

envisioned as an act featuring individual arm/hand movements made with respect to a stable base

of support featuring little body movement. Any variation of this relationship between the hands and

body may be an expression of compensatory adjustment. The present procedure provides an inte-

grated view of a prototool use behavior in which skilled hand movements are described along with

the contributions of body movement, posture, and orientation.

We demonstrate phenotyping differences in the motor behavior of C57BL/6 (Back) and Swiss

Webster (White) mice and present findings that White mice have larger variation in positions of the

body, larger body speed but smaller reach-cycle time of string-pulling motion as compared to Black

mice. The interpretation of this result is that the White mice are displaying an impairment in arm/

hand movements relative to Black mice and so use upper arm and body motion for compensation. It

is recognized that albino mice display anatomical abnormalities in the visual system (Lee et al.,

2019), other physiological processes for example fatty acid uptake and trafficking (Seeger and
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Figure 15. Image segmentation based on object colors for finding object masks and gross assessment from descriptive statistics of masks. (A) Color

definitions in original frames are semi-automatically made with the user’s assistance for fur, ears, nose, hands, and string. The user first selects a

rectangular region around the object of interest (A1). K-means clustering is then applied to segregate different colors within the selected region (A2).

The user then selects a color that corresponds to the object of interest (A3, example shown for selecting color for the hands). Using color selections for

the fur and ears, quick segmentation is used to identify the fur and ears in every frame in an epoch of interest and projected onto a single frame after

edge detection (A4). A rectangular window around the blob is drawn to define a sub region of frames for which masks are then found (A5,

representative masks). The determination of rectangular window can also be done automatically and modified later if required. Note that masks are not

always clean and include regions other than objects of interest for example, hand masks include regions identified in ears and feet because of color

similarity.

The online version of this article includes the following figure supplement(s) for figure 15:

Figure supplement 1. Masks found with KNN, rangesearch, and custrom (grid-way) algorithm.

Figure supplement 2. Robustness of image segmentation shown in a video with different camera angle with a mouse on a table with brown base.
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Murphy, 2016), and recovery after spinal cord injury (Noristani et al., 2018). There is also evidence

that albino strains of laboratory animals display motor system abnormalities (VandenBerg et al.,

2002; Whishaw et al., 2003). Thus, it is possible to speculate that abnormalities in motor systems,

such as the corticospinal tracts that control the arms and hands, lead to compensatory whole-body

movements of string pulling in the White mice, as is reported after motor cortex stroke in mice

(Farr and Whishaw, 2002).

That the string-pulling procedure captures strain differences in the two exemplar strains of mice

that are examined, in which Swiss Wister mice display more body motion relative to C57BL/6 mice,

shows that the procedures can be used for phenotyping strain differences more generally. In addi-

tion, the behavior of string-pulling is homologous to string-pulling described in many other animal

species including humans, suggesting that our method can be exploited for species comparisons

and for developing other animal models of human neurological conditions (Ryait et al., 2019;

Singh et al., 2019).

The whole-body analysis approach
The whole-body analysis approach developed and presented here provides a generic method for

analyzing animal behavior. With this approach, rather than analyzing kinematics of body movements,

overall characteristics of the image sequence and derived spatiotemporal signals such as speed

frames are assessed within a spatially confined region representing the average position/location of

the animal. Thus, the need for pose estimation or tracking of body parts is eliminated. Intuitively,

spatiotemporal signals with two spatial dimensions and a temporal dimension can be assessed with

spatial and temporal measures and could also be examined using factorization to decompose into

simpler components using for example principal and independent component analysis. To obtain a

global and spatial summary over time, calculations were first performed in the temporal dimension

to obtain single 2D frames for example with temporal measures of central and variability descriptive

statistics, Fano factor, entropy, and Higuchi fractal dimension, for quantifying the regularity and vari-

ation, dispersion, randomness/disorder, and complexity respectively of the time series of pixel val-

ues. After these quantifications, a consistent method is required to compare them across animals

and groups of animals.

