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Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares
the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with
other members of the PLKs family. In the last two decades, mounting studies have
focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic
centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell
cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation.
PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis.
In the process of various stimuli-induced stress, including oxidative and endoplasmic
reticulum, PLK2 may promote survival or apoptosis depending on the intensity of
stimulation and the degree of cell damage. However, the role of PLK2 in immunity to
viral infection has been studied far less than that of other family members. Because PLK2
is extensively and deeply involved in normal physiological functions and
pathophysiological mechanisms of cells, its role in diseases is increasingly being paid
attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as
well as participating in neurodegenerative diseases, has been gradually recognized.
However, the research results in solid organ tumors show contradictory results. In
addition, preliminary studies using PLK2 as a disease predictor and therapeutic target
have yielded some exciting and promising results. More research will help people better
understand PLK2 from principle to practice.
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INTRODUCTION

Polo-like kinase (PLK) 2 is one of PLKs, a family of serine/threonine kinases. PLK2 shares the
conserved N-terminal kinase catalytic domain and one or two C-terminal Polo box domains (PBD)
with its siblings (PLK1,3-5) (1, 2). The PBD of PLK2 consists of 218 amino acid residues, including
two 12-chain b sandwich conserved domains formed by b6a structures consisting of 30 amino acid
residues (3–5). PLK2 plays an important role in many aspects, e.g., cell cycle (6–8), cell differentiation
(9–11), ontogenesis (12), stress response (13), tumorigenesis (14), neurodegenerative diseases (15–17),
inflammation and injury (18).

The function of PLK2 is regulated by many mechanisms. Histone deacetylase inhibitor
trichostatin A (TSA) could induce upregulated PLK2 expression in human osteosarcoma cell line
(MG-63), which may be resulted from TSA-induced GATA-1 acetylation enhancing its DNA-
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binding ability and initiating the PLK2 promoter, indicating
acetylation promoting PLK2 expression (19). Acetylation of
PLK2 prohibits the degradation by ubiquitination and
participates in centriole replication at the appropriate time
(20). Promoter methylation induced by hypoxia and tumor
downregulates the PLK2 expression, involved in development
and progression of diseases (21–26). Both E3 ubiquitin ligase
RNF180 (ring finger protein 180) (27) and miR-101-3p target
gene SKP1 (S-phase kinase-associated protein 1) (28) might
interact with PLK2 and induce its ubiquitination and
degradation. Downregulation of miR-27b in oral lichen planus
reduces its inhibition to PLK2 3’untranslated region, leading to
proliferation of human oral keratinocytes (29). Nuclear factor
erythroid 2-related factor 2 (Nrf2) activated lncRNA (Nrf2-
lncRNA) is a competing endogenous RNA of PLK2 and cyclin-
dependent kinase inhibitor 1 (p21cip1), which induces PLK2/
Nrf2/p21cip1 to complexate and activate Nrf2 during p53
activation by binding to miR-128 and miR-224, facilitating
translation of PLK2 and p21cip1 (30). Starvation results in the
elevated androgen production and depresses PLK2 expression,
while relationship between PLK2 and steroid metabolism
remains unclear (31). Transcription factor Sp1 plays an
important role in the upregulation of PLK2 stimulated by hCG
in cultured rat granulosa cells (32). Chemical carcinogens (33)
and g radiation (34) could also increase the PLK2 expression.

However, there are still many deficiencies in the current
understanding of PLK2. For example, studies on PLK2 in
microbial infection and immunity, and fibrotic diseases are still
insufficient. Its role in hematological neoplasma, solid organ
tumor and neurodegenerative diseases is also controversial. Here,
we summarize the roles of PLK2 in mammalian cell cycle and
non-cell cycle signaling pathways, hoping to provide help for
further study of PLK2.
ROLE OF PLK2 IN NORMAL
PHYSIOLOGICAL PROCESSES

