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Abstract

The dynamic cross correlation (DCC) analysis is a popular method for analyzing the trajectories of molecular dynamics (MD)
simulations. However, it is difficult to detect correlative motions that appear transiently in only a part of the trajectory, such
as atomic contacts between the side-chains of amino acids, which may rapidly flip. In order to capture these multi-modal
behaviors of atoms, which often play essential roles, particularly at the interfaces of macromolecules, we have developed
the ‘‘multi-modal DCC (mDCC)’’ analysis. The mDCC is an extension of the DCC and it takes advantage of a Bayesian-based
pattern recognition technique. We performed MD simulations for molecular systems modeled from the (Ets1)2–DNA
complex and analyzed their results with the mDCC method. Ets1 is an essential transcription factor for a variety of
physiological processes, such as immunity and cancer development. Although many structural and biochemical studies
have so far been performed, its DNA binding properties are still not well characterized. In particular, it is not straightforward
to understand the molecular mechanisms how the cooperative binding of two Ets1 molecules facilitates their recognition of
Stromelysin-1 gene regulatory elements. A correlation network was constructed among the essential atomic contacts, and
the two major pathways by which the two Ets1 molecules communicate were identified. One is a pathway via direct
protein-protein interactions and the other is that via the bound DNA intervening two recognition helices. These two
pathways intersected at the particular cytosine bases (C110/C11), interacting with the H1, H2, and H3 helices. Furthermore,
the mDCC analysis showed that both pathways included the transient interactions at their intermolecular interfaces of
Tyr396–C11 and Ala327–Asn380 in multi-modal motions of the amino acid side chains and the nucleotide backbone. Thus,
the current mDCC approach is a powerful tool to reveal these complicated behaviors and scrutinize intermolecular
communications in a molecular system.

Citation: Kasahara K, Fukuda I, Nakamura H (2014) A Novel Approach of Dynamic Cross Correlation Analysis on Molecular Dynamics Simulations and Its
Application to Ets1 Dimer–DNA Complex. PLoS ONE 9(11): e112419. doi:10.1371/journal.pone.0112419

Editor: Pratul K. Agarwal, Oak Ridge National Laboratory, United States of America

Received June 10, 2014; Accepted October 14, 2014; Published November 7, 2014

Copyright: � 2014 Kasahara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research on Innovative Areas, Grant Number 24118001, https://www.jsps.go.jp/
english/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: kota.kasahara@protein.osaka-u.ac.jp

Introduction

During the past decade, extensive efforts in the field of

molecular biology have shed light on the paramount importance

of non-coding regions in the human genome, which were

traditionally considered as ‘‘junk’’. In particular, an unexpectedly

huge amount of regulatory elements have been found by recent

studies [1]. Currently, the mechanistic details of gene expression

regulation through these elements are not well understood,

especially at the atomistic level. Since regulatory elements conduct

their functions through specific binding with a certain class of

proteins, i.e., transcription factors (TFs), the molecular interactions

between TFs and DNA are the keystone to gene expression. The

DNA binding affinity of a TF is dynamically modulated by a

variety of biochemical phenomena, such as post-translational

modifications [2], ordering or disordering of disordered regions

[3], and cooperative binding of one or more other TFs [4].

As an interesting example, the v-ets erythroblastosis virus E26

oncogene homolog 1 product (Ets1), which plays essential roles in

a wide range of important biological processes, such as cancer and

immunity, has been extensively studied [5–9]. A highly conserved

region named the ETS domain consisting of a winged helix-turn-

helix motif specifically recognizes the GGA(A/T) signature

sequence. Many regulatory elements control the transcriptional

activity of their target genes by binding with Ets1 and other

partner TFs. For example, the TCRa/b gene is regulated by the

cooperative binding of three TFs: the Ets1, the runt-related TF 1

(Runx1), and the core-binding factor b (CBFb) [10]. Regulation of

the mb-1 gene is established by the cooperative binding of Ets1

and paired box 5 (Pax5) to the promoter region [11]. The

stromelysin-1 gene is regulated by the Ets1 homo-dimer [12–14].

The partner TFs are considered to affect the stability of the

‘‘inhibitory module’’ of Ets1, which consists of short helices

upstream of the ETS domain (HI1 and HI2 helices) and

downstream from it (H4 and H5 helices). Interestingly, the HI1

region adopts a helix conformation only when Ets1 is free from

DNA; in other words, the formation of the inhibitory module with

ordered HI1 inhibits DNA binding by Ets1 [15]. Although these
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phenomena have been proven by experiments, the details of the

molecular mechanisms by which the partner TFs affect the Ets1–

DNA binding stability are still largely unclear. Here, we have

focused on the Ets1 homo-dimer with the Stromelysin-1 gene

promoter [12], as an example of the cooperative binding of Ets1,

to investigate the effects of an Ets1 molecule on the binding of the

other Ets1 with the regulatory element at the atomistic level.

The molecular dynamics (MD) method, which simulates a time

evolution of atomic coordinates based on the Newtonian

mechanics, is a promising method toward illuminating the

atomistic details of such complicated processes in molecular

systems from the 3D structure data. It has been applied to analyze

Ets1–DNA binding [16–18]. Reddy et al. analyzed binding

specificity of the signature sequence with simulations of Ets1–

DNA complexes with different sequences [16]. Kamberaj and van

der Vaart showed that Leu337–DNA interactions works as a

conformational switch of Ets1 by using the DCC analysis [17].

Karolak and van der Vaart also simulated the stability of the

inhibitory module by applying the replica exchange method [18].

While the MD method provides fruitful information about atomic

motions, and today’s supercomputers are able to perform long-

term MD simulations of large molecular systems, extracting

knowledge from a huge amount of data generated by simulations is

not straightforward. For analyzing communications among

separate parts of a molecular system, e.g., communication among

two Ets1 molecules and DNA, the dynamic cross correlation

(DCC) analysis has been extensively applied to quantify the

correlation coefficients of motions between atoms [19]. The DCC

between the ith and jth atoms is defined by the following equation,

DCC i,jð Þ~
SDri(t):Drj(t)Ttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S Dri(t)k k2Tt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S Drj(t)
�� ��2T

q
t

, ð1Þ

where ri(t) denotes the vector of the ith atom’s coordinates as a

function of time t, S:Tt means the time ensemble average and

Dri(t)~ri(t){Sri(t)Tt. While the DCC analysis can provide

insight into the correlative motions of atoms, it could overlook

some kinds of correlative motions, due to its reliance on

displacements from the uniquely determined average coordinate.

Namely, the DCC has a definitive meaning if an atomic

coordinate behaves under a uni-modal distribution. Atoms may

perform multi-modal behaviors over a long time period, especially

for the side-chains of amino acids, which rapidly move with

flipping motions. Although the DCC has usually been applied for

analyses of backbone fluctuations and domain motions by focusing

on only the Ca atoms, observations of side-chain interactions are

also important for our purposes. Therefore, we developed a new

method to extend the conventional DCC, by explicitly including

the multi-modal motions of atoms. We call the method ‘‘multi-

modal DCC’’ (mDCC). In addition, we used techniques in the

field of complex network analyses for visualization and investiga-

tion of communications among molecules, via the atomic

correlative motions in a molecular assembly.

