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The malaria parasite has for long been thought to escape host complement

attack as a survival strategy. However, it was only recently that complement

evasion mechanisms of the parasite were described. Simultaneously, the role

of complement in antibody-mediated naturally acquired and vaccine-induced

protection against malaria has also been reported. Such findings should be

considered in future vaccine design, given the current need to develop more

efficacious vaccines against malaria. Parasite antigens derived from molecules

mediating functions crucial for parasite survival, such as complement evasion,

or parasite antigens against which antibody responses lead to an efficient

complement attack could present new candidates for vaccines. In this review,

we discuss recent findings on complement evasion by the malaria parasites

and the emerging role of complement in antibody-mediated protection against

malaria. We emphasize that immune responses to vaccines based on comple-

ment inhibitors should not only induce complement-activating antibodies but

also neutralize the escape mechanisms of the parasite.
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The global burden of malaria is massive. In 2018

alone, an estimated 228 million cases occurred glob-

ally. There were 405 000 deaths reported; 67%

occurred in children under the age of 5 years. Of all

malaria deaths, 93% occurred in sub-Saharan Africa

[1]. Malaria in humans is caused by five species of Plas-

modium: P. falciparum, P. vivax, P. malariae, P. ovale,

and P. knowlesi. P. falciparum causes the most severe

forms of malaria. The life cycle of Plasmodium

parasites is complex (Fig. 1) [2]. They require an

anopheline mosquito vector and a vertebrate host [3].

In the human host, infection begins with the bite of an

infected Anopheles mosquito that inoculates the person

with about 10–100 sporozoites [4]. The sporozoites

migrate to the capillaries and then travel via the blood-

stream into the liver, where they invade hepatocytes [5]

and initiate the pre-erythrocytic cycle [6]. Upon inva-

sion of hepatocytes, the parasites undergo replication,
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also called schizogony, at the end of which thou-

sands of daughter cells are formed. These cells dif-

ferentiate into invasive blood-stage parasites called

merozoites that are released in ‘batches’ into the

bloodstream [7]. In the bloodstream, the merozoites

quickly invade erythrocytes to initiate the pathogenic

erythrocytic stage of the parasite life cycle, also

called the asexual cycle. Within the erythrocytes, the

merozoites mature to form rings, then trophozoites,

and eventually schizonts with multiple parasites that

burst to release a new generation of merozoites,

thereby starting the process of invading new erythro-

cytes [8]. The asexual life cycle is accompanied by

commitment to gametocytogenesis [9,10]. Thereby, a

fraction of merozoites differentiate inside erythro-

cytes into male and female gametocytes [11] that are

taken up during a mosquito’s blood meal. In the

mosquito midgut, male and female gametes fuse to

form ookinetes that cross the midgut epithelium,

where they develop into oocysts. Parasites inside

oocysts differentiate ultimately into sporozoites that

invade the mosquito’s salivary glands [12].

The complex life cycle of malaria offers multiple

potential points of intervention. Malaria vaccine devel-

opment has primarily focused on pre-erythrocytic,

blood-stage, or transmission-blocking vaccine targets

[13]. However, after more than 50 years of intensive

research and development, only one malaria vaccine

candidate, RTS,S (Mosquirix�), based on the central

repeat and C-terminal epitopes of the major sporozoite

surface antigen, circumsporozoite protein (CSP), have

completed phase-3 trials. Results of these trials indi-

cated that this vaccine reduced episodes of clinical

malaria in children 5–17 months and infants 6–

12 weeks of age by 50.4% and 30.1%, respectively,

over a 1-year follow-up [14]. Despite this positive out-

look, it was apparent that the vaccine was only par-

tially protective, and the obtained immunity waned

over time, as the RTS,S vaccine efficacy was only 28%

in children 5–17 months of age and 18% in infants 6–
12 weeks of age when measured 2 years after vaccina-

tion [15,16]. Therefore, innovative approaches are

urgently needed to design vaccines with improved effi-

cacies [17].

The complement system represents a major part of

the innate immunity and is considered the first line of

defense against pathogens. It is a cascade of soluble

plasma proteins and membrane-expressed receptors

and regulators, which operate in plasma and other

body fluids, in tissues and on cell surfaces. Recent

studies demonstrated that P. falciparum parasite has

surface molecules that can capture host soluble com-

plement regulators to inhibit complement activities

and avoid cell damage [18-20]. Other studies described

a role for complement in antibody-mediated protection

against malaria [21-27]. These findings could be

exploited to design a malaria vaccine that can induce

antibodies with an ability to neutralize complement

evasion mechanisms and activate the complement, thus

resulting in enhanced complement-mediated protec-

tion.

In the current review, we will discuss recent findings

on complement evasion by the P. falciparum and the

emerging role of the host complement system in anti-

body-mediated protection against malaria. We will

also emphasize that immune responses to vaccines

based on complement inhibitors should not only

induce antibodies that activate the complement

Fig. 1. Life cycle of the malaria parasite

P. falciparum.
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(complement-fixing antibodies) but also neutralize the

escape mechanisms of the parasite.