Mitosis
Mitosis is the process by which eukaryotic cells divide to produce
their progeny. The entire process from the completion of one
division to the end of the next is called the cell cycle, which
consists of interphase and mitotic (M) phase. The interphase
could be divided into G1 phase, S phase and G2 phase, in which
DNA replication and protein synthesis finishes. During the M
phase, the genetic material in the nucleus and organelles are split
in a specific way to form progeny cells. Some of these cells
continue to enter G1 phase and start the next round of mitosis.
Others enter the G0 phase, where the cell cycle stagnates, but can
re-enter the G1 phase to replicate after appropriate stimulation.
PLK2 expresses in G1 phase; silencing of PLK2 results in the
growth retardation and delays S phase transition in embryonic
fibroblasts and placental dysplasia in mice, revealing that PLK2 if
not essential, but plays a critical role at least in mammalian
growth and development (35). Significantly up-regulated PLK2
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expression stimulates centriole replication in human, pig, and
sheep parthenogenetic cell lines (36). As a target, PLK2 could be
induced by wild-type p53; inhibition with siRNA causes mitotic
catastrophe in paclitaxel-exposed cells (37). High expressed
PLK2 in breast tissue regulates the orientation of mitotic
spindle and maintains the polarity of ductal epithelial cells (6).
When breast cancer cell line MCF-7 is exposed to zinc,
expression of PLK2 is dramatically reduced, leading to cell
cycle arrest and cancer cell adaption (38). In rats, PLK2 is
highly induced in ovarian granulosa cells; overexpressed PLK2
blocks the cell cycle in the G0/G1 phase, while downregulation of
it decreases the number of G0/G1 phase cells but increases the
cell vitality (32). So, effects of PLK2 on G0/G1 phase transition
depends on cell type.

In mammalian cells, centrosome replication is a hallmark of
mitosis, starting from G1/S transition and finishing till S/G2 (39).
Activation of PLK2 in G1/S transition is essential to centriole
replication and centrosome correlation, which is important for cell
replication (7, 8). Mutation of PBD prohibits centriole localization
and hampers centriole replication (8). PLK2 is acetylated in the
process of promoting centrosome replication, which protects
PLK2 from ubiquitination degradation. The deacetylase Sirtuin 1
(SIRT1) acting as a temporal regulator, is phosphorylated and
activated in early and middle G1 phase promoting deacetylation
and degradation and dephosphorylated itself in late G1 phase
leading to a reduced PLK2 affinity and rapid PLK2 accumulation,
which contributes to the timely initiation of centriole replication
(20). PLK2 catalyzes the phosphorylation of S589 and S595
residues in centrosomal P4.1-associated protein (CPAP), which
is crucial for the formation of procentriole; CPAP is
phosphorylated in a cell cycle stage-specific manner, increasing
during the G1/S transition and decreasing at the end of mitosis.
Phosphorylated CPAP is preferentially located in the procentriole.
Overexpression of an anti-phosphorylated CPAP mutant fails to
form elongated centrioles (40).

Cell cycle regulation by PLK2 is co-regulated by CDK2/Cyclin
E, CDK2/Cyclin A complex and PLK4 (7, 41). Expression of
PLK2 in rat ovary is induced by hCG; prostaglandin and EGF
signaling pathways are involved in regulating PLK2 expression;
and the transcription factor Sp1 plays an important role in the
upregulation of PLK2 (32). PLK2 regulates centrosome
replication through polo-box-dependent binding of NPM
(nucleophosmin)/B23 and phosphorylation of Ser4 at the S
phase (42). Mis-regulation resulted from PLK2 dysfunction is
the most likely cause of changes in chromosome segregation,
presence of multiple polymeric functional centrosomes, and
mass cell death in embryonic stem cells with beta-catenin
deletion (43). Centrosome amplification is considered a main
cause of chromosome instability in cancer cells. One of the
mechanisms is overreplication of centrosomes within a single
cell cycle. Rho-associated kinases (ROCK2), PLK2 and PLK4 are
essential for centrosome duplication in cells blocked by DNA
synthesis inhibitors; In the centrosome amplification rescue
assay, PLK2 indirectly activates ROCK2 by phosphorylation of
NPM, while PLK4 acts downstream of ROCK2 to drive and
block centrosome amplification in cells (44).
July 2022 | Volume 12 | Article 956225
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Meiosis
Meiosis is needed for sexual reproduction. Within this process, the
DNA replicates once but the cell divides twice, resulting in four
progenies with half the number of chromosomes. In C. elegans,
pairing and synapsis of homologous chromosome rely on pairing
centers (PCs), which locates in special regions at the end of
chromosomes and interacts with the nuclear membrane and
cytoplasmic microtubules; at the onset of meiosis, PCs recruits
PLK2 in response to ZIM/Him-8, a zinc finger protein, to induce
nuclear membrane remodeling, chromosome pairing and synapsis
(45–47). PLK2 is involved in the establishment of meiotic specific
SUN-1 phosphorylation and SUN/KASH dynamic regulation (47).
During meiosis, the conserved SUN/KASH nuclear membrane
bridge establishes a transient link between chromosome ends and
the cytoskeleton, which ensures homologous chromosome
aggregation and avoids non-homologous pairing. During pairing
and recombination, chromosomal movement begins and SUN-1
aggregates at the chromosomal ends associated with the nuclear
membraneand is phosphorylated in aCHK2- andPLK2-dependent
manner. While meiosis is incomplete, PLK-2 continues to be
recruited to the chromosome ends in a sun-1-phosphorylation-
dependent manner that is required to characterize continuous
chromosome movement and zygotic line stop. Chromosomal
pairing (synapsis) requires SUN-1 phosphorylation (48). In
addition, PLK2 and phosphorylated SYP-1 ensure the generation
of short-armsubdomains and facilitates chromosome segregation in
meiosis I (49). PLK2 alsomediates cell cycle delay and the apoptosis
with unsuccessful synapsis of nuclear chromosomes. Functional
defects caused by PLK2 knockout (KO) or mutation can lead to
meiosis chromosome pairing and synapsis failure (45, 47). PLK2
plays an indispensable role in the successful completion of meiosis.