The spatial mean values of the above-mentioned parameters over the average position or loca-

tion of the animal is a reasonable overall spatiotemporal estimation, and as demonstrated above,

allowed highlighting statistically significant differences between White and Black mice. Further differ-

ences between White and Black mice were evident with spatial measures of entropy, sharpness, and

Hausdorff fractal dimension applied on previously obtained single 2D frames for quantifying their

randomness/disorder, edges/blurriness, and complexity, respectively. One can envision mouse string

pulling as a modification of climbing a string and accordingly, the more erect posture of the White

mice uncovers a different strategy relative to strategy of the Black mice. Note that an expert eye

might observe speed differences between Black and White mice from raw videos, but the spatiotem-

poral measurements demonstrated here provide statistical evidence not only for speed differences

but also for gauging randomness and complexity of signals. Some of the measurements shown here

were not statistically different between Black and White mice. However, for a different set of videos

or an increase in sample number the differences might become significant statistically. Therefore, all

the measures are included in the toolbox for users to apply and explore in the data at hand.

Robustness and limitations of image segmentation and automatic
detection of body parts
The success of the heuristic approach to detect body parts automatically is crucially dependent

upon the quality of masks generated with image segmentation. Therefore, four strategies have been

devised to improve image segmentation. First, an interface is provided to select colors of objects

where the user can interactively select a region of interest, select a candidate set of colors, and then

inspect the mask for accuracy (see methods). This way a narrow range of colors can be selected to

represent an object. Second, a ‘zoom window’ is used to select a region of frame which encom-

passes the whole behavioral epoch of interest and therefore allows for fast and improved image seg-

mentation (only look for colors where the user knows they are). An automatic method for detecting

zoom window has been implemented where in each frame, the boundaries of the animal are found
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based on its body set of colors (defined previously). The zoom window found automatically can be

inspected and modified as well as can also be defined manually all together. Third, similar to the

zoom window, a ‘head box’ is found to define a window containing only the head. Head box is also

found automatically, can be later inspected and modified. The use of head box improves the effi-

ciency of detection of ears as the search region is restricted.

Finally, three different methods for image segmentation (Figure 15) have been provided (KNN,

rangesearch, and a custom algorithm) to allow the user to choose what might work best for the data

set at hand. KNN and rangesearch algorithms work similarly to find colors of interest that are closest

to the colors of choice based on ‘Euclidian distance’. However, KNN searches for the nearest neigh-

bors while in rangesearch the user predefines the Euclidian distance. For videos with excellent con-

trast that is clear separation of colors of body parts from background such as for the illustrative

Black mouse shown here (see figures above), rangesearch with a Euclidian distance of 1.5 (default in

GUI) works very well. However, KNN works better for frames where more rigorous search of closest

colors is required. For poor videos where background has colors like those of body parts, the custom

algorithm works best. This algorithm divides the screen using a grid and then uses rangesearch to

find colors within each grid cell. Using a manually set threshold, this method eliminates spurious pix-

els and one gets sparser segments depending upon the size of the grid. Sparser segments allow for

more accurate detection of islands that represent a certain body part. An illustrative example of find-

ing masks with three methods is presented in Figure 15—figure supplement 1 for the tail-clasped

mouse to demonstrate the sparsity of segments found with the custom method. An example of find-

ing all the body parts in a video collected with different illumination conditions, camera angle, and

brown-colored table-top is presented in Figure 15—figure supplement 2 which illustrates the effec-

tiveness of the above-mentioned strategies of image segmentation.

Automatic identification of body parts features a heuristics approach which requires consistent

input data, that is the videos be recorded in a consistent manner. The number of pixels in a frame,

frame rate, illumination conditions, and overall position of the mouse in video frames, if consistent

from video to video, will make processing effective. If these parameters are changed, image seg-

mentation options (see above) and thresholds that are set in the software can be readjusted for

improving accuracy. These thresholds are mentioned in the ‘selectAppropriateRegions’ function in

the toolbox and in individual functions to identify body parts.