In this article, we first introduce our new method to analyze

atomic correlative motions on the MD trajectory, mDCC. We

then report the results of MD simulations on the crystal structure

of the (Ets1)2–DNA complex (PDB ID: 3MFK) and three other

models constructed from this crystal structure: the single Ets1–

DNA complex constructed by removing an Ets1 (chain B), the

model with the N380A mutation in the both Ets1 molecules, and

the isolated double-stranded DNA extracted from the crystal

structure. In total, 900 ns trajectory data (200 ns for each, and an

additional 100 ns run of the (Ets1)2–DNA model with another set

of initial atomic velocities) were analyzed by using the mDCC

method, and the results were visualized as heatmaps, the 2D and

3D network diagrams. We discuss the communication between the

two Ets1 molecules and how it affects Ets1–DNA binding.

Results and Discussion

Multi-modal Dynamic Cross Correlation Analysis
Here, we introduce a new method, named mDCC, that

quantifies the correlation of motions between atoms moving

under multi-modal distributions. In this approach, we first build a

spatial distribution of atomic coordinates sampled from a MD

trajectory by a Gaussian mixture distribution, which is a linear

combination of Gaussian functions,

pdf rið Þ~
XK

k~1

pkN ri Dmk,Skð Þ, ð2Þ

N ri Dmk,Skð Þ~

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ3det Sk

q exp {
1

2
ri{mkð ÞT Sk

{1 ri{mkð Þ
� �

,
ð3Þ

where ri denotes a coordinate of the ith atom, N is a three-

dimensional Gaussian function, and pk is a weighting coefficient.

mk and Sk indicate the parameters for the kth Gaussian element: a

3D vector of mean coordinate, and a symmetric, positive-

definite 363 matrix, respectively. By imposing conditions

pk§0 (k~1,:::,K) and
PK

k~1 pk~1, Eq. (2) represents a prob-

ability density function for the event that the ith atom is observed

at the position ri. In contrast to the conventional DCC analysis,

which uses only one averaged coordinate, our approach decom-

poses the atomic motions into K modes, or Gaussian functions,

and calculates deviations from the individual K ‘‘averages.’’ These

parameters pk, mk, and Sk were learned from a trajectory by

applying a pattern recognition technique based on a variational

Bayesian approach [20]. In this approach, the assignments of each

data point ri to the Gaussian functions and the estimations of

parameters of the Gaussian mixture distributions were iteratively

updated in order to obtain the parameter values with the

maximum likelihood, which is based on a variational approxima-

tion. The k-means clustering was employed with randomly

generated initial assignments in order to generate an initial guess

of the assignments for the variational Bayesian approach. Here,

the maximum number of modes of each atom (the parameter K)

was set to five. If an atomic motion was likely to behave under a

smaller number of modes than five, then the weighted value pk of

excess modes should be close to zero in the learning process (we

omitted minor modes with pk,0.01).

Second, on the basis of the inferred Gaussian mixture

distributions, the correlation, mDCC(i,j; k,l), between the fluctu-

ation of the ith atom from the kth mode (k~1,:::,K ) and that of

the jth atom from the lth mode (l~1,:::,L) is defined by the

following equation,

mDCC(i,j; k,l)

~
Swi,j;k,l(t) Dri,k(t):Drj,l(t)

� �
T

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Swi,j;k,l(t) Dri,k(t)k k2Tt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Swi,j;k,l(t) Drj,l(t)

�� ��2T
t

q ,
ð4Þ
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wi,j;k,l(t)~pk(ri(t))pl(rj(t)), ð5Þ

pk rið Þ~
pkN ri Dmk,Skð Þ

pdf (ri)
, ð6Þ

where Dri,k(t)~ri(t){mk, and Drj,l(t)~rj(t){ml : Here, pk(ri) can

be considered as the degree of the assignment of the ith atom

coordinate to the kth mode, for which
PK

k~1 pk~1 holds. Eq. (4)

is different from Eq. (1) in several respects. First, it does not use just

the single average Sri(t)Tt, but instead uses a number of

‘‘averages,’’ viz., several modes m1, . . . ,mK , in order to distinguish

atomic fluctuations from the individual mode, each of which can

be viewed as a quasi-stable position. Second, Eq. (5) introduces a

weight, wi,j;k,l(t), to observe the relationship between the two atom

motions for which the ith atom is near mk and the jth atom is near

ml , by emphasizing the specific simulation duration. Namely,

mDCC(i,j; k,l) is mainly calculated from the time ranges when the

ith and jth atoms simultaneously belong to modes k and l,
respectively, by using the coefficient wi,j;k,l(t) weighting these time

ranges. For aiming this emphasizing effect, we use the common

weight, wi,j;k,l(t), for the two terms in the denominator of Eq. (4),

although it may seem to be peculiar from the viewpoint of the

basic definition of a correlation coefficient. However, it should be

noted that the normalized property, {1ƒmDCC(i,j; k,l)ƒ1, is

ensured, since mDCC(i,j; k,l) measures the cosine of the angle

between two vectors in R3T , one is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi,j;k,l(t)

p
Dri,k(t)

� �
t~1,:::,T

and the other is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi,j;k,l(t)

p
Drj,l(t)

� �
t~1,:::,T

, where T is the total

number of the time ensemble. The mDCC can compensate for the

weakness in the DCC analyses by detecting hidden information

about the multi-modal behaviors of atomic motions.

In practice, when K and L Gaussian functions with pk§0:01
and pl§0:01 were found for the ith and jth atoms, respectively,

then the K6L mDCC values were defined for this atom pair. In

this paper, we mainly analyze the maximum value of mDCC for

each pair of atoms or residues, and mode pairs with

Swi,j;k,l(t)Ttv0:1 were omitted because of the very few co-

occurrences of these pairs of fluctuation modes.

To illustrate the characteristic features of the mDCC and its

advantages over the conventional DCC, a simple toy model

consisting of two oscillating particles was analyzed by the mDCC

method, and the results are shown in Fig. S1 (see also Movie S1).

Overview of the mDCC Analysis of the (Ets1)2–DNA
Complex

We performed the MD simulation of the (Ets1)2–DNA model,

prepared from the crystal structure (PDB ID: 3MFK) consisting of

two Ets1 molecules (chain A and B) and a double-stranded DNA.

The sequences of the DNA strands are 59-GCAGGAAGT-

GCTTCCT-39 (chain C) and 59-CAGGAAGCACTTCCTG-39

(chain D), and we refer to each base by the residue ID defined in

the PDB file, that is from G1 to T16 and from C101 to G116 for

chains C and D, respectively. Then, the simulation trajectory was

analyzed by using the mDCC method. As a result of a pattern

recognition process for each 3D spatial distribution of 2,887 heavy

atoms, 6,886 Gaussian functions (or modes) were found. Remem-

ber that the maximum number of Gaussian functions for each

atom is an adjustable parameter, and five was applied in this study.

Only 8.80% of heavy atoms had five Gaussian functions to

approximate the distribution, and most of the atoms had smaller

numbers than five (Fig. S2B). The number of Gaussian functions

and the root mean square fluctuations of each atom were roughly

correlated with R2 = 0.383. (Fig. S2C). The atoms with the five

Gaussian functions tended to be located in highly flexible regions,

such as around the N-terminal HI1 helix that becomes disordered

when Ets1 binds to DNA. In addition, a large part of the Gaussian

functions in the atoms with the five modes were very minor (37.5%

of them were pkƒ0:1 the purple part of the left-most bar in Fig.

S2A).