The complement system activation
pathways and regulation

The complement system forms part of the innate

immune response and serves as an effector arm of

adaptive humoral immunity. Its key functions include

C1q-, C3b-, and iC3b-mediated cell opsonization for

phagocytosis, immune cell recruitment, and induction

of inflammation mediated by release of C3a and C5a

and formation of the membrane attack complex

(MAC) for targeted microbial lysis [28]. There are

three main complement pathways: the classical path-

way, the lectin pathway, and the alternative pathway

(Fig. 2). The classical pathway is triggered by the

recognition of antibody–antigen complexes on foreign

cell surfaces by complement component C1q. Struc-

turally similar pattern-recognition receptors, mannose-

binding lectin (MBL) and ficolins, bind to carbohy-

drate ligands on microbial intruders and initiate the

lectin pathway. On the contrary, the alternative path-

way is initiated by the spontaneous hydrolysis of

native C3 and the absence of self-surface structures.

Activation of each of these pathways results in the

assembly of critical enzymes of the cascade called C3

convertases (C3bBb). Once activated, all the three

pathways converge at the C3 step, leading to covalent

deposition of the opsonins C3b and iC3b, generation

of inflammatory anaphylatoxins C3a and C5a, and

ultimately the formation of MAC [29].

The complement system is tightly controlled by fluid-

phase regulators [e.g., factor H (FH), factor H-like pro-

tein 1 (FHL-1), C4b-binding protein (C4BP), and C1-in-

hibitor (C1-INH)] and by cell membrane regulators [e.g.,

complement receptor 1 (CR1)/CD35, MCP/CD46,

decay-accelerating factor (DAF)/CD55, complement

receptor of immunoglobulin (CRIg), and protectin/

CD59] to prevent inappropriate complement activation

and host cell destruction [30]. Complement receptor type

1 (CR1/CD35), membrane cofactor protein (MCP/

CD46), DAF/CD55, and CRIg inhibit complement acti-

vation at the C3bBb level. Protectin/CD59 prevents com-

plement activation by binding to C5b-8 and C5b-9

complexes, thereby preventing C9 from polymerizing and

forming the MAC [31]. C1-INH and C4BP inhibit the

initial steps of the classical pathway. Specifically, C1-

INH inhibits the functions of C1r, C1s, and mannan-

binding lectin-associated serine protease 2 (MASP2).

Clusterin and vitronectin inhibit the terminal pathway.

FH and FHL-1, an alternatively spliced product of the

factor H gene, regulate the amplification loop of the

alternative pathway [32]. The functions of FH include

dissociation of the C3bBb, also called decay-accelerating

activity, and cofactor activity for factor I-mediated cleav-

age and inactivation of C3b (Fig. 3).

Complement inhibition by microbes

Many immune evasion strategies developed by pathogens

against innate immunity are focused on the complement

system. Pathogens utilize multiple strategies to interfere

with complement immune recognition and effector func-

tions in order to survive in the human host [33–35]. They

express diverse and multiple surface proteins and secrete

additional molecules to avoid complement attack. Com-

monly shared strategies include interference at the activa-

tion or at the C3 and C5 convertase level and inhibition

of MAC formation. Perhaps the most commonly studied

complement-inhibiting mechanism of pathogens is the

recruitment of complement regulatory protein FH [36].

Pathogens commonly recruit FH to their surfaces by

binding to complement control protein (CCP) domains

6–7 or CCP 19–20 leaving the critical regulatory region

of FH CCP1-4 functional. Bacterial proteins that bind

FH via CCP 6–7 can also recruit FHL-1 due to the

shared conserved CCP domains between FH and FHL-1

(Fig. 4) [37]. Examples include outer surface protein E

for Borrelia burgdorferi [38], staphylococcal binder of

immunoglobulin for Staphylococcus aureus, pneumococ-

cal surface protein C for Streptococcus pneumoniae [39],

and factor H-binding protein (FHbp) for Neisse-

ria meningitidis [40], all of which recruit factor H [41].

Interestingly, FHbp proteins are now components of

Bexsero� (Novartis, Basel, Switzerland, one FHbp

protein) and Trumenba� (Pfizer, Newyork, NY, USA,

two FHbp proteins), two recently approved vaccines

against group B meningococcus [42]. In addition to

activating complement, FHbp-specific antibodies block

binding of FH and hence increase bacterial susceptibil-

ity to killing via the alternative pathway. Although

complement evasion mechanisms and molecules have

been identified for several pathogens during the past

decades, it was only recently that evasion mechanisms

and molecules have been identified for the P. falci-

parum parasite [19-20,43,44].