Cell Differentiation
PLK2 also plays a vital role in cell differentiation in addition to cell
cycle. According to zebrafish model and human umbilical vein
endothelial cell (HUVEC) culture, loss of PLK2 function results in a
reduction in cell sprouting and migration, while overexpression
promotes angiogenesis; PLK2 controls angiogenesis by binding
PDZ-GEF and regulating RAP1 activity during endothelial cell
lamellipodia formation and extracellular matrix attachment;
Constitutively activated RAP1 could reverse endothelial growth
defects in PLK2 KO zebrafish and HUVEC (9). Lineage negative
bone marrow cells (lin-BMCs) are enriched in endothelial
progenitor cells and mediate vascular repair, whose number and
function decrease in an age-dependentmanner. PLK2 in lin-BMCs
is negatively regulated bymiR-146a, that is, overexpression ofmiR-
146a in young lin-BMCs inhibits PLK2 expression, resulting in
increased aging, apoptosis and impaired angiogenesis through
p16Ink4a/p19Arf and p53, respectively. Inhibition of miR-146a in
aged lin-BMCs increases PLK2 expression and rejuvenates lin-
BMCs, leading to reduced senescence and apoptosis, thereby
promoting angiogenesis (10). As a new identified target of miR-
126-3p, PLK2also plays a regulating role inperivascular cells (PVC)
and perivascular matrix.

miR-126-3p inhibits the expression of target genes PLK2 and
SPRED1 and induces the phosphorylation of extracellular signal-
Frontiers in Oncology | www.frontiersin.org 3
regulated kinase (ERK) 1/2 to stimulate the expression of TLR3,
thus regulating the cell-cell and cell matrix contact of PVC,
promoting the conversion of immature blood vessels into mature
and less permeable blood vessels. Inhibition of PLK2 and SPRED1
expression could mimic the effect of miR-126-3p in PVC but has no
effect on the phosphorylation of ERK1/2, suggesting that PLK2
inhibits perivascular matrix formation in an ERK-independent
manner (11). Laminin (LN) slows the proliferation of cardiac
progenitor cells (CPC), induces the expression of cardiac lineage-
specific genes, and promotes the endothelioid differentiation of
CPC. After CPC is cultured on LN, YAP (Yes-associated protein)
phosphorylation (Ser127) increases, which is confined to the
cytoplasm and rapidly degraded by proteasome, thereby
inhibiting cell proliferation. As a possible downstream effector, the
mRNA level of PLK2 depends on the stability of YAP.
Downregulation of PLK2 expression might simulate CPC
performance observed in LN, while overexpression of PLK2 leads
to increased proliferation and decreased differentiation of CPC (50).
PLK2 may also play a key role in dynamic compression enhanced
chondrogenesis (51). In fibrotic diseases, the loss of PLK2 function
leads to the transformation of fibroblasts into myofibroblasts, thus
promoting the occurrence and development of the disease, the
specific mechanism of which will be discussed later (22, 23, 52, 53).

Neural Development
A large number of studies have focused on the role of PLK2 in
the development and function of the nervous system. In the
fourteenth day of rat embryonic development, PLK2 expresses in
cortical plate, rather than the ventricular/subventricular zones
(VZ/SVZ); In immature cortical neurons, PLK2 locates in the cell
body and dendrites, and is upregulated by brain-derived
neurotrophic factor (BDNF) and downstream ERK signaling
pathway, which is necessary for BDNF to promote dendritic
growth. Deletion of PLK2 affects dendrite development in a dose-
dependent manner (54). PLK2 and poliovirus receptors (PVR)
are essential for neuronal differentiation driven by nerve growth
factor (NGF) and are negatively regulated by alphaB-crystallin
(Cryab); Silencing PLK2 or PVR could block neuronal
differentiation induced by NGF (55).