The mDCC map and its differences from the DCC map for all

residue pairs are shown in the upper and lower triangular matrices

in Fig. 1A, respectively. These values for a pair of residues a and b

Figure 1. mDCC and DCC among residues of the (Ets1)2–DNA
complex. (A) The maps of mDCC values and their differences from the
DCC values (the upper and lower triangles, respectively). The color
gradation from blue to red corresponds to mDCC values and their
differences from DCC values from 21.0 to 1.0. The horizontal and
vertical axes denote residues in the system, including two Ets1
molecules and a double-stranded DNA. The colored bars along each
axis provided a guide for the secondary structures of residues: green,
orange, cyan, and pink denote a-helix, b-strand, loop or turn, and DNA,
respectively. Parts marked by the rectangles a–j, and residues marked at
the top and right of the map are discussed in the main text. (B)
Histogram of residue-wise mDCC and DCC values, shown in pink and
cyan, respectively.
doi:10.1371/journal.pone.0112419.g001
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were defined as the maximum values in each pair of atoms with

modes as follows:

DCC a,bð Þ~ max
i[a,j[b

DCC i,jð Þð Þ, ð7Þ

mDCC a,bð Þ~ max
i[a,j[b,k,l

mDCC i,j; k,lð Þð Þ: ð8Þ

Here, to elucidate the effects of local interactions on the

communications of the entire molecular assembly, we focused on

highly positively correlated pairs, by taking the maximum values.

Fig. 1 shows that the DCC and mDCC maps show similar

features, but the mDCC values were tended to be higher than the

corresponding DCC values, because the maximum values were

taken from all combinations of modes in mDCC. The median

DCC and mDCC values were 0.0956 and 0.114, respectively

(Fig. 1B).

In order to evaluate robustness of the mDCC analysis, we

calculated the mDCC maps from the following four different

conditions: (i) the parameter K = 10, (ii) use of backbone atoms for

calculating mDCC values of residue pairs, (iii) use of some

different time windows in the trajectory, and (iv) another initial

guess of the pattern recognition process. (i) We analyzed the

trajectory with the parameter K = 10 in addition to the default

parameter K = 5. Differences of the mDCC with K = 10 from that

with K = 5 mainly appeared at the flexible N-terminal regions (Fig.

S3A) because wide spread distributions need a large number of

Gaussian functions to cover all of sampled coordinates. The

Pearson correlation coefficient for mDCC values of K = 10 from

those of K = 5 was 0.975. This result indicates that the mDCC

values were not significantly affected by the changes of the

adjustable parameter K value lager than K = 5. Thus, the value of

K = 5 is good to represent the atomic motions. (ii) We calculated

the residue pair mDCC value by taking a representative backbone

atom from each residue, Ca and C5’ for amino acids and

nucleotides, respectively (Fig. S3B), instead of taking the maximum

mDCC value among atom pairs in each residue pair. The result

shows that the overall tendencies of the mDCC map and the

original one were very similar (the Pearson correlation coefficient

was 0.938). Focusing on the maximum value can detect positive

correlations in contacting side-chain pairs without hiding the

strongly anti-correlated motions. (iii) Following the previous

arguments about the convergence for the conventional DCC

analysis [21,22], the convergence of the mDCC analysis was

examined by calculating the mDCC maps with the different time

windows: the time range from 10 ns to 100 ns, the time range

from 110 ns and 200 ns, and the time range from 10 ns to 100 ns

in the alternative run with the different initial atomic velocities

(Fig. S4A, B, and C). The Pearson correlation coefficients with the

mDCC map calculated from 10 ns to 200 ns were 0.939, 0.923,

and 0.832, respectively. The mDCC map of the alternative run

was slightly different from the mDCC map of the original

trajectory, where the most of differences were arisen from the

motion of the inhibitory module including the disordered N-

terminal region. The Pearson correlation coefficient only for the

DNA-binding ETS core domain (Leu337–Phe414) was 0.910.

While it is difficult to characterize the equilibrium motion of the

disordered region within the 200 ns of simulation trajectory, the

motions in the ETS core domain was considered to be well

converged. The movies of these two trajectories are shown in

Movies S2 and S3. (iv) As the pattern recognition process depends

on randomly determined initial parameters, we repeated the

analysis by using different random values with the same trajectory

and compared the mDCC map with the original one. Conse-

quently, the Pearson correlation coefficient of all of residue-wise

mDCC values was 0.995, and the mDCC maps almost coincide

with each other, except subtle differences only appearing in the

flexible N-terminal region of Ets1 molecules (Fig. S4D). In

summarize, while there were some differences in the mDCC

values at the flexible regions among some conditions, the

correlations in other regions were robust. We mainly discuss the

motion of correlations among these structured regions.

Comparing the DCC and mDCC values for each pair of

residues revealed that there are several pairs with transiently

correlated motions at the intermolecular interfaces. As examples of

them, interaction of Asn380 at the two Ets1 interface and Leu337

at the interface of Ets1 and DNA are shown in Fig. 2, because

these residues are known as important residues for the coopera-

tivity by the mutation study [12]. In the first example, the side-

chain of Asn380B at the H2–H3 loop interacts with Ala324A and

Ala327A at the HI2 helix of the partner Ets1 (the characters A and

B after the residue numbers indicate the chain ID of the Ets1

molecules). The time courses of the interatomic distances between

the Nd atom of Asn380B and the Cb atoms of these alanine

residues (Fig. 2A) and the probability density functions for each

Gaussian element of the Nd atom of Asn380B (Fig. S5) showed

that Asn380B transiently flipped and switched its fluctuation

modes. The spatial distributions obtained from the simulation

trajectory for the atoms in Asn380B, Ala324A, and Ala327A are

shown in Fig. 2B, and they were modeled as four, three, and three

Gaussian functions, respectively (Fig. 2C). The mode with the

highest probability in the Nd atom of Asn380B (pk = 0.683) was

highly correlated with both Ala324A and Ala327A, with mDCC

values of 0.613 and 0.654, respectively. These correlations cannot

be detected by using the conventional DCC method, where the

DCC values were 0.282 and 0.389 for Asn380B–Ala324A and

Asn380B–Ala327A, respectively. A previous experimental study

showed that Asn380 and Gly333 at the partner chain are key

residues for establishing intermolecular communications between

the two Ets1 molecules [12]. Our simulation study showed that

Asn380 transiently interacted with Ala324 and Ala327 of the

partner Ets1, and further analyses imply these interactions could

play an important role for the interplay of dimerized Ets1

molecules as described below.

The second example of transient interactions is the interface

among the H1, H3 helices of Ets1 and DNA. The side-chain of

Tyr396B in the H3 helix of the Ets1 molecule flipped, and the

phosphate group of C11 of DNA slid at about 120 ns (Fig. 2F). As

these two motions were coupled, the distance between these two

groups did not change very much (the red plot in Fig. 2D), but the

relative positions with Leu337B in H1 helix were altered. The

maximum mDCC values were 0.799, 0.676, and 0.734, and the

DCC values were 0.162, 0.0384, and 0.359 for the Tyr396B–C11,

Leu337B–C11, and Leu337B–Tyr396B pairs, respectively. An

experimental study indicated that Leu337 plays important roles in

the cooperative binding of Ets1 and partner TFs and in the

regulation of auto-inhibition [23]. In these examples, particular

intermolecular interactions, which are crucial for molecular

communications, showed multi-modal behaviors due to amino

acid side-chain flipping and nucleotide backbone sliding motions.