Complement immune evasion at the
different stages of the Plasmodium
parasite

Sporozoites

Exposure of the developmental stages of the malaria

parasite to human complement within the complex life
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cycle of the parasite is clearly evident. The invasive

extracellular sporozoites that are inoculated via a mos-

quito bite into human skin provide one example.

Sporozoites take about 20 min from the inoculation

site to reach the liver. They are exposed to comple-

ment yet succeed in infecting hepatocytes. This sug-

gests that sporozoites can escape complement effector

functions. For P. falciparum, this is probably also host

species-specific, because it does not infect other verte-

brates in nature.

Indeed, there are reports on the resistance of

malaria sporozoites to complement. Data from Plas-

modium berghei show that in the presence of nonhost

species human serum, salivary gland sporozoites acti-

vate complement causing deposition of C3b. Further-

more, the C3b deposition led to a reduction in

sporozoite infectivity to HepG2 cells. Conversely, loss

of infectivity to HepG2 cells did not occur when the

sporozoites were treated with serum from the suscepti-

ble host (mouse). Additionally, after shaving off their

surface with trypsin, P. berghei sporozoites became the

target for complement in the serum of susceptible

hosts and deposited C3b on their surfaces [45]. More-

over, Touray et al. [46] reported differences in the sus-

ceptibility to complement lysis between two

developmentally distinct sporozoite stages that were

isolated during the sporogenic development of P. galli-

naceum in the mosquito vector. It was found that the

P. gallinaceum noninfectious oocyst sporozoites were

susceptible to host (chicken) complement lysis, whereas

the highly infectious salivary gland sporozoites were

resistant to complement lysis. Because oocyst

Fig. 2. Pathways of complement

activation. The complement system forms

the first line of defense against invading

pathogens. It can be activated through

three major pathways: the classical

pathway, the lectin pathway, and the

alternative pathway. Antigen–antibody

complexes are recognized by C1q of the

classical pathway, MBL and ficolins

binding to foreign surfaces activate the

lectin pathway, while spontaneous

hydrolysis of native C3 will initiate the

alternative pathway. Upon activation, there

is initial deposition of C3b on the foreign

surface, which will generate the actual

alternative pathway C3bBb that boosts a

feedback amplification loop. Through the

formation of C3bBb, all pathways

culminate in the formation of C3b and the

anaphylatoxin C3a. Subsequent C5

convertase formation leads to C5b and

anaphylatoxin C5a generation, with C5b

initiating the formation of the MAC, which

becomes inserted into target cell

membranes. Host tissues and cells are

protected from complement deposition by

fluid-phase and cell-bound regulators. C1-

INH inhibits the functions of C1r, C1s, and

MASP2. C3b (and C4b) is inactivated by

complement factor I and one of several

cofactor proteins (surface-bound CD46 and

complement receptor type 1 (CR1) or fluid-

phase factor H or C4BP). Convertases are

regulated through disassembly by

regulators that have decay-accelerating

activity (CD55, CR1, factor H, and C4BP).

The formation of the MAC is controlled by

the activities of CD59, clusterin, and

vitronectin.
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sporozoite lysis by serum was heat-sensitive (+56 °C)
and Mg2+-dependent, but Ca2+-independent, the

authors concluded that lysis was mediated by the alter-

native pathway of complement [46]. Data on the resis-

tance of sporozoites to complement lysis also suggest

that they express proteins on their surfaces to interfere

with complement activity [45]. Thus far, no evasion

mechanisms have yet been discovered for P. falciparum

sporozoites, which represents a major knowledge gap

in the field.

Merozoites

The invasive extracellular merozoites that are released

from the erythrocytic-stage schizont of the malaria

parasite into the bloodstream to invade new erythro-

cytes are another clear example of exposure to the

complement system. Within the human host, there is

evidence that intraerythrocytic schizonts and free

merozoites bind FH and FHL-1 to their surfaces. This

binding inactivates C3b (depicted in Fig. 5) to ensure

survival during the erythrocytic replication phase [44].

Indeed, of all the parasite asexual stages, free

merozoites and intracellular mature schizonts have

been shown to significantly bind more FH molecules

than trophozoites and rings [43]. So far, only mero-

zoite protein Pf92 has been characterized as the pro-

tein responsible for interaction with FH [19]. Pf92 was

also shown to bind to the CCP domains 5–6 of FH

and FHL-1. The deletion of the Pf92 gene led to some-

what increased complement-mediated destruction of

merozoites [19]

It has been demonstrated that merozoite proteins

actively recruit C1-INH to their surfaces, allowing the

parasite to limit the classical pathway proteases and

hence avoid downstream complement activation [20].

PfMSP3.1 was identified as the C1-INH interacting

partner. Interestingly, although PfMSP3.1 parasite

knock-outs showed reduced C1-INH recruitment and

increased C3b deposition, which would imply that they

were more susceptible to complement-mediated killing,

the knock-out parasite paradoxically had enhanced

erythrocyte invasion in the presence of active comple-

ment [20].