Homeostatic synaptic depression (HSD) is the homeostasis
compensation mechanism for increased neural network activity,
including loss of some excitatory synapses to reduce excitability
and subsequent downscaling of the remaining synapses to
further enhance homeostasis (56). Mounting studies have
shown that excessive activation of hippocampal neurons
induces the expression of PLK2, leading to the degradation of
the spine associated RapGAP (SPAR), and feedback reduction of
neuronal excitability (57–60). CDK5 activates phosphorylation
of PLK2 binding sites in SPAR (a kind of Rap suppressor), then
leads to PLK2 recruitment and accumulation (57). Activated
PLK2 is highly phosphorylated, and its phosphorylation sites
could regulate PLK2 kinase activity, in which S299 and S588 are
involved. Mutations at sites above of PLK2 (S299E, S588A, and
S588E) in neurons result in extreme activation of their anti-
SPAR ability and impairment of the dendritic spines stability of
primary hippocampal cells (61). A multi-subunit E3 ubiquitin
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. PLK2: From Principle to Practice
ligase (Skp1/Cul1/F-box protein complex, SCF) is involved in
ubiquitination degradation of SPAR, and blocking SCF might
block PLK2-dependent SPAR degradation (62). In addition,
over-activity induced PLK2 also directly eliminates Ras agonist
RasGRF1 through phosphorylation mediated ubiquitination
degradation, and PLK2 phosphorylation stimulates Ras
inhibitor SynGAP and Raf agonist PDZ-GEF1. PLK2
comprehensively regulates these factors, contributing to
maintain the homeostatic plasticity (60).

PLK2 directly binds to n-ethylmaleimide-sensitive fusion
protein (NSF) in an ATP-dependent manner, disrupting its
interaction with AMPA receptor GluA2 subunit, promoting
extensive loss of GluA2 on the surface of rat hippocampal
neurons and reducing AMPAR current and surface stability of
synapses (59). SynGAP, a postsynaptic GTPase activating protein
(GAP), is abundant in the postsynaptic density (PSD) scaffold, of
which PSD-95 is the most prominent. Phosphorylation of
synGAP-a1 by PLK2 and Ca2+/calmodulin-dependent protein
kinase II (CaMKII) significantly reduces its binding to PDZ
domain in PSD-95. These PDZ domains are occupied by other
proteins, which changes the composition of PSD. This change
may be as important as the reduction of synaptic Ras/Rap GAP
activity in the pathological process of autism or epilepsy (63).
PLK2 co-regulates synGAP kinase activity with CDK5 and
CaMKII. After Ca2+/CaM is added to synGAP’s PLK2
phosphorylation system, the combination of Ca2+/CaM with
synGAP causes conformational changes, increasing the
availability of CDK5 and PLK2, accelerating kinase reaction, and
phosphorylating additional residues. PLK2 phosphorylated
synGAP is more likely to inactivate Ras, resulting in a relative
increase in Rap and promoting the endocytosis of synaptic
membrane AMPAR. PLK2 and CDK5 work together to activate
the Rap pathway by triggering SPAR removal and increase GAP
activity of r-synGAP on HRas, driving synaptic AMPAR
elimination (64). In enhanced hippocampal activity induced by
GABA receptor antagonists, upregulated PLK2 also acts as a
downstream molecule of miR-134-Pum2 to maintain synaptic
homeostasis (56). On the other hand, PLK2 interacts strongly and
directly with the actively-induced amyloid precursor protein
(APP), promoting APP phosphorylation (T668/S675) and
amyloidopathy. It affects neurohomeostasis and is involved in
the pathological process of Alzheimer’s disease (AD) (65). Fear
Condition has further confirmed that PLK2 plays an important
role in maintaining synaptic plasticity (66).

Ras promotes long-term potentiation (LTP), whereas Rap
mediates long-term depression (LTD) (67, 68). PLK2 regulates
Ras and Rap by regulating RasGRF1/SynGAP and SPAR/PDZ-
GEF1 and has significant effect on memory formation (60).
Interference with PLK2 function disrupts the homeostasis
adaptation of synapses to enhanced activity and impaired
behavior adaptation during various learning tasks (69). The
activity dependent transcription factor Npas4 aims directly on
the promoter and enhancer regions of PLK2, and conditional
knockout of Npas4 in hippocampal neurons results in a
significant decrease in PLK2 expression, preventing the
formation of context memory and the learning-induced
Frontiers in Oncology | www.frontiersin.org 4
synaptic modification. Overexpression of PLK2 can restore
memory formation and normal behavior in experimental
animals (70). In a rodent model of hypoxia-induced neonatal
seizures, after initial upregulation, AMPA receptor function of
hippocampal CA1 pyramidal neurons shows transient
attenuation, which is consistent with the transient increase in
PLK2 expression and function. One week later, the function of
AMPA receptor is up-regulated again, while the expression and
function of PLK2 are negatively regulated by increased mTOR
(71). Prenatal stress decreases the density of dendritic spines and
impairs the LTP in the hippocampus of young rats. The number
of NR2B and NR2A subunits decreases, while the postsynaptic
scaffold proteins PSD-95 and SPAR also decrease, and PLK2 and
SCF ubiquitin ligases increase, promoting ubiquitination and
degradation of SPAR (72).
ROLE OF PLK2 IN BASIC
PATHOPHYSIOLOGICAL PROCESSES