Due to the use of a heuristic approach, sometimes the algorithm fails to correctly identify regions

for hands. In cases where a Matlab error occurs while identifying the hands, the user is given the

option for manual tagging. Nevertheless, in case of no Matlab error, the algorithm can still incor-

rectly label a region as a nose rather than a hand. In such a case, the user has to manually observe

frames for accurate detection and in case of erroneous tagging, use the manual tagging option pro-

vided in the GUI. Furthermore, the erroneous tagging in one frame can continue into subsequent

frames because identification of the hands in a frame depends on correct identification in a previous

frame. Therefore, the recommendation is to process the 20 frames that are displayed along with

GUI together. In the sample data of the Black mouse, less than 2% of frames (6/477) were incorrectly

labeled for hands and had to be tagged manually. The other case in which erroneous tagging might

happen includes videos in which a mouse is pulling a string when turned sideways. In this case only

one ear is visible. Then, when both ears appear again, the algorithm still detects one ear. The user

has to again manually initialize the detection of the other non-detected ear for the software to auto-

matically detect the ear in subsequent frames.

Video acquisition strategy to improve accuracy of automatic detection
of body parts
Since, image segmentation and the heuristic algorithms rely on high-contrast image sequence, the

choice of colors for background and string can affect the outcome for example if for a White mouse,

white background or string is chosen, the software would not be able to distinguish between string

and body (fur of the animal). Similarly, if shutter speed of the camera is not high enough, frames in

the image sequence will have blurry objects particularly hands as they have high-speed motion. The

software will then have difficulty in resolving colors of hands from blurry images.

Illumination conditions should also be such as to enhance the contrast of acquired images. We

recommend using front facing cold light (on the same side as the camera), that is light is in front of

the animal. High resolution of the video is also preferred for better pixel resolution for resolving
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body parts (HD 1920 x 1080 is recommended). Note that these requirements are important for iden-

tifying and tracking body parts in videos but whole-body assessment can still be done on low- to

medium-quality videos.

Comparison with artificially intelligent machine learning based software
Machine learning (ML) based software for pose estimation in videos such as ‘DeepLabCut’

(Mathis et al., 2018) and ‘Animal Part Tracker’ (Kabra et al., 2013) and for object recognition such

as ‘DeepBehavior’ (Arac et al., 2019) can provide a seamless work flow, but they are computation-

ally intensive initially when training is required. For identifying a new/different object, or for improv-

ing the accuracy of detection (Figure 12), usually retraining must be done. The algorithms

presented here are simpler, require smaller computations, and can be implemented on any com-

puter with reasonable computing power and temporary storage for example 2 GHz processor and

32 GB of RAM. In comparison, ML-based software require high-end computers ideally with graphical

processing units.

In contrast with DeepLabCut and AnimalPartTracker, our approach for characterizing string-pull-

ing behavior has several advantages. Instead of just pose estimation, it provides direct measure-

ments of relevant parameters that might be used to identify similarities and differences between

control and experimental groups of animals for example whole-body analysis, use of optical flow to

identify speeds, identification of body length and angle, head posture, and kinematic analysis of

body and hand movements. To identify body length with ML based software, one would have to

label many points around the body and track them in frames to identify the body boundary. In short,

the method imposes a priori an interpretation of the behavior, whereas our segmentation methods

is neutral and so is more objective in this respect.

With body color definition and image segmentation, identification of the body is a breeze, and

features almost 100% accuracy. For other body parts as well, ML-based pose estimation would track

points, whereas with image segmentation one can track regions/areas which with the former method

must be done in a secondary analysis. The approach presented here also has a faster lead time. The

user can obtain results the same day after data acquisition as our software does not need any prior

training of a neural network (which can take several days), rather one can open videos and start ana-

lyzing right away. Depending upon the quality of videos, 2–4 hr might be required to analyze 500

frames. Although, after training a neural network, individual videos might take smaller amount of

time for pose estimation, post manual validation and subsequent analysis must be done for charac-

terizing behavior. In the provided toolbox, pdfs of final high-quality figures are made and stored for

immediate use and scripts are provided to compare groups of animals. The faster lead time with the

current approach would also apply were experimental conditions changed for example animal spe-

cies or strain, whereas retraining of the neural network would be required.