Merozoites have also been reported to bind C1-INH

to their surface through an interaction with glycan

Fig. 3. Regulation of complement activity

by the soluble regulators FH and C4BP.

(A) FH and C4BP have decay-accelerating

activities for the alternative and classical

C3bBb, respectively. (B) FH and C4BP act

as cofactors promoting FI-mediated

cleavage of C3b and C4b.

Fig. 4. Schematic representation of the

CCP domains of FH (1–20) and FHL-1 (1–

7). Binding sites for C3b, C3d, sialic acid,

and heparin are shown by horizontal lines.

FHL-1 is a splice variant of FH.
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moieties within the P. falciparum glycosylphos-

phatidylinositol (PfGPI) molecule [47]. Merozoite

binding of increasing concentrations, up to fivefold

higher than serum normal level, of C1-INH inhibited

invasion of erythrocytes in the absence of active com-

plement. Thus, it was postulated that binding of C1-

INH to GPIs at the merozoite surface may have pre-

vented the molecular processes associated with ery-

throcyte invasion that involve recognition of

erythrocytes by parasite ligands, including GPI-an-

chored parasite proteins. Together, these results

demonstrate that binding of C1-INH to the merozoite

surface could be either beneficial or detrimental to the

parasite. Therefore, the role of C1-INH binding as a

parasite complement evasion mechanism still needs

further investigation.

Potentially, CR1 on erythrocytes could also con-

tribute to complement escape by malaria parasites,

provided that it becomes released and binds to mero-

zoites.

Asexual erythrocytic stages

As a result of invasion of erythrocytes, P. falciparum

parasites start immediately to remodel and modify the

host cells, leading to dramatic structural and morpho-

logical changes on their surfaces [48]. Among these

changes is the export of parasite proteins to the sur-

face of erythrocytes [49] to mediate cytoadhesion and

sequestration of the infected erythrocytes (IE) in the

microvasculature to avoid clearance by the spleen [50].

If the adhesion proteins are conserved, the immune

system may react toward them and recognize them in

subsequent infections and destroy the parasite. This is

obviously not the case; the parasite has developed a

means to evade the immune recognition by varying the

parasite’s exposed surface proteins [50]. It is now well

established that the P. falciparum erythrocyte mem-

brane protein 1 (PfEMP1), encoded by ~ 60 copies of

the highly polymorphic var genes, undergoes antigenic

variation and is responsible for adhesion to various

host cell receptors [51,52]. Adults in areas where

malaria is endemic are normally clinically immune to

the disease. This is a result of repeated infections with

P. falciparum [53,54] and the concurrent exposure to

variant surface antigen (VSA), of which PfEMP1 is

the most prominent and best studied. Variant-specific

immunity is also acquired in an age-dependent manner

[55–57] and associated with protection from clinical

disease [55,58]. Since activation of the classical path-

way of complement relies on binding of C1q to anti-

body–antigen complexes, antigenic variation on the

P. falciparum- IE surface would limit complement fixa-

tion and cell lysis. Thus, it could be considered as a

complement evasion mechanism, at least in individuals

with limited exposure to malaria, that is, with a limited

repertoire of anti-VSA antibodies. However, early

work showed that immune serum (with a large anti-

VSA antibody repertoire) from malaria-exposed

donors fixed complement on P. falciparum IE surface,

but no cell lysis [59] nor other adverse effects on para-

site development [60] were observed. This indicated

that mechanisms other than antigenic variation have

contributed to P. falciparum IE resistance to comple-

ment-mediated cell lysis. Wiesner et al. [60] have

demonstrated that the absence of functional endoge-

nous CD59, responsible for preventing the formation

of MAC, on the erythrocyte surface rendered P. falci-

parum IE susceptible to complement lysis. Hence, one

obvious mechanism for the observed complement resis-

tance of IE is mediated by the host cell-intrinsic com-

plement regulator CD59.

On the other hand, a recent study by Larsen et al. [61]

demonstrated that polyclonal and a monoclonal human

IgG targeting a specific variant of PfEMP1 were not

able to activate complement on P. falciparum IE that

expressed this specific variant even though these anti-

bodies fixed complement in an ELISA format assay

when bound to the recombinant PfEMP1. The study

authors concluded that the knob-restricted display

(clustering in knob-like protrusions on the erythrocyte

membrane) of PfEMP1 interfered with the on-target

hexamerization of IgG and prevented complement fixa-

tion [61]. For IgG to efficiently activate complement

and lead to target cell lysis, it has to deposit densely

enough on the target cell to accommodate C1q binding.

Fig. 5. Model of complement evasion on

parasite surface through acquisition of the

soluble host complement regulator FH.

2507FEBS Letters 594 (2020) 2502–2517 ª 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

P. K. Kiyuka et al. Complement evasion by the malaria parasites



IgG also has to bind close to the target cell membrane,

so that C3bBbs and MAC can be targeted to the mem-

brane. Molecules that activate complement at distance

like IgG binding to the tips of surface molecules will in

fact divert complement attack away from the target.