Oxidative Stress and Endoplasmic
Reticulum Stress
PLK2 is an important molecule in response to various stresses.
PLK2 induced by oxidative stress in cells with abnormal
mitochondrial function, mediates glycogen synthase kinase
(GSK) 3b phosphorylation and promotes NRF2 nuclear
translocation, preventing p53 induced cell death and promoting
cell survival (73). In oxidative stress-induced glaucoma, up-
regulated PLK2 provides protection to retinal ganglion cells also
through this mechanism (74). Loss of synthesis of cytochrome c
oxidase 2 (SCO2) impairs mitochondrial respiration, while
expression of PLK2 elevates to make cell survive (75). In
the treatment of protocatechuic aldehyde (PCA) to Parkinson’s
disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), PLK2 inhibition or knockdown
eliminates the protection of PCA to improve mitochondrial
membrane potential (MMP), mitochondrial complex I activity
and reactive oxygen species (ROS) level, while overexpression
of PLK2 enhances the protection of PCA in PD model (76).
However, the alternative view is that PLK2 is involved in ROS-
induced cell death. Celastrol induced ROS promotes p53
phosphorylation and p53-dependent PLK2 expression and
inhibits tumor survival (77). In diabetic nephropathy patients,
PLK2 is upregulated, which mediates G1 phase arrest and induces
apoptosis of podocyte cultured with high D-glucose (HDG). Both
PLK2 knockdown and antioxidant N-acetylcysteine (NAC) inhibit
ROS production and MMP reduction and promote cell survival.
Cytotoxic effects of PLK2-mediated HDG are associated with
increased p53 expression and caspase-3 activation, relying on
inflammatory cytokines such as TNF-a, IL-6, IL-1b, COX-2 and
CXCL1 (78). At the same time, PLK2 expression is upregulated
during cell stress induced by ischemia-reperfusion injury, leading
to cell death through nuclear factor (NF) -kB signaling (21, 79).

Effect of PLK2 on endoplasmic reticulum (ER) stress is also
controversial. It is reported that ER stress could induce PLK2
July 2022 | Volume 12 | Article 956225
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expression and lead to cell death (80). But more studies have
suggested that PLK2 inhibits apoptosis and promotes survival by
interacting with ER stress signals. For example, interference with
PLK2 might lead to the loss of interaction with miR-101-3p
target gene SKP1, and the accumulation of cotransfected
overexpressed a-Syn protein due to decreased ubiquitination
degradation, leading to ER stress of neurons, suggesting that
PLK2 could prevent ER stress (28). PLK2 is hyper-expressed in
multiple myeloma (MM) patients; PLK2 further inhibits C/EBP
homologous protein (CHOP) and enhances inositol-requiring
enzyme 1a (IRE1a) by inhibiting KIRA8 (kinase-inhibiting
RNase attenuator 8), which in turn affects ER stress and
facilitates cell survival; Meanwhile, KIRA8/IRE1a could
reversely regulate PLK2 expression; KIRA8 and PLK2
inhibitors exert anti-MM effects by inducing apoptosis and
regulating cell proliferation (81). In ER stress induced by
Brefeldin A (BFA), increased binding of CHOP to the PLK2
promoter C/EBPa response element results in downregulation of
PLK2 expression; Overexpression of exogenous PLK2 could
inhibit cell apoptosis and promote cell proliferation (82).
However, according to the limited results available, PLK2 plays
an important role in coping with stress induced by exogenous
cellular stimuli; Survival or apoptosis should depend on the
intensity of exogenous stimulation and the degree of cell damage.
When mild stimulation induces mild damage, PLK2 participates
in the correction of adverse effects caused by stress; On the
contrary, when severe stimulation induces severe damage
difficult to correct, PLK2 directly leads to cell apoptosis/death.