Data compression for efficient storage of masks
While writing this software, data compression techniques were used to minimize storage of calcu-

lated masks in addition to the provision provided to select a zoom window which uses a subset of

frames to process. Since each pixel of a mask is either 1 or a 0, it can occupy a single bit in a 1-byte

number. This way individual bits of a byte represent a single pixel of an individual mask while the

whole byte can be used to store one pixel for eight masks. Using this methodology, five masks are

stored in an array with each element one byte long.

Support and software maintenance, future work, and possible
extensions of the toolbox and the string-pulling behavioral task
A user manual of the software has been provided in the online wiki at the GitHub page along with a

video tutorial. Support for issues with the software will be provided via email or through the GitHub

support page where other people will be able to view issues and their solutions. The software will

be maintained as per need and any further improvements and changes will be updated on the

GitHub ‘readme’ and ‘revisions’ page. In case major revisions are made to the software regarding

GUI or improvements in detection algorithms, a completely newer version will be provided on

GitHub and the users will be redirected to the newer GitHub page. An undisclosed email list serv of
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the users will be kept by the corresponding authors. Users will be encouraged to contribute toward

future development and will be added as contributors to the GitHub page.

Future development regarding whole-body analysis might include assessing spatiotemporal prop-

erties of the phase of velocity vectors which would add directional information to motion measure-

ments. For the tracking of body parts, additional functionality could be added regarding detection

of phases of string-pulling movements for example when the hands grasp and release the string.

String masks are available in the toolbox to add this functionality. The heuristic algorithms can also

be easily modified by changing the appropriate functions. The string-pulling task can also be

enriched with sensory, motor, and behavioral complexity. For example, sensory complexity would

involve strings with different cross-sections, texture, or coated with odors. Motor complexity would

involve adding tension or variable load to the string. Behavioral complexity would involve a para-

digm in which the animal has to learn to associate string-pulling with a reward for example water.

Social competition or social altruism can also be studied with string-pulling. For example, in a

competitive strategy, two animals will pull the string from two ends to obtain reward attached in the

middle. The scenario could be presented to study motivation before and after stress. In experiments

to study altruism, string pulling of one animal could give the reward to another animal. Motor mem-

ory formation and the role of sleep in its consolidation could also be studied (Inayat et al., 2020b).

We anticipate that this toolbox holds promise for facilitating high-throughput platform for the

behavioral screening of drugs that may help in the treatment of Parkinson, Huntington, Alzheimer

and similar diseases in addition to brain injuries (i.e. ischemic stroke, spinal cord injury, etc.). In short,

the method can reveal the extent to which the hands can be used independently of the body, the

asymmetry of hand use, the sensory control of reach guidance, the speed/accuracy of hand use, and

compensatory adjustments between the individual measures. Exemplar assessments are relevant to

estimating the effects of brain injury and disease, recovery and treatment effects, as well as strain

and species differences in string pulling behavior.

Materials and methods

Experimental animals
Adult mice 3–6 months old, five male C57 Bl/6J (Black) and five male Swiss Webster Albino (White),

were used in this study. No explicit power analysis was used to estimate sample size because in this

work our goal was to establish analysis methods. N = 5 was chosen for both strains of mice due to

limited availability of White mice. We observed a statistically significant effect of genotype for many

parameters (see results) with the chosen sample size. To examine magnitude of effect where statisti-

cal significance was observed, we also report effect size.

Animals were kept in a controlled temperature (22˚C), humidity, and light with a 12:12 light/dark

cycle. They were singly housed as they were food restricted to increase the yield of string-pulling

behavior. All testing and training were performed during the light phase of the cycle. All experi-

ments were performed in accordance with the Canadian Council of Animal Care and were approved

by the University of Lethbridge Animal Welfare Committee.

String-pulling task
The apparatus and training procedure were as described previously (Blackwell et al., 2018a). Briefly,

the test box consisted of a clear Plexiglas cage (20 cm long, 9 cm wide, and 20 cm high) in which a

string was thrown over the center of the front wall so that its end could be reached by the mouse. A

video camera was placed in front of the cage and behavior was filmed with a Panasonic camcorder

at 60 f/s with a 1/1000 shutter speed and frame resolution of 1920 � 1080 pixels. For three White

mice, the data was collected with another camera, a Sony Camcorder with 1/750 shutter speed and

60 f/s. Mice would spontaneously pull the string into the cage but were also lightly food restricted

so that they were motivated to pull the string to obtain a food reward (pieces of a cashew nut or

cheerios) attached to the end of the string.