Finally, it is also important that the antibodies block

complement inhibitors on the target. Otherwise, a

clearly larger number of IgG molecules need to be

deposited to overcome the inhibitory effect of these

molecules. The net result will thus depend on the bal-

ance of complement-activating and complement-inhibit-

ing potential on the target.

Additionally, another variant of PfEMP1 was also

found to bind human nonimmune IgM [62] and

occupy C1q-binding sites on IgM and hence prevent

complement fixation [63]. Thus, both the knob-re-

stricted display of PfEMP1 and blocking C1q-binding

site on IgM could be considered as parasite’s strategies

to evade acquired protective immunity and comple-

ment activation. However, data discrepancy on com-

plement fixation on the surface of P. falciparum IE

justifies the need for further investigations to better

understand complement evasion by blood-stage P. fal-

ciparum parasites.

Gametes

When a mosquito feeds on an infective host, malaria

parasite sexual stages (female and male gametes) enter

the mosquito midgut where gametogenesis is induced

and gametes emerge from the erythrocytes. Once they

emerge, they are exposed to the active immune compo-

nents of the host blood [64]. In fact, complement pro-

teins factor B, factor D, and C3, components of the

alternative pathway of complement activation, remain

active for several hours in the mosquito midgut

[65,66]. It is during this mosquito stage of development

that P. falciparum gametes recruit FH and FHL-1

(from the human blood ingested during a blood meal)

to their surfaces to evade human complement attack

within the mosquito midgut [18]. The gamete surface

protein GAP50 binds FH and uses it to inactivate the

complement protein C3b. The binding site of GAP50

was mapped to CCP modules 5–7 of FH and FHL-1

[18]. Furthermore, polyclonal antibodies directed

against GAP50, when taken with the infected blood

meal, only partially blocked oocyst formation, which

could indicate that GAP50 was not the sole FH para-

site binding partner [18]. Moreover, the Anopheles

mosquito midgut cells have been shown to protect

themselves from human complement lysis by also cap-

turing FH [66]. Khattab et al. [66] also demonstrated

that the captured FH promoted inactivation of formed

C3b molecules on the midgut epithelium and limited

formation of the C3bBb enzymes. A hitherto putative

FH receptor protein on the midgut cells was identified,

and further work is required to characterize it [66]. On

the other hand, the chicken malaria parasite P. galli-

naceum zygotes have been shown to be susceptible to

the alternative pathway destruction in the presence of

nonhost (human, sheep, and guinea pig) serum

in vitro. In the natural chicken host, however, trypsin-

sensitive surface proteins conferred protection against

the alternative complement pathway [67]. Furthermore,

although P. berghei macrogametes’ and zygotes’ resis-

tance to complement has been investigated [65] neither

the complement regulatory protein nor its receptor

responsible has been conclusively identified.

In summary, complement evasion mechanisms have

been described in the P. falciparum life cycle for the

merozoite and gamete stages, as well as for the mos-

quito midgut cells. These evasion mechanisms are

highlighted on the parasite life cycle in Fig. 6. Other

findings suggest the resistance of the sporozoite and

the erythrocytic stages of the parasite to complement

attack, but no precise evasion mechanisms have yet

been described.

Role of complement in naturally
acquired protection against malaria

More than 110 years ago, Robert Koch demonstrated

that individuals living in malaria-endemic areas develop

naturally acquired immunity (NAI) to malaria. Koch

based his observations on microscopically detectable

parasitemia in children, adults, and transmigrants in

highly endemic areas of Papua New Guinea and

Indonesia, where people were exposed to many infec-

tious bites each year. By observing higher rates of adults

with asymptomatic infections and higher rates of chil-

dren with symptomatic infections, he concluded that

immunity develops slowly after many years of exposure,

but that complete immunity was never really achieved

[68]. Years later, the essential features of Naturally

acquired immunity have been described. It is now gener-

ally accepted that natural immunity to malaria was (a)

effective in adults after uninterrupted lifelong continu-

ous exposure, (b) lost upon cessation of exposure, (c)

parasite species-specific, (d) somewhat stage-specific,

and (e) acquired at a rate dependent upon the degree of

exposure [69]. Antibodies are known to be important

components of NAI to malaria. The strongest evidence

came from studies of Cohen et al. [70], in which passive

transfer of purified IgG from immune African adults to

children admitted with clinical malaria was shown to

significantly reduce parasitemia and lead to the
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resolution of fever [70]. Serum antibodies, which are

made by plasma cells, mediate protection by acting pre-

dominantly against parasites of the asexual blood stages

that cause the clinical symptoms of malaria [71]. How-

ever, a knowledge gap remains on which specific anti-

gens induce protective immunity, and which antibody

Fig. 6. Involvement of complement in the P. falciparum life cycle. (A) The life cycle of the P. falciparum parasite in mosquito and human

(created with BioRender.com). Boxes highlight the developmental stages at which complement is inhibited by parasite molecules or

provides protection to the parasite, when it is residing inside erythrocytes. (B) Sagittal section of a blood-engorged Anopheles mosquito

stained with hematoxylin and eosin (created in the senior author’s laboratory). Spontaneous hydrolysis of native C3 activates the alternative

pathway. Upon activation, there is initial deposition of C3b on the midgut epithelium, which can also initiate a feedback amplification loop.