Thus, the current mDCC method is useful for finding and

analyzing such transient interactions without a priori knowledge

about mechanisms of the transitions, such as flipping, and sliding.

Novel Approach of Dynamic Cross Correlation on Molecular Dynamics
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Correlation Network in the (Ets1)2–DNA Complex
The mDCC map (the upper triangle of Fig. 1A) shows that the

b-sheet region exhibited weak negative correlations with the other

parts inside an Ets1 molecule (a, b and c in Fig. 1A), except for the

H4 and H5 helices. These helices, which are parts of the inhibitory

module, correlated weakly and negatively with the H2, H3 helices

and the two loops at the interface of the protein–protein

interaction (HI2–H1 and H2–H3 loops, indicated by d and e in

Fig. 1A). As the intermolecular interactions, these two interface

loops correlated positively with the same regions in the partner

Ets1 (f, g, h, and i in Fig. 1A), because of the direct contacts. In

contrast, the recognition helix H3 correlated positively with the

entire region of the partner Ets1, although they did not contact

directly. This correlation of the recognition helix with the partner

implies that binding with the partner affects the recognition of the

regulatory element by altering the motions of the recognition helix.

In order to analyze the propagation effects of local interactions

toward the entire molecular assembly, especially from the

recognition helix, we focused on interacting pairs with correlative

motions. Fig. S7 visualizes a network of residue pairs in a positively

correlative motion, where the maximum value of mDCC is equal

to or larger than 0.5, and the strongly coupling pair has a distance

between the centers of the modes that is shorter than 5.0 Å. In

addition, because correlation values do not directly mean the

importance of the interactions, we applied the ‘‘Betweenness’’, a

well-known measure of centrality in the field of complex network

analysis, which is defined by the following equation, in order to

assess the importance of each residue for the connection of the

entire network:

g ið Þ~
X

s=i,t=i,s=t

sst ið Þ
sst

, ð9Þ

where g(i) is the Betweenness of the ith node, sst denotes the

number of shortest paths between the sth and tth nodes, and sst (i)
denotes the number of shortest paths between the sth and tth
nodes via the ith node. For example, Betweenness becomes very

high at a bridge between two cliques (Fig. S6). This value is

calculated from only the topological feature of the network without

direct consideration of 3D information, modes of motions, and

chemical information about atoms or residues. The Betweenness

values were mapped onto the network, as the colors of the nodes in

Fig. S7. In order to simplify this complex network, a sub-network

was created by extracting the top 20% highest Betweenness

residues (Fig. 3A), where the residues without any edges are not

shown. This figure summarizes the correlation networks and

provides important parts of communications in the molecular

system. Note that the Betweenness values were rather sensitive to

the adjustable parameter K. The Pearson correlation coefficient of

Betweenness values from the results of K = 10 and K = 5 was

0.639. However, among the top 20% of the highest Betweenness

residues (61 residues) in each result of mDCC conditions (K = 5

and 10), 35 residues consistently appeared in the both conditions

and several experimentally verified important residues and their

neighbors (e.g., Asn380, Pro334, Gln336, and Tyr396) were

included.

Several residues around the C-terminus of the H2 helix show

high Betweenness values. The residue with the highest Between-

Figure 2. Examples of transiently formed intermolecular interactions. (A, B, and C) Interactions among the Nd atom of the Asn380B side-
chain, and the Cb atoms of Ala324A and Ala327A. (A) The time course of interatomic distances, where red and blue plots denote Ala324A–Asn380B
and Ala327A–Asn380B, respectively. (B) Spatial distributions of the coordinates of the three atoms. Color gradations of the plots, green to blue, yellow
to red, and cyan to magenta, correspond to the time evolution of the simulation from 10 to 200 ns, for Ala324A, Ala327A, and Asn380B, respectively.
(C) Contours of probability density functions of the Gaussian mixture models learned from the distributions in (B). The green, red and cyan meshes
denote the contours for Ala324A, Ala327A, and Asn380B, respectively. (D, E, and F) Interactions among the Og atom of Tyr396B, the backbone
nitrogen atom of Leu337B, and an oxygen atom of the phosphate group of C11. (D) Time course of interatomic distances, where red, blue, and green
plots denote Tyr396B–C11, Leu337B–Tyr396, and Leu337B–C11 pairs, respectively. (E) Contours of probability density functions of the Gaussian
mixture models. The cyan, red, and blue meshes denote the contours of Tyr396B, Leu337B, and C11, respectively. (F) Snapshots at 0 ns (green) and
200 ns (cyan). The structures of the three residues focused on here are shown as sticks.
doi:10.1371/journal.pone.0112419.g002
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ness is Asn380, which is a main player in the intermolecular

interactions between two Ets1 molecules, by forming a hydrogen

bond with Gly333 and other interactions (the pink arrows in

Fig. 3). In fact, their importance has been reported by mutation

assays [12]. A neighboring residue, Lys379, which has the ninth

and tenth highest Betweenness values for chains A and B, forms a

salt bridge with the phosphate groups of T111 and T12,

respectively (the lime arrows in Fig. 3). The Arg378 side-chain

forms a salt bridge with the side-chain of Glu343 in the H1 helix,

and it also makes a water-mediated interaction with the backbone

nitrogen atom of Ala324 in the HI2 helix of the same Ets1

molecule (Figs. S8A, B, and C). The carboxyl group of Glu343

frequently flipped and changed its interacting partner nitrogen

atoms in Arg378. Trp375 interacted to T111/T12 with a

hydrogen bond between the nitrogen atom in the side-chain and

the phosphate group (Figs. S8D, E, and the lime arrow in Fig. 3)

and it also interacted to the N-terminus of the H1 helix (Ile335,

Gln336, and Leu337, shown by the black arrows) with hydropho-

bic contacts. The second and third residues with the highest

Betweenness are G10 and A109, which intervene between the two

Figure 3. A correlation network in (Ets1)2–DNA model. (A) A simplified correlation network diagram in two-dimension (2D) as a sub-network of
the original one shown in Fig. S7. Each node indicates a residue and each edge indicates a proximal residue pair with a highly positive correlation (the
maximum value of mDCC $0.5 and the distance between the center positions of the modes ,5.0 Å). The two circles correspond to the two Ets1
proteins (chain A and chain B correspond to the left circle and right circles, respectively), and the pink nodes are the DNA. The colors of the Ets1
nodes represent secondary structures: green, orange, and cyan indicate a-helix, b-strand, and others, respectively. The sizes of nodes denote the
Betweenness values of residues. Important interactions mentioned in the manuscripts are shown as colored edges with bold arrows. (B) A 3D
representation of the core network. The colors of atoms and ribbons represent their Betweenness values, and the atoms in the top 5% Betweenness
are shown as spheres. Red lines indicate the shortest paths among all of the spheres. (C) The 3D structure around the recognition (H3) helix and the
intermolecular interfaces. The pairs of residues corresponding to colored edges in Fig. 3A are shown as cylinders.
doi:10.1371/journal.pone.0112419.g003
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H3 helices (the cyan arrow), and they interact with Tyr396 in the

H3 helix, which has the fourth and fifth highest Betweenness (the

green arrows). Both Tyr396 and G10/A109 interact with Gln336

at the HI2–H1 loop (the yellow and orange arrows). On the

contrary, it is interesting that the consensus sequence GGAA did

not exhibit a high Betweenness, because it is located on the distal

side of the DNA structure (the gray arrows in Fig. S7).