Viral Infection and Immune
PLK2 is upregulated in phytohemagluttinin (PHA) activated
canine T cells, indicating PLK2 takes part in immune cell
activation (83). In lipopolysaccharide (LPS) induced
inflammation, expression of PLK2 is elevated, phosphorating a
disintegrin and metalloprotease 17 (ADAM 17) and leading to
release of tumor necrosis factor (TNF) receptor and pro-TNFa on
cell membrane; Inhibition of PLK2 results in reduction of LPS-
induced ADAM17-mediated pro-TNFa release from primary
macrophages and dendritic cells (DCs) (84). In antiviral innate
immunity, retinoic acid-inducible gene I (RIG-I)-like receptors
(RLRs), RIG-I, and melanoma differentiation-associated gene 5
(MDA5) regulate transcription of type I interferon (IFN) and
inflammatory cytokines by activating IFN regulatory factor (IRF)
3 and NF-kB; Knockout of the RNA-binding protein HuR, which
could enhance IFN-b promoter activity and bind to the 3’
untranslated region of PLK2 mRNA to increase its stability,
results in a significant decrease in PLK2 expression and IFNB1
expression after RLR stimulation. PLK2 deficient cells also shows
reduced IRF3 nuclear translocation and IFNB mRNA expression
during RLR signal transduction. These results suggest that HuR
might promote RLR mediated IRF3 nuclear translocation and
subsequent antiviral innate immune mechanism by maintaining
PLK2 mRNA stability (85). Pan-PLK inhibitor BI 2536 treatment
results in significant inhibition of antiviral genes (e.g., Cxcl 10 and
IFNB1) expression and IRF3 nuclear translocation (86).
Functional redundancy exists between PLK2 and its family
Frontiers in Oncology | www.frontiersin.org 5
member PLK4 (8, 40, 87). Therefore, antiviral gene expression
decreases dramatically after simultaneous knockout of PLK2 and
PLK4; And PLK2 is essential for viral sensing of DCs (86). Thus, it
appears that PLK2 plays an active role in host antiviral immunity.
Nevertheless, PLK2 could work adversely by promoting viral
integration and replication. For example, in the infection of
foamy virus (FV) with retroviruses and hepadnaviruses in its
replication strategy, PLK2 interacts with prototype FV (PFV) to
promote efficient integration of the PFV genome into the host
chromatin, ensuring successful viral replication and transmission
in cell cultures (88). Besides, avian metapneumovirus subtype C
(aMPV/C) infection leads to upregulation of PLK2 in mammalian
cells. Inhibition of PLK2 could reduce ROS production and p53-
dependant apoptosis induced by aMPV/C, and decrease the virus
release, suggesting that the high expression of PLK2 is associated
with aMPV/C-induced apoptosis and viral replication (89).
Contrasting to its family members, PLK2 is poorly studied in
viral infection, and the exact role and mechanism remain unclear.
ROLE OF PLK2 IN DISEASES

Hematological Neoplasma
Like its compatriots, the role of PLK2 in tumor has attracted
considerable attention. Although it is reported that PLK2 is
highly expressed in MM and facilitates tumor cell vitality by
inhibiting KIRA8 induced CHOP mediated apoptosis (81), more
studies have showed PLK2 acts as a tumor suppressor in
hematological neoplasma. In B-cell lymphoma (26), acute
myelogenous leukemia (AML) and myelodysplastic syndromes
(MDS) (90), remarkable reduction of PLK2 expression might be
related to abnormal methylation. As in B-cell lymphoma,
abnormal methylation occurs in the CpG island of the PLK2
gene; The PLK2 expression of DG75 (EBV-) and Rael (EBV+)
cell lines increase after demethylation with 5-AZA and is further
upregulated by combined administration of histone deacetylase
inhibitor TSA. Methylation and expression silencing occur in
both p53 wild-type and mutant cell lines, suggesting that the
methylation of PLK2 in B cell derived tumors is independent of
p53. In contrast, B cell mitogens is able to induce PLK2
expression and re-expression of PLK2 could lead to apoptosis
(26). While in AML and MDS, PLK2 is similarly methylated,
although the PLK2 methylation status has no significant effect on
clinical indicators and long-term prognosis (90); Additionally, in
myeloproliferative neoplasm (MPN) like MDS, the disordered
co-expression and disrupted signal transduction of PLK2 with
myeloid tumor suppressor Egr1 and JunB may be a pathogenesis
(91). Even in recent MM studies, PLK2 was identified a
methylation gene independent of CpG island (92). It also
suggests that there is a complex relationship between various
pathogenic mechanisms. As an example, in B-cell tumor, there is
functional redundancy between PLK2 and PLK3, and the decline
of PLK2 expression is always accompanied by the overexpression
of PLK3 (93).