Analysis platform and preliminary processing
Matlab R2016 and Microsoft Windows platform was used for the development of the toolbox and

analysis of the video record. Later, it was tested and upgraded to work in Matlab R2018b and
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Matlab 2019b. From the videos, a subset of frames representing string-pulling epoch was selected.

The start of the epoch was when the mouse touched the string and started pulling it down while the

end of epoch was when the mouse stopped the bout of string-pulling. Furthermore, a subregion of

frames was selected for analysis to reduce computation time. In the toolbox, this subregion is called

‘auto zoom window’ and is found automatically but is also subject to adjustment.

In order to do a fair comparison between the performances of Black and White mice with whole-

body analysis, the image frames of Black mice were complemented using Matlab’s ‘imcomplement’

function. To accelerate the processing of whole-body analyses, red, green, and blue (RGB) frames

were first resized to one-fourth their original size using Matlab’s ‘imresize’ function and then con-

verted to gray scale frames using Matlab’s ‘rgb2gray’ function. The user can, however, set the image

resize value using the provided graphical user interface (see below). For kinematic assessment of

movements, body, ears, nose, and hands were tracked in the original frames using color-based

image segmentation and heuristic algorithms.

Optical flow analysis of image sequence for estimation of velocity
vector fields and speed frames
The Combined Local-Global (CLG) method was used to estimate optical flow in string pulling videos

(Bruhn et al., 2005; Afrashteh et al., 2017). The Matlab implementation of the CLG method pro-

vided by Liu, 2009 was used with the following default parameters which the user can modify if

required (alpha = 0.01, ratio = 0.5, minWidth = 20, nOuterFPIterations = 7, nInnerFPIterations = 1,

nSORIterations = 30). This method was chosen because it provides a better optical flow estimate

compared to Horn-Schunck and Temporospatial methods (Afrashteh et al., 2017). The chosen

parameter values faithfully estimated optical flow, as was validated with visual observation of moving

objects in frames. To reduce computational time, image frames in videos were reduced by four times

but resizing of image frames did not affect the quality of images or the calculations of optical flow as

confirmed with visual observation of velocity vector fields. As the optical flow computes one velocity

vector field frame from two video frames, the number of optical flow frames that is velocity vector

fields, is one less than that of video frames.

Descriptive statistics
The mean, median, mode, standard deviation, skewness, and kurtosis were calculated for image

sequence and speed frames by using respective Matlab functions. For example, the mean frame was

determined by finding the mean of the time series of all individual pixels in a frame sequence that is

�x;y ¼
1

N

P

N

t¼1

I x; y; tð Þ where mx,y denotes mean value of intensity at x and y location, t is frame number,

N is the total number of frames, and I is the average gray scale intensity determined from red,

green, and blue frame sequences. Other parameters were similarly calculated.

Finding a mask for mean mouse position from mean frame
A mask was generated to estimate the average position of a mouse by using a threshold equal to

average of all pixels in the mean frame. Matlab’s ‘imbinarize’ function was used to generate the

mask, which makes all pixels zero whose value is below the threshold and sets other pixels to a value

of one.

Temporal analysis of image sequence with Fano factor, entropy, and
Higuchi fractal dimension
To assess the temporal changes in the position and speed from image sequence and speed frames

respectively, three measures, Fano factor, entropy, and Higuchi fractal dimension (HiFD) were used.