Captured FH on the midgut epithelium acts as an accelerator of the decay of C3bBb and as a cofactor for factor I in the proteolytic

inactivation of C3b to iC3b.
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effector functions are the most important ones in pro-

tection from disease.

Thus, efforts to develop a highly efficacious malaria

vaccine have been hampered by (a) the limited under-

standing of functional mechanisms that contribute to

protection against malaria and by (b) the insufficient

knowledge of correlates of protection. Nevertheless,

significant progress has been made in defining mecha-

nisms of antibody-mediated immunity [72,73]. Previ-

ously, it was known that antibodies could function in

conjunction with phagocytic cells (opsonophagocyto-

sis) [74], stimulate monocytes and macrophages to

release molecules that kill parasites (antibody-depen-

dent cellular cytotoxicity) [75], or directly inhibit para-

site invasion, also called growth inhibition [76]. There

is now a significant body of literature suggesting that

complement is important in antibody-mediated immu-

nity. It has been shown that complement is involved in

the pre-erythrocytic-, blood-, and sexual-stage immu-

nity against malaria parasites.

Complement in immunity to
pre-erythrocytic stages

Immuno-epidemiological studies from malaria-endemic

areas have shown that individuals continuously

exposed to malaria can develop antisporozoite anti-

bodies (including those targeting CSP) [77-79]. How-

ever, there has been no significant association between

the acquisition of antibodies against CSP and protec-

tion from clinical malaria [80,81]. Nonetheless, a recent

study by Kurtovic et al. [21] has shown that anti-CSP

antibodies from malaria-exposed populations that were

predominately IgG1, IgG3, and IgM can fix comple-

ment and hence activate the classical pathway. These

antibodies also inhibited sporozoite traversal of hepa-

tocytes and caused sporozoite death in vitro. Addition-

ally, high levels of the complement-fixing antibodies

were significantly associated with protection against

clinical malaria in children. However, it was observed

that complement-fixing antibodies were acquired more

slowly to sporozoite antigens than to merozoite anti-

gens [21]. This finding could be simply attributed to

the fewer number of sporozoites that the immune sys-

tem encounters in an infection.

Complement in immunity to
merozoites

It is well established that antibodies play an important

role in blood-stage immunity [70]. Acquired and vac-

cine-induced human antibodies recruit complement

and interfere with erythrocyte invasion by the malaria

parasite [82]. Boyle et al. [82] have described an anti-

body effector function known as antibody-mediated

complement-dependent (Ab-C’) inhibition, in which

antibodies use complement to inhibit merozoite inva-

sion. In some individuals, the antibodies were shown

to be noninhibitory in the absence of complement.

Antibodies that fix C1q were shown to be associated

with protection from clinical episodes of malaria [82].

The importance of complement is further supported by

the association of protection from malaria with levels

of cytophilic IgG1 and IgG3 that activate complement

via C1q [83-85]. Similarly, merozoite-specific IgM anti-

bodies were identified in an experimental exposure and

in naturally acquired malaria cohorts and shown to

inhibit merozoite invasion of erythrocytes in a comple-

ment-dependent manner [24]. Moreover, the mero-

zoite-specific IgM antibody response was long-lived

and associated with protection in a longitudinal cohort

of naturally exposed children [24]. These data suggest

that IgM responses, alongside with IgG and in a com-

plement-dependent manner, are an important contribu-

tor to NAI against malaria [24]

Perhaps a significant step forward in our understand-

ing of the antibody–complement effector function is

that the specific targets for complement-fixing antibod-

ies are now known [25]. The recent work of Reiling

et al. [25] has shown that EBA140 RIII-V, RASPI,

GAMA, PfRH2, MSP-DBL1, PfRH5, EBA 175-RIII-

V, and MSP2-3D7 merozoite proteins are targets for

complement-fixing antibodies. Importantly, antigen-

specific complement-fixing antibodies were strongly

associated with protection from malaria in a longitudi-

nal study of children. Also, using statistical modeling,

they observed that combining complement-fixing anti-

body responses to three antigen targets could increase

the potential protective effect to over 95%. These find-

ings support antibody–complement interactions against

merozoite antigens as important antimalarial immune

mechanisms [25]. In contrast, Biryukov et al. [86] have

shown that antimerozoite antibodies and complement

activation can paradoxically aid the malaria parasite to

invade erythrocytes. Using a monoclonal antibody

directed against the merozoites and human polyclonal

IgG from merozoite vaccine recipients in a standard

invasion inhibition assay, they showed that in the pres-

ence of complement and antibodies, there was enhanced

invasion [86]. However, unlike the previous studies, this

study used naturally egressed merozoites rather than fil-

ter-purified merozoites [82]. Moreover, Biryukov et al.