In B cell chronic lymphocytic leukemia (B-CLL), the
expression of PLK2 is correlated with the efficacy of purine
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nucleoside therapy. PLK2 hyper-expressed patients shows higher
cytotoxicity, revealing that PLK2 might inhibit B-CLL (94). MiR-
126 is involved in inflammation, angiopoiesis, and thus
tumorigenesis (95). The cross-talk between miR-126 and PLK2
in hematological neoplasma is also receiving increasing
attention. MiR-126 could inhibit apoptosis of AML cells and
enhance cell viability and PLK2 exerts anti-tumor effects through
negatively regulating of miR-126 (96). PLK2 expression is
downregulated in AML, while expression of p-ERK, p-MYC
and total MYC, which are critical for the survival of inv(16)
leukemia-initiating cells and AML cells, is increased. These
effects are reversed after miR-126 knockdown (97).

Solid Organ Tumor
PLK2 is reported to be a tumor suppressor in solid organ tumor
as well. Its repressed expression is associated with overall survival
in non-small cell lung cancer (NSCLC) patients (98). The
measured tumor diameter of human PLK2 deficient NSCLC
cell xenograft is larger in mice; Interestingly, in vitro cell culture
suggests that anti-tumor effect of PLK2 might result from a
response to hypoxic tumor microenvironment (TME) (99).
Compared to normal tissues and polyps, PLK2 expression is
absent in colorectal cancer (CRC) (100). Also, in hepatocellular
carcinoma (HCC), promotor methylation might be the reason of
decreased PLK2 expression, and inhibition with siRNA could
accelerate human HCC cell line growth (101). PLK2 is directly
inhibited by significantly upregulated miR-27a in throat tumor,
resulting in enhanced cell viability, promoted colony formation,
and inhibited cell apoptosis (102). Circ_0102049 could heighten
PLK2 expression by depressing miR-520g-3p, and inhibit
proliferation, invasion, migration and cell cycle of
osteosarcoma (OS) cell line MG63; PLK2 inhibiting leads to a
significant elevation in tumor volume and weight in the MG63
cell xenograft mouse model (14). In glioblastoma multiforme
(GBM), reduced PLK2 expression indicates treatment resistance
and poor prognosis; overexpression of PLK2 could repress the
tumor characteristics of GBM cell and lower the incidence of
acquired TMZ resistance (103). And in epithelial ovarian cancer
(EOC), CpG island methylation caused PLK2 downregulation
was related to paclitaxel and platinum tolerance and
postoperative recurrence, being confirmed by knockdown and
overexpression experiments and indicating the relevance to G2-
M arrest (104, 105). Besides, PLK2 collaborates with other tumor
suppressor genes (TSG) (TGFBI, PTEN, LZTS1, ING4,
CDKN1A, ING1, hEx, and FBW7 etc.) in the generation of
paclitaxel resistance (106). p53 dependent PLK2 expression,
resulting from celastrol induced ROS production, might
increase the apoptosis of G1 subgroup and suppress breast
cancer MCF-7 cell viability via pro-apoptotic poly(ADP-
ribose) polymerase-2 (PARP-2) (77). The tumor-inhibiting
effect of PLK2 might also be related to the mammalian target
of rapamycin (mTOR) signaling pathway. p53 dependent PLK2
interacts with TSC1/2 to amplify their suppressive effect on
mTOR; Loss of PLK2 function promotes CRC and NSCLC
progression (99, 100); and MSI-H specific frameshift mutation
may be the internal cause of PLK2 dysfunction (107).
Frontiers in Oncology | www.frontiersin.org 6
For all this, the role of PLK2 in solid organ tumor is still
elusive and more reports indicate PLK2 could exacerbate tumor
progression. DNA damage and S-phase checkpoint defects in
PLK2-deficient human tumor cells caused by replication stress
eventually leads to increased cell death, suggesting that PLK2
plays an important role in maintaining stable replication and cell
survival of human tumor cells (108). Different from EOC, PLK2
protein level elevates markedly as a result of low promotor
methylation (25). Its expression is positively related to the
malignancy of gliomas while high expression indicates a poor
prognosis (27, 103, 109). In PLK2-/- triple-negative breast cancer
patient-derived xenograft (PDX) mice model, re-expression of
PLK2 significantly reduces the therapeutic effect of PLK1
inhibitor Volasertib (110).