Furthermore, this network was mapped onto the 3D graphics of

the complex structure with the extraction of the ‘‘core’’ of the

network, to avoid filling up the entire structure with a massive

amount of edges (Fig. 3B). The core network was defined as the

top 5% highest Betweenness atoms (shown as spheres in the figure)

and the shortest paths among them (red lines). The spatial

positions of colored edges in Fig. 3A are indicated by the bold

arrows. Details of the 3D structure around the recognition helices

and intermolecular interfaces are shown in Fig. 3C, with the

colored edges in Fig. 3A as the cylinders. These 3D networks

visualize spatial communication pathways between the two

recognition helices in the two Ets1 molecules: namely, the path

through protein–protein interactions between the H2–H3 and

HI2–H1 loops in each Ets1, contacting around Asn380 and

Gly333 (the pink arrows in Fig. 3, corresponding to Fig. 1A f and

i), and the path through DNA (the cyan arrow). While these

pathways are spatially distinguishable at the middle of complexes

(edges with the pink and cyan arrows in Fig. 3B), these two paths

are connected in the network in each Ets1 molecule. The former

pathway reaches the recognition helix via the interactions of

Tyr396 with the HI2–H1 loop (Gln336) and the N-terminus of the

H1 helix (Leu337 shown by the yellow arrows in Fig. 3). For the

latter pathway, the bases of A109, C110, and T111 interact with

the H3 helix (Arg391A, Tyr395A, Tyr396A, and Lys399A shown

by the green arrows in Fig. 3). These two pathways intersect at

C110/C11 via the hydrogen bonds with the Leu337 backbone (the

orange arrows) and the salt bridges with Lys379 (the lime arrows).

Cooperative Binding of the Ets1 Homo-Dimer
In order to investigate the effects of the cooperative binding of

two Ets1 molecules, we built an artificial model by removing an

Ets1 molecule (chain B) from the crystal structure of the (Ets1)2–

DNA complex (PDB ID: 3MFK), and we performed a 200 ns MD

simulation. This model is referred as the ‘‘single Ets1–DNA

model’’, hereafter. The conformation of Ets1 was not significantly

changed from the native structure, with an exception at the N-

terminal region including the HI1 and HI2 helices (Fig. S9). The

large fluctuations of the HI1 helix during the simulation are

considered to be natural, because the HI1 helix is disordered when

Ets1 binds DNA and the ordered helical structure observed in the

complex crystal structure is due to the crystal contacts forming a

domain swapped assembly with a neighboring asymmetric unit

[12].

The C-terminus of HI2 also largely fluctuated during the whole

simulation, and it became partly unstructured after 150 ns in the

single Ets1–DNA model, while the HI2 helix retained the initial

structure during 200 ns MD for (Ets1)2–DNA. This is due to the

dissociation of the Ala327A–Gly333A interactions caused by the

loss of the intermolecular interaction between Gly333A and

Asp380B (Fig. S9B, C, and D). This conformational change is an

unexpected relaxation, because the loss of the partner Ets1 could

facilitate the formation of the inhibitory module, by packing of the

HI1, HI2, H4, and H5 helices. However, the observed behavior

with large fluctuations seems to avoid the packing of these helices.

This deformation can be interpreted as the first step for packing

the inhibitory module. In fact, helix HI2 in the inhibitory module

in an isolated Ets1 (PDB-ID: 1R36, measured by NMR [24]) is

more tightly packed than that in the (Ets1)2–DNA complex (PDB-

ID: 3MFK; Fig. S10A). Thus, repositioning of the HI2 helix could

be a required to form the inhibitory module.

An additional conformational change in the inhibitory module

is the formation of a head-to-tail helical dipole interaction between

HI1 and H4. This phenomenon was observed during the

simulation with the (Ets1)2–DNA model (Fig. S10B), but it did

not affect the interactions between Ets1 and DNA within 200 ns of

the simulation. Thus, forming the inhibitory module would require

not only ordering the HI1 helix and forming its macroscopic

helical dipole interaction with H4, but also repositioning the

helices to more packed conformations. The observed partial

deformation of HI2 may be required for the repositioning of its

helical structure.

Next, we applied the mDCC approach to the MD trajectory of

the single Ets1–DNA model and compared it with the results of

the (Ets1)2–DNA model. Fig. 4 shows the mDCC map of the

single Ets1–DNA model and its differences from the (Ets1)2–DNA

model as the upper and lower triangles, respectively. By the

removal of an Ets1 molecule, the correlations between the

upstream and downstream halves of the DNA chains decreased,

and those inside each half increased (a in Fig. 4). This separation

of motions between the two Ets1 binding sequences indicated that

the binding of dimerized Ets1 stabilizes the cooperative motions

between these two DNA regions. While most of the components of

Ets1 positively correlate with the first half of the DNA sequence

bound to Ets1, the b-sheet (b and c in Fig. 4A) and the C-terminal

loop have positive correlations with the other side of the DNA, and

they correlate negatively with the other parts of the Ets1 molecule

(d and e in Fig. 4). In addition, the correlations between the HI2–

H1 and H2–H3 regions (f in Fig. 4), and those between the H3

helix and other regions except for the b-sheet were increased (f, g

and h in Fig. 4). Since these parts (HI2–H1 loop, H2–H3 loop,

and H3 helix) exhibited positive correlations with the partner Ets1

in the (Ets1)2–DNA model, removal of the partner resulted in the

facilitation of the intramolecular correlative motions.

The differences in the contacting correlation networks between

the two models are shown in Fig. S11A. As shown in the heat map

(Fig. 4), the Ets1–DNA contacting pairs correlate more positively

than those in the (Ets1)2–DNA model (the green, lime, orange, and

gray arrows in Fig. S11A). For the intramolecular interactions in

Ets1, the two loops HI2–H1 and H2–H3 contacted at Ile335–

Trp375, and the distances did not significantly change during both

simulations, the single Ets1-DNA and (Ets1)2–DNA (Fig. S11C).

However, the mDCC value at Ile335A–Trp375A was larger in the

single Ets1-DNA than that in the (Ets1)2–DNA (0.772 and 0.613 in

the single Ets1–DNA model and the (Ets1)2–DNA model,

respectively, as shown by the black arrows in Fig. S11A and B).

Effect of the N380A Mutation on the Correlation Network
The results of the MD simulations in the (Ets1)2–DNA model

discussed above emphasize the importance of Asn380, which is

located at the interface of the protein–protein interactions,

consistent with the previously reported mutant assay [12]. We

next performed a 200 ns MD simulation for the N380A mutation

model built from the crystal structure of the (Ets1)2–DNA complex

(PDB ID: 3MFK).

The differences in the contacting correlation network from the

(Ets1)2–DNA model are shown in Fig. S12. There were some

discrepancies between the two chains of Ets1. The differences in

the correlations of the Ets1–DNA interactions in the N380A

model from the (Ets1)2–DNA model were basically greater in

chain A than in chain B. The contacts at the protein–protein

interface around the mutated points and their interaction partners

Novel Approach of Dynamic Cross Correlation on Molecular Dynamics
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reduced their correlations in both chains. For example, the mDCC

values of Ala324A–Ala380B were 0.654 and 0.395 for the wild

type and mutant, respectively. The corresponding DCC values

were 0.330 and 0.105, respectively. As shown in Figs. S12B and C,

the interactions between Asn380 at the H2 helix and Ala324 at the

HI2 helix were disrupted and the relative positions of these helices

were slightly altered. This dissociation of the interactions and the

movement of the HI2 helix away from the partner H2 helix may

trigger the disruption of the interplay between the two Ets1

molecules. Thus, the importance of Asn380 is supported by the

current analysis for the dynamics of the Ets1 systems.