[86] showed that filter-purified merozoites appeared less

infective and more sensitive to complement activation

than the naturally egressed merozoites. The advantage

of using filter-purified merozoites would be (a) to have
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significantly less parasite debris in the assay and (b) to

avoid the time window needed for the release of mero-

zoites from mature schizonts (in the naturally egressed

merozoite assays). Both of these mechanisms could

otherwise activate complement in the liquid phase and

lead to undesired consumption of complement. On the

other hand, naturally egressed merozoites would be

healthier as they were not squeezed through filters, an

event that could lead to stripping of surface proteins or

even cell death and make them more vulnerable to com-

plement attack. Thus, further studies are needed to sys-

tematically evaluate both methods of merozoite

isolation in conjunction with merozoite infectivity, and

complement activation level in the liquid phases and in

the invasion assays.

Complement in the immunity to
asexual erythrocytic stages

Variant-specific immunity to P. falciparum IE surface

antigens is acquired in an age-dependent manner [55–

57] and associated with protection from clinical disease

[55,58]. Thus, it is expected that anti-VSA antibodies

could mediate both P. falciparum IE cell lysis and

complement-dependent phagocytosis of IE. Early work

showed that P. falciparum IE is resistant to comple-

ment-mediated lysis even though complement compo-

nents were fixed on the IE surface [59,60]. However,

complement fixation on IE can still lead to comple-

ment-dependent phagocytosis. In fact, it was demon-

strated that phagocytosis of P. falciparum IE by

macrophages and neutrophils in the presence of

immune serum was enhanced when functional comple-

ment was present [87,88]. However, no recent data are

available on the role of complement in immunity

against P. falciparum IE even though anti-VSA anti-

bodies can indeed react with the IE surface, aggluti-

nate P. falciparum IE in vitro [55], and associate with

protection from clinical disease [55,58]. Thus, further

investigations are needed to better understand the rela-

tionship between anti-VSA antibodies, complement,

and protection from malaria.

Complement in the immunity to
sexual stages

Gametocytes, female and male forms, of the Plasmod-

ium parasites are formed in the human host through

developmental switch from asexual to sexual forms of

the parasite. Malaria transmission depends on success-

ful completion of the sexual Plasmodium cycle in the

mosquitoes that is initiated by gametocytes taken with a

blood meal from the human host. Interrupting the

sexual cycle at the fertilization stage, which involves

gametocytes, in the mosquito midgut is recognized as a

potential strategy for the control of malaria transmis-

sion. Indeed, a major surface antigen on the gametocyte

surface, Pfs230, was shown to be target for transmis-

sion-blocking monoclonal [89-92] and polyclonal [93,94]

antibodies in standard membrane feeding assays. The

antibody-mediated transmission-blocking activity of

monoclonal and polyclonal antibodies was also shown

to be complement-dependent [89–93]. The monoclonal

antibodies were of the mouse complement-fixing sub-

class IgG2a [90,92,95]. Moreover, naturally acquired

antibodies have been shown to recognize Pfs230 [96,97].

Additionally, these antibodies had complement-medi-

ated transmission-blocking activity against P. falci-

parum gametes and the activity was associated with the

presence of antibodies specific to Pfs230 that were pre-

dominantly of the complement-fixing type human IgG1

and IgG3 subclasses [96]. On the contrary, recent work

has demonstrated that depleting naturally acquired

antibodies from Pfs230-specific antibodies retained

high-level complement-independent transmission-block-

ing activity, suggesting that antibodies to other gameto-

cyte antigens were also involved [98].

Complement in vaccine-induced
protection against malaria

Activation of the complement cascade by

immunoglobulins plays a major role in the host

defense against pathogens. Ranking complement acti-

vation by different IgG subclasses has indicated that

IgG1 and IgG3 are the most potent subclasses in

mediating complement activation. IgM is also a very

potent complement activator. Thus, complement-medi-

ated protection against malaria induced by vaccines

requires specific class or subclass of immunoglobulins

to be induced by a given vaccine. The most advanced

malaria vaccine RTS,S, based on CSP, was shown to

induce high levels of IgG antibodies that were associ-

ated with protection against clinical malaria in RTS,S

vaccine trials [16,99]. It was further reported that vac-

cination of infants and young children with RTS,S

induced IgG1 and IgG3 responses that correlated with

protection, implying that complement might be

involved [99]. IgG1 and IgG3 are also inducers of

other Fc-mediated effector functions, such as anti-

body-dependent cellular cytotoxicity and phagocytosis.