PLK2 promotes tumor through complex regulatory
mechanisms. Hyper-expressed PLK2 in CRC binds to Fbxw7
and leads to its degradation, stabilizing Cyclin E and facilitating
cell vitality (111); And this regulation targeting to Fbxw7/Cyclin
E is negatively controlled by tazarotene-induced gene 1 (TIG1)
(112). Higher expression of PLK2 in proximal CRC is associated
with mismatch repair defects, B-raf serine/threonine kinase
proto-oncogene and Kirsten rat sarcoma virus oncogene
homologous mutations, suggesting more chemotherapy
resistance and worse prognosis for patients receiving
chemotherapy (113). Elevation of PLK2 is also positively
related to FOXD1; PLK2 knockdown causes restrained
proliferation and increases apoptosis in FOXD1 overexpressed
HT29 cells (114). PLK2 is also regulated by Hedgehog (Hh)
signal. Inhibition of Hh signal leads to reduction of PLK2,
degradation of anti-apoptotic myeloid cell leukemia 1 and cell
apoptosis in cholangiocarcinoma cells (115). Additionally, PLK2
is negatively correlative to Notch signal (103, 109), and could be
ubiquitin-dependently degraded in the presence of E3 ubiquitin
ligase RNF180 (27).

There are feedback regulations between PLK2 and p53.
Mutation of TP53 in CRC lowers PLK2 expression (113).
Meanwhile, PLK2 binds and phosphorates mutated p53,
enhancing its carcinogenic activity; Regulation of PLK2 by
wild-type or mutated p53 results in tumor cell growth
inhibition or cell proliferation enhancement and chemotherapy
resistance respectively; siRNA of mutated p53 or PLK2 improves
treatment outcome (116). Phosphorylation of p53 family
member TAp73 at Ser48 restricts its nuclear translocation and
ant i- tumor effects , which could be react ivated by
dephosphorylation; Contrasting to cisplatin alone, combination
therapy with PLK2 inhibitor (ELN582646) upregulates p21 and
puma expression in head and neck squamous cell carcinoma and
OS cell line (117, 118); Inhibiting PLK2 in TAp73-rich OS cell
line Saos2 leads to reduced cell proliferation, increased apoptosis,
and decreased invasion; However, these changes are not
observed in TAp73 KO Saos2 (119, 120). Osteoblastic OS
expresses higher TAp73 and PLK2 than chondroblastic OS,
indicating poor differentiation and prognosis; Abundant
TAp73 in Saos2 and OS PDX mice promotes PLK2 expression,
affecting osteopontin (OPN) and osteocalcin (OCN) and calcium
deposit; PLK2 silencing prevents PDX-OS cell colony formation,
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facilitates cisplatin sensitivity, and improves curative effects
(121). Thus, p53 family is deeply involved in the tumor
promotion of PLK2.

Reportedly, PLK2 expression was positively correlated to
paclitaxel resistance resulting from its anti-proliferative effects
during mitosis in ovarian cancer cell line A2780 and promoting
tumor cell viability (122). Different from Syed et al. (104), the
difference in chemotherapeutic drug resistance pattern may be
responsible for the difference in the influence of PLK2. TP53
deletion or mutation has similar effects on promoting tumor cell
apoptosis induced by paclitaxel and enhancing drug sensitivity as
PLK2 silencing with siRNA (37). The contradiction between
expression and function was also observed in gastric cancer;
PLK2 was overexpressed in SGC-7901 cell line, while silencing of
PLK2 could further promote the growth of SGC-7901 cell by
inhibiting apoptosis (apoptosis-related genes Bax and caspase 3
were down-regulated at the protein level) (123). And, in SGC-
7901, PLK2 might be inhibited by anti-tumor miR-126; But
PLK2 was still identified tumor suppressive in SGC-7901,
because the tumor inhibition of miR-126 might be a
symphonic regulation of PLK2, PI3KR2 and Crk; The
limitation of this study was the lack of direct intervention on
these effectors in SGC-7901 cell line to clarify their exact role
(124). However, as a potential therapeutic target, the role of
PLK2 in tumors and its relationship with chemotherapy
sensitivity need further exploration

Parkinson’s Disease
In PD, the number, distribution and phosphorylation state of a-
Synuclein (a-Syn) affect the progression of the disease. a-Syn is a
soluble presynaptic protein that is low expressed under normal
physiological conditions and is associated with dopamine uptake,
synaptic plasticity, and vesicle maintenance (125). In and ex vivo
study revealed that a-Syn significantly inhibited tyrosine
hydroxylase (TH), and its overexpression could activate
protein phosphatase 2A (PP2A) (126). a-Syn accumulation is
related to inflammation and cell death, enhancing PLK2 and
GSK3b activities, and increasing phosphorylated a-Syn and Tau
levels (127). In estrogen-related receptor gamma (ERRg)
overexpressed SHSY5Y cells, PLK2 is upregulated, participating
GSK3b phosphorylation, inducing synapse upscaling, and
improving dopaminergic neuron characteristics (upregulation
of tyrosine hydroxylase, dopamine transporter and vesicle