DNA Structures
We simulated the system composed of an isolated double-

stranded DNA molecule in solution, to evaluate the effects of Ets1

binding on the DNA structure (referred to as the isolated DNA

model, hereafter). Consequently, the DNA structure significantly

changed upon binding one or two Ets1 molecules. Ets1 binding to

DNA narrowed the widths of the major grooves. The average

values of the major grooves were 27.9 Å, 27.8 Å, 28.0 Å, and 28.7

Å for the (Ets1)2–DNA, single Ets1–DNA, N380A, and isolated

DNA models, respectively. The details are shown in Fig. S13A.

Since the recognition helix H3 is embedded in the major groove,

the tighter major groove in a complex structure must be preferred

for the recognition of H3.

Next, we assessed the conformational changes at C110, which

intersected the correlation pathways by contacting the H1, H2,

and H3 helices (orange, lime, and green arrows shown in Fig. 2),

as discussed above. The structural parameters of DNA, defined by

3DNA software [25], were computed for the significant confor-

mational changes in the single Ets1–DNA, N380A, and isolated

DNA models from the (Ets1)2–DNA model. The gains in the

ensemble averages of the geometrical descriptors ‘‘Slide’’ and ‘‘X-

displacement’’, which are defined as the displacements of a base

pair along the plane orthogonal to the helix axis in 3DNA, from

the isolated DNA to the single Ets1–DNA were 0.328 Å and 0.53

Å, respectively. Those from the isolated DNA to the (Ets1)2–DNA

were 0.975 Å and 1.61 Å, respectively. The details are shown in

Fig. S13B and C. These displacements of the base pairs can be

interpreted as the result of interactions with the Tyr395A side-

chain, the Tyr396A backbone, (the green arrow) and the Leu337A

backbone (the orange arrow), and the homo-dimerization of Ets1

affects these interactions and facilitates this conformational change

at C110.

Figure 4. Comparisons of mDCC maps between the (Ets1)2–DNA and single Ets1–DNA models. The upper triangle shows mDCC values in
the single Ets1–DNA model, with the color gradation from blue to red corresponding to mDCC values from 21.0 to 1.0. The lower triangle shows
differences of the mDCC values in the single Ets1–DNA model from those in the (Ets1)2–DNA model with the color gradation corresponding from
20.7 to 0.7. For the lower triangle, negative values (blue) indicate correlations that decreased by the removal of the partner Ets1 molecule.
doi:10.1371/journal.pone.0112419.g004
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Summary
We developed the multi-modal extension of the DCC method,

named mDCC, which can be interpreted as the decomposition of

the DCC value into each pair of modes of motions. We applied it

to the analysis of Ets1 dimerization upon binding to the

Stromelysin-1 gene promoter. Fig. 5 summarizes the correlation

network in this molecular assembly analyzed in this study. The

homo-dimerization of Ets1 on this palindromic regulatory element

modifies the motions of the recognition helix (H3) to correlate with

the partner Ets1, while they did not directly contact. The results of

the mDCC analysis suggest that the effects from the partner are

propagated via two pathways: (i) direct protein–protein interac-

tions at the HI2–H1 and H2–H3 loops, such as the hydrogen

bond between the Asn380 side-chain and the Gly333 backbone

(the pink arrows), and (ii) the pathway through DNA (the cyan

arrow). These two pathways are interconnected by direct contacts

among the DNA (A109, C110, and T111), the N-terminus of the

H1 helix (Ile335, Gln336, Leu337, Asn380) and the H3 helix

(Tyr395, Tyr396, and Lys399), and the C-terminus of the H2 helix

(Trp375, Arg378, and Lys379) shown as bold arrows in different

colors (The details are provided in the legend for Fig. 5). While the

two loops contacting the partner Ets1 correlate positively with the

partner, rather than with the regions inside the same molecule, the

artificial removal of the partner increases the correlations of the

intramolecular pairs of these regions. These loops and the H3 helix

switch their correlating partner from inside the Ets1 to the

neighboring Ets1 by homo-dimerization. In addition, the strongly

negative correlations of the b-sheet with the other regions inside

the same molecule are moderated by homo-dimerization, which

could stabilize the entire structure of Ets1. Furthermore, our

mDCC analysis revealed that the important intermolecular

contacts are transiently switched by side-chain flipping (Fig. 2).

The Betweenness analysis on the correlation networks quantifies

importance of each residue for the intermolecular communica-

tions, and some high Betweenness residues agreed with the

precedent mutation studies, e.g., Asn380 and Gly333 [12]. It

suggests the applicability of our method to a prediction of new

target residues for mutation experiments.

Materials and Methods

We constructed four molecular models originating from the

crystal structure of the (Ets1)2–DNA complex (PDB-ID: 3MFK): (i)

the (Ets1)2–DNA model, composed of the same components as the

crystal structure, (ii) the single Ets1–DNA model, prepared by the

removal of an Ets1 molecule (chain B) from the crystal structure,

(iii) the N380A mutation model, prepared by introducing the

N380A mutation to the two Ets1 molecules in the crystal structure,

and (iv) the isolated DNA model, made by removing the two Ets1

molecules from the crystal structure. All models were bathed in a

150 mM NaCl solution in a periodic boundary cube with at least

15 Å margins from the circumscribed box of the solute, in all six

directions. Equilibrations of the systems were done with the

GROMACS software [26], according to the following procedure.

The steepest descent and the conjugate gradient methods for

Figure 5. Summary of the correlation network in the (Ets1)2–DNA complex. The colored bold arrows indicate interactions of important
residues that exhibited high Betweenness values. The colors of these arrows are consistent with those in the other figures. The red dashed arrows
indicate the intermolecular pairs with highly positive correlations between the Ets1 molecules. The blue dashed arrows indicate the pairs with
significant gains of correlations by the loss of the partner Ets1 molecule.
doi:10.1371/journal.pone.0112419.g005
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energy minimization were performed first. Then, a MD simulation

in the NPT ensemble (Berendsen barostat) with position restraints

on the heavy atoms was performed during 1.0 ns, in which the first

500 ps involved gradual heating of the system from 10 K to 300 K,

and 300 K was maintained for the succeeding 500 ps, using 0.5 fs

time steps. Finally, the systems were equilibrated by the NPT

ensemble for 5.0 ns without any position restraint, but with the

LINCS constraint [27], using 1.0 fs time steps. Electrostatic

potentials in the equilibrium runs were calculated by the particle

mesh Ewald (PME) method [28]. The production runs, with the

initial structure that was the final one for the equilibrium

simulation, were performed by the myPresto/psygene-G software

[29], which is our original MD simulation program specialized for

GPGPU computation. We applied the zero-dipole summation

(ZD) method for the computation of electrostatic potentials

without the Fourier space calculations [30]. This method has

been extensively evaluated for several molecular systems, including

proteins and DNA, and it has been confirmed that the energy

errors of the ZD from the PME were quite small [31–33]. In all

simulations, the AMBER99SB force field [34] with the bsc0

correction [35] and the ion parameters presented by Joung and

Cheatham [36] were applied for bonded and non-bonded

potential energy calculations. For each of the four models, the

simulation was performed during 200 ns while keeping the system

temperature at 300 K by the Hoover-Evans thermostat, with a 1.0

fs time step. The first 10 ns of the trajectories were not used in the

correlation analyses. In addition, 100 ns simulation on (Ets1)2–

DNA model was performed with different initial atomic velocities

for checking the robustness of results.

mDCC analyses were performed with our in-house software,

which is a modified version of the program used in our previous

studies [37,38]. The structural parameters for DNA were

calculated by using the 3DNA software [25]. Other in-house

scripts for data handling and analyses were powered by

MDAnalysis [39]. The figures of the 3D structures of molecular

systems were drawn with VMD [40] and Pymol [41]. The 2D

networks were visualized by Cytoscape [42].