A Fano factor frame for the image sequence was calculated to find the Fano factor value for each

pixel from its time series using the following equation; Fano Factor ¼ s
2

� , where s is the standard

deviation and m is the mean of time series. Similarly, an entropy frame for the image sequence was

calculated by finding the entropy of the intensity time series of individual pixels by using the

’entropy’ function of Matlab which uses the following relationship; Ex;y ¼ �
P

px;ylog2 px;y
� �

where Ex,

y is the entropy of the time series at x,y location and px,y is the normalized histogram counts of inten-

sity values for the same location returned by the ’imhist’ Matlab function. Prior to finding this
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measure, ’mat2gray’ Matlab function was applied on time series to scale maximum and minimum

values as 1 and 0, respectively. The Higuchi fractal dimension (Higuchi, 1988) frame was also calcu-

lated from the time series of individual pixels in a similar way using a function downloaded from

https://www.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-

measures. The value of Kmax parameter used to find HiFD was arbitrarily chosen to be 10

(Spasić et al., 2005). The measures of Fano factor, entropy, and HiFD were also calculated in the

same way for speed frames.

To statistically compare the values of the above-mentioned parameters between groups of Black

and White mice, values of parameters were extracted from respective frames using the mean posi-

tion mask (see above). For example, for comparing entropy, values of entropy were selected from

the entropy frame from pixels that had a corresponding value of 1 in the mean position mask. The

mean of all these entropy values was chosen as a representative value for the animal. These means

were statistically compared between groups using Student’s t-test.

Principal component analysis of image sequence and speed frames
In Matlab, the ‘pca’ function was used to determine principal components (PCs) of the image

sequence and motion profile (speed frames) determined with optical flow analysis. For a frame

sequence, the 3D matrix HxWxN (H, W, and N being height, width, and number of frames) was con-

verted to a 2D matrix with the number of rows equal to HxW and columns equal to N. The function

pca was then executed to determine N principal components. The individual component scores

were then reshaped from 1D (HxW) to 2D H rows and W columns. PCs of speed frames were simi-

larly calculated.

Independent component analysis of image sequence and speed frames
A fast independent component analysis (fastICA) algorithm (Hyvärinen and Oja, 2000) was used to

find independent components (ICs) of the image sequence as well as speed frames. The function

was downloaded from https://www.mathworks.com/matlabcentral/fileexchange/38300-pca-and-ica-

package. To apply ‘fastICA’ on the image sequence or speed frames, the 3D matrix of frames was

converted to a 2D matrix with the number of rows equal to HxW and columns equal to N where H

and W are the number of height and width pixels while N is the number of frames. Here N was equal

to 50% of the original number of frames in the image sequence or speed frames that is number of

independent components was chosen to be 50% of the number of frames in the input sequence.

This was done to reduce computational time. After applying the fastICA function, individual compo-

nent frames were determined by reshaping from 1D scores (HxW) to H rows and W columns. Since,

the algorithm to find ICs is iterative, the minimum tolerance set to stop iterations was 5e-5 and the

maximum number of iterations was set to 1000. ICs were found before reaching the maximum num-

ber of iterations that is the error went below tolerance.

Calculation of spatial measures of entropy, sharpness, and Hausdorff
fractal dimension
For various frames obtained in the previous sets of whole-body analyses; for example mean frame of

image sequence or the first principal component frame, spatial entropy, sharpness, and Hausdorff

fractal dimension (HFD) were calculated. The same entropy function described earlier was used for

finding spatial entropy after scaling the frame values between 0 and 1 with ‘mat2gray’ Matlab func-

tion. Sharpness was calculated using the following equation:

Sn ¼
x;y

X

ffiffiffiffiffiffiffiffiffiffiffiffiffi

rIx;y
�

�

�

�

q

� �

= H�Wð Þ;

where rIx,y represents gradient of intensity image and H and W denote height and width of the

image respectively. Function to calculate sharpness was downloaded from https://www.mathworks.

com/matlabcentral/fileexchange/32397-sharpness-estimation-from-image-gradients. The Hausdorff

fractal dimension was obtained using the ‘boxCountfracDim’ function downloaded from https://

www.mathworks.com/matlabcentral/fileexchange/58148-hausdorff-box-counting-fractal-dimension-

with-multi-resolution-calculation. This fractal dimension uses the following relationship; HFD = -log

(N(e))/log(e) where N is the number of pixels above zeros in a box and e is the box size. In the box
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counting method, an image is first binarized using an appropriate threshold and then non-overlap-

ping boxes of different sizes (different e values) are overlayed on the image and the number of pixels

above zero value are counted to obtain N(e). A line is then fitted for a scatter plot of log(N(e)) and

log(e) and the slope of that line provides the fractal dimension (FD). Here, the threshold used to

binarize an image was the mean value of all its pixels. For the Black mice, the frames were comple-

mented before the calculation of HFD for comparison with White mice.