More recently, vaccination with RTS,S was shown to

elicit anti-CSP antibodies that were mostly IgG1.

These antibodies fixed complement and were short-

lived and mirrored the decline in the RTS,S efficacy

presented by the study cohort [21].
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Whole sporozoite-based vaccination also induced

sporozoite-specific IgG and IgM with complement-fix-

ing capacities. They induced sporozoite lysis and inhib-

ited hepatocyte invasion [26]. Similarly, whole

sporozoite-based (Sanaria PfSPZ vaccine) vaccination

was also shown to elicit long-lived IgM class invasion-

inhibitory and complement-fixing antibodies [27].

Earlier work by McCoy et al. [10] showed that in

mice immunization with PfCSP elicited antibodies that

targeted P. falciparum sporozoites and activated the

classical pathway of complement resulting in cell

death, although the immunoglobulin subclass identified

in the study was mouse IgG1 known to be a poor

complement activator [10]. Together, these results sug-

gest that complement-fixing antibodies play an impor-

tant role in vaccine-induced immunity.

Despite the partial success of the RTS,S and whole

sporozoite vaccines, it has to be noted that the malaria

vaccine development has been fairly short-sighted with

regard to the functions of the vaccine antigens and the

respective antibodies induced. Immunoglobulin classes

and IgG subclasses and invasion tests are not sufficient

to monitor or screen most suitable and functionally

efficient vaccine antigens. It is simply not enough just

to monitor levels of antibodies produced. It is more

important to know what they are doing. Which func-

tions they are blocking if any. Different stages of the

malaria parasites have multiple stage-specific functions

that could be addressed by the vaccines. Complement

resistance is one of them. Another aspect not fully

considered is the reasons behind species specificity of

malaria parasites. Understanding this would already

provide a better background for vaccine development.

Conclusions and Perspectives

Recent data showed that P. falciparum parasite binds

host complement regulatory proteins such as FH and

C1-INH to its surface to mimic the mechanisms that the

host uses to escape complement-mediated killing

[19,20]. Nonetheless, the surfaces of the P. falciparum

developmental stages that evade complement activation

were shown to be targets for complement-fixing anti-

bodies that were elicited naturally or via vaccination

[25–27,82]. The complement-fixing activity of these anti-

bodies was also reported to associate with protection in

some studies [25,82]. These findings suggest that the

complement evasion mechanisms can be neutralized

and overcome. One way to achieve this would be

through repeated infections, in which sufficient neutral-

izing antibodies are mounted against the evasion mole-

cules. Overcoming complement evasion mechanisms

could also be achieved via vaccination. It is possible that

the immune response against the vaccine candidate,

usually a surface protein, may induce a quantity of com-

plement-fixing antibodies adequate for overloading the

capacity of the bound regulator, thereby disabling the

evasion mechanism. If the vaccine candidate is also an

evasion molecule, an antibody against it would both

neutralize its binding site and, if the neutralizing anti-

bodies are of the complement-fixing types (IgG1 and

IgG3), also activate the complement on the parasite sur-

face via the classical pathway. Thus, parasite antigens

that can elicit complement evasion-neutralizing antibod-

ies with complement-fixing abilities could already be a

step forward in future malaria vaccine development.

Successful examples of this strategy are the

meningococcal FHbp, which are now components of

Bexsero� (Novartis) and Trumenba� (Pfizer) vaccines,

recently approved against group B meningococcus [32].

FHbp was discovered in a systematic meningococcal

genome-wide search for immunogenic and protective

bacterial antigens [11]. It was only later found that the

exceptional activity of FHbp was based on its FH-

binding activity [40]. In addition to activating comple-

ment, FHbp-specific antibodies block binding of FH

and hence increase bacterial susceptibility to killing via

the alternative pathway [42].

As we have noted earlier [12], the use of FH-binding

proteins as vaccines should consider the possibility

that they could bind to their ligands, like FH, in indi-

viduals being vaccinated. This interaction may obscure

potentially protective epitopes on the vaccine antigen

and reduce antibody responses because of reduced

complement activation usually needed for antigen

delivery to lymph nodes. Although these possible inter-

actions did not appreciably appear to hamper the

immunogenicity of the FHbp in meningococcal vacci-

nes, recent studies have shown that FHbp with

impaired FH binding, by single amino acid substitu-

tion, elicited enhanced bactericidal antibody responses

in human FH-transgenic mice [13]. In a recent study,

eliminating the FH-binding ability of another bacterial

complement evasion molecule, B. burgdorferi CspZ,

also resulted in greater bactericidal antibody titers in

mice vaccinated with modified CspZ than the nonmod-

ified version [14] Thus, discovering the appropriate

Plasmodium complement evasion molecules and mutat-

ing them to eliminate the binding ability to their tar-

gets may be needed to develop functionally active

vaccines with sufficient immunogenicity and efficacy.
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