Supporting Information

Figure S1 Schematic illustration of the differences
between the conventional DCC (A) and our new ap-
proach, named mDCC (B), for a simple toy-model. (A)

Images of the trajectories of the ith and jth particles are shown as

gray polygonal lines on the left and right sides of the figure,

respectively. The magenta crosses indicate averaged coordinates of

each particle, which are the bases of the calculations of fluctuation

(,ri(t).t). In this figure, the four time points, t = t1, t2, t3, and t4,

are highlighted by arrows representing the displacement of the ith
particle from its average at t (Dri(t)). The DCC value should be

close to zero for this pair of particles, because the ith particle

drifted along the vertical axis, but the jth one fluctuated along the

horizontal axis. However, these particles correlatively vibrated

along the horizontal direction. The conventional DCC approach

cannot find such correlations of rapid fluctuations hidden in a

large drifting motion. (B) Our new approach, mDCC, tackles this

problem by considering multi-modal distributions of coordinates.

A pattern recognition technique is applied to find modes of

motions as the Gaussian mixture distributions. The centers of two

modes of the ith particle marked with the magenta crosses (here we

refer to them as m1,k1
and m1,k2

), and the displacements from these

two centers at the time t are shown as Dr1,k1
(t) and Dr1,k2

(t). A

mDCC value is defined for each pair of modes; i.e., correlations

for pairs of k1–l1 and k2–l1 are calculated in this case. At t = t1 or

t = t2, the first particle is likely to be assigned to the mode k1,

because the particle is located near the center of the mode k1

(m1,k1
). The contributions from these snapshots are more heavily

considered for the calculation of the k1–l1 correlation than that of

k2–l1. Precisely, the weighted values were decided in terms of the

ratio of probability density functions, as Eqs. (5) and (6) in the main

text. In the same way, deviations from m1,k2
were significantly

considered at later times (t = t3, t4). As a result, this approach

characterizes the motion of the ith atom as fluctuations along the

horizontal axis centered at m1,k1
and m1,k2

for the first and last half

of the trajectory, respectively. The mDCC approach can find

correlating small fluctuations during non-correlating large drifting

motions. (C) The spatial distributions of the particle coordinates in

the simulation on the toy-model. Cyan balls indicate positions of

particles in each step, red meshes are contours of inferred

Gaussian functions, and yellow balls are their centers. The two

particles stably fluctuated along the x-axis, based on

rx~sin 2pt=15ð Þ, during the entire trajectory (1,000 steps), but

the first particle linearly drifted along the y-axis from steps 480 to

520. The pattern recognition technique defined two Gaussian

functions that correspond to the first (mode k1) and last (mode k2)

half of the trajectory, in order to model the spatial distribution of

the first particle, respectively. The motion of the other particle was

recognized as a uni-modal distribution (mode l1). As a result, the

mDCC values for both pairs k1–l1 and k2–l1 showed highly

positive correlations (mDCC(1,2; k1, l1) = 0.968, and mDCC(1,2;
k2, l1) = 0.968), although the conventional DCC method could not

find such a high correlation (DCC(1,2) = 0.582). In the mDCC

calculation, the trajectory was divided into the two parts: a time

range when the first and second particles belong to modes k1 and

l1, and that when they belong to modes k2 and l1, by the weighting

coefficient wi,j;k,l(t). In addition to the correlation coefficients, we

can assess the probability of each pair, which were

Sw1,2;k1,l1Tt~0:5 and Sw1,2;k2,l1Tt~0:5. (D) An illustration of the

parameters for the mDCC calculation in the toy-model simulation.

For the first particle, the assignment to the Gaussian functions (k1

or k2) at each step was determined by the y-axis coordinates, and

the particle was assigned to mode k1 and k2 in the first and last half

of the trajectory, respectively (the left-top and right-top plots). On

the other hand, the second particle stayed at the same y-position

and was always assigned to mode l1 (the left-bottom plot), which

means pl1(r2) is always 1.0. mDCC(1,2; k1, l1) was calculated by

using trajectories with non-zero w1,2;k1,l1 (t)~pk1
(r1(t))pl1 (r2(t))

(the right-bottom plot, and the area colored as pink in the left

plots). The last half of the trajectory (w1,2;k1,l1 (t)~0:0) was ignored

for the calculation of mDCC(1,2; k1, l1).
(EPS)

Figure S2 Statistics of 6,886 Gaussian elements inferred
for 2,887 heavy atoms in the (Ets1)2–DNA model. The

Gaussian elements fell into five categories, in terms of the number

of Gaussian elements in the same atom, from one to five. The

statistics was determined for each category and they are colored

green, blue, red, cyan, and purple for the ascending order of

numbers of elements. For example, the statistics of Gaussian

elements, each belonging to an atom with five Gaussian elements,

are shown in purple. (A) The histogram of Gaussian elements

against pk. (B) The number of atoms with a certain number of

Gaussian elements. (C) The boxplot of RMSF of atoms. The black

dots are RMSF values beyond the standard deviations.

(EPS)

Figure S3 Evaluations of effects of the parameter K and
choice of representative atomic pairs for each residue
pair, using the (Ets1)2–DNA model. (A) The mDCC map
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calculated in the condition K = 10 (the upper triangle) and its

differences from that in K = 5 (the lower triangle). (B) The mDCC

map of pairs of Ca and C5’ atoms for amino acid and nucleotide

residues, respectively. The upper and lower triangles indicate the

values of mDCC and its differences from the original mDCC map,

which is calculated for the atomic pairs with the maximum mDCC

values in each residue pair (Fig. 1A), respectively.

(EPS)

Figure S4 Evaluations of the robustness of the mDCC
analysis on (Ets1)2–DNA model. These mDCC maps

calculated by the different conditions. The upper and lower

triangles indicate the mDCC values and their differences from the

original mDCC map shown in Fig. 1A, respectively. (A, B) The

results of analyses on some different time ranges of trajectories.

The time range from 10 to 100 ns and that from 110 to 200 ns, for

the panels (A) and (B) respectively. (C) The mDCC map calculated

from the alternative run for the time range from 10 ns to 100 ns

with a different set of initial velocities. (D) The mDCC map

calculated by using another random variable defining the initial

guess for the pattern recognition (denoted as mDCC’).

(EPS)

Figure S5 The time evolution of the probability density
function of each Gaussian element in the Gaussian
mixture distribution for the Ng atom of Asp380B, in the
trajectory of the (Ets1)2–DNA model. In this atom, four

Gaussian elements with pk = 0.683, 0.175, 0.103, and 0.039 were

defined, and their pdf(ri) are plotted in cyan, pink, purple, and

yellow dots (the yellow plots are hidden in the background of the

other plots because of very low probabilities), respectively.