Synthetic data for testing and validation of algorithms
To test the efficacy of the software, two different types of data sets were generated, 1) empirical:

based on experimental values of mouse body position and those of hands, nose, and ears, and 2)

modelled: where the movement of hands were calculated by a sinusoidal function. For both data

sets, color of fur/body, ears, nose, and hand were chosen from the range of observed values to cre-

ate elliptical patches of body parts on a rectangular background patch. For empirical data, animal

movements were created using the centroid, major- and minor- axis of the ellipse calculated from

the real experiments. For modeled data, we observed that x- and y- motion of hands can be mod-

elled using two 180˚ out of phase sinusoidal oscillators, and body tilt is in-phase with the reaching-

hand. In general, we observed that one complete reach-grasp-release cycle was completed in ~12

frames (0.2 s). Thus, the 360˚ x- and y- motion was divided into 12 parts to mimic the hand move-

ments. Further, hand movements were linked to the body centre to mimic the changes in hand

movements associated with body movements.

Color-based image segmentation for gross motion assessment and
tracking of body, ears, nose, and hands
In computer vision, image segmentation is a basic process in which an image is divided into regions

based on distinguishing features, such as color and texture. In the current video data, we utilized

color-based segmentation of frames for finding regions containing fur, ears, nose, hands, and the

string. To define a color, a user first selects a rectangular region around the object of interest (Fig-

ure 15) for example, hands. K-means clustering is then used to separate colors in the rectangular

region into three clusters. With trial and error, it was found that three clusters were sufficient to sep-

arate colors of interest for body and hands while seven clusters were sufficient for separating colors

of interest for the string and nose. The number of clusters can be changed with the user interface,

however. The user is then allowed to choose the cluster that represents the object of interest

for example, cyan cluster in Figure 15 A3 for hands. Using these colors, a mask is then generated

and shown to the user for visual inspection. Through the supplied interface, the user can then add or

subtract colors until a reasonable mask is generated. The user can then move to the next frame and

repeat the process for the new frame. This way, with five to ten frames within an epoch chosen ran-

domly, an appropriate selection of colors for an object of interest is made. All color values in a clus-

ter are stored and later used to find masks. In a similar fashion, the user selects colors for other

objects of interest.

Once colors are defined, masks are generated in which colors matching the color of interest are

found (Figure 15 A5). Three different methods can be used to generate masks; 1) K-Nearest Neigh-

bor (Matlab’s KNNsearch function), 2) a Range search algorithm (Matlab’s rangesearch function),

and 3) a custom algorithm (custom Matlab function find_mask_gridway) which divides a frame into a

grid and uses rangesearch for individual grid blocks. To save computational time and memory stor-

age, masks are not found for the whole frame, rather for a subset of each frame. The region of a

frame for which masks are determined is found such that it includes the mouse body in all frames of

an epoch. First, the range of motion of the whole mouse body within an epoch is estimated by find-

ing the edges of a mouse’s body in each frame of an epoch and plotting them together (Figure 15

A4). The user then draws a window around the blob of plotted edges, which is then stored as a

parameter in ‘auto zoom window’ and used to find masks. On a computer with Intel Core i7-4820K

with two CPUs (each 3.7 GHz) and 32 GB RAM, it takes ~1 hr to process 477 frames (each frame

being 457 � 895 pixels) for finding five sets of masks for fur, ears, nose, hands, and string. With an

option to reduce image size by a factor adjustable with the user interface, the calculation of masks

can be accelerated by several orders of magnitude.
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Statistical analysis
Statistical analysis was done using Matlab R2016b. Data are presented as mean ± the standard error

of mean (Mean ± SEM). Two-sample Student’s t-test was used for statistical comparisons and an

alpha value of <0.05 was used to determine significance. Effect size was measured using Cohen’s d

and reported for substantive results.
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