(EPS)

Figure S6 An example explaining Betweenness in a
graph. This measure quantifies the centrality of each node and

a node at the center of the graph should exhibit high Betweenness.

Nodes colored magenta and cyan exhibit high and low

Betweenness values, respectively. In this example, the node

bridging the two cliques shows the highest Betweenness, because

all of the shortest paths between a node in the left clique and that

in the right one include the bridging node. On the other hand,

nodes at distal positions show low Betweenness since there are no

shortest paths through them.

(EPS)

Figure S7 The correlation network shown in Fig. 3A.
The three circles correspond to the Ets1 molecule of chain A (the

left circle), that of chain B (the right circle), and the double-

stranded DNA (the center circle). Each node means a residue with

one character indicating the type of amino acid and nucleotide

(asterisks mean the N- and C-terminal caps of peptides). They are

ordered by the sequence along the counter-clockwise direction,

beginning at the bottom, and the black filled circles adjoined the

nodes are drawn for every ten residues (Asp310, Val320, Thr330,

…, His430). Nodes with higher Betweenness values are filled by

darker colors. The border colors of them mean the secondary

structure: green, orange, and cyan mean the a-helix, b-sheet, and

others. The edges are drawn between nodes with the contacts (,

5.0 Å) and positive correlations (mDCC $0.5), and the color

gradation of edges indicates mDCC values from 0.5 to 1.0. The

edges shown as zigzag lines indicate transiently correlated residue

pairs (DCC,0.5). The bold arrows indicate some important

interactions discussed in the main text.

(EPS)

Figure S8 Interactions around some high Betweenness
residues, in the (Ets1)2–DNA model. (A, B, and C) The

interactions among Arg378A, Ala324A, and Glu343A. (A) A snap

shot around the interacting residues. Arg378A, Ala324A,

Glu343A and the water molecule mediating Arg378A–Ala324A

interaction are shown as sticks. The dashed lines indicate the atom

pairs analyzed in the panels (B) and (C). (B) Time evolution of the

distances from the Ng2 atom of Arg378A to the Oe1 and Oe2

atoms of Glu343A (the cyan and pink plots, respectively). (C) Time

evolution of the distance between the Ng2 atom of Arg378A and

N atom of Ala324A. (D and E) The interaction between Trp375A

and T111. (D) A snap shot around the interacting pair. (E) Tme

evolution of the distance between the Ne1 atom of Trp375A and

OP2 atom of T111.

(EPS)

Figure S9 Partial deformation of the HI2 helix in the
Ets1–DNA model. (A) A superimposed picture of 3D structures

of the Ets1 molecule in the crystal structure (chain A; the green

ribbon) and that in the snapshot from the MD simulation of the

single Ets1–DNA model at 200 ns (the red ribbon). (B, C)

Snapshots around the HI2–H1 loop in the simulation of the Ets1–

DNA model at 0 ns and 150 ns, respectively. (D) Time course of

the distance between the Cb atom of Asp327A and the O atom of

Gly333A, observed during the simulations of the single Ets1–DNA

model (cyan) and the (Ets1)2–DNA model (pink).

(EPS)

Figure S10 Comparisons of the 3D structures of Ets1
molecules between the (Ets1)2–DNA complex and apo-
form. (A) Structures of Ets1 molecules obtained by experimental

measurements. The Ets1 molecule in the apo-form solved by the

NMR study (PDB ID: 1R36, model 1) is shown as the yellow

ribbon, and that in the (Ets1)2–DNA complex solved by X-ray

spectroscopy (PDB ID: 3MFK, chain A) is shown as the red

ribbon. The structures were superimposed with the coordinates of

the Ca atoms in the H1 helix. Dashed circles emphasize

differences in the positions of the HI2 helices. (B) A superimposed

picture of Ets1 molecules at 200 ns during the MD simulation of

the (Ets1)2–DNA model (chains A and B are shown as red and

green ribbons, respectively) and the NMR structure in the, apo-

form (PDB ID: 1R36, model 1; the yellow ribbon). The dashed

circles highlight the HI1 helix in each structure.

(EPS)

Figure S11 Differences between the (Ets1)2–DNA and
single Ets1–DNA models. (A) A network of interacting

correlative pairs of residues comparing the (Ets1)2–DNA and

single Ets1–DNA models. Nodes indicate residues, and edges were

drawn between residue pairs with highly positive correlation (the

maximum value of mDCC $0.5) and contacting (the distance

between centers of modes ,5 Å) in at least one of the two models.

The edge colors indicate the differences in the mDCC values of

the single Ets1–DNA model from that of the (Ets1)2–DNA model;

blue edges means the pairs of residues highly correlated in the

(Ets1)2–DNA model but not in the single Ets1–DNA model, and

red edges are vice versa. Sizes of nodes denote the Betweenness

values in the single Ets1–DNA model. The bold arrows are

interactions discussed in the main text. (B) The 3D structure of the

molecule at 200 ns of the (Ets1)2–DNA and single Ets1–DNA

models. The black arrows highlight the distance between Ile335A

and Lys375A. (C) The time course of the distance between the

Cc1 atom of Ile335A and the Cg2 atom of Lys375A, in the chain

A of the (Ets1)2–DNA (cyan) and single Ets1–DNA (pink) models.

(EPS)

Figure S12 Differences between correlation networks of
the (Ets1)2–DNA and N380A models. (A) A network of
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interacting correlative pairs of residues, comparing the results of

the (Ets1)2–DNA and N380A models. See the legend of Fig. S11A.

(B) 3D structures of the (Ets1)2–DNA and N380A models at

200 ns. They were superimposed based on the H2 helices. The

arrows indicate the atom pairs shown in panel (C). (C) Time

course of interatomic distances between the Cb atoms of Ala324A

and Asn/Ala380B in the (Ets1)2–DNA (the pink plot) and N380A

(the green plot) models.

(EPS)

Figure S13 Structural differences in the double-strand-
ed DNA molecule. (A) The widths of the major grooves. The

base pair position 2 corresponds to the width between C2 and

C108. The major groove recognized by the H3 helix roughly

corresponds to positions 2–4 and 6–8 for chains A and B,

respectively. Asterisks indicate significant differences from the

(Ets1)2–DNA model (P-value #0.001, calculated by the Wilcoxon

test for structures sampled every 5 ns). (B) Displacements of each

base pair along the perpendicular direction against the base pair

axis, defined as the ‘‘Slide’’ geometric parameter in the 3DNA

software. The base pair position 10 corresponds to C110. (C) A

snapshot of structures of the C110–G8 base pair in the (Ets1)2–

DNA (the cyan sticks) and isolated DNA (the purple sticks) models

at 200 ns. The two structures were superimposed based on T111–

A7 base pair shown as thin lines. Amino acid residues interacting

with C110 are also shown as cyan sticks. The bold orange and

green arrows point to the interactions between the amino acid

residues and C110.

(EPS)

Movie S1 A movie for the toy-model. See the legend of
Fig. S1C.

(MPG)

Movie S2 A movie for the 200 ns run of the (Ets1–
DNA)2–DNA model.

(MPG)

Movie S3 A movie for the 100 ns alternative run of the
(Ets1–DNA)2–DNA model with a different set of initial
atomic velocities.

(MPG)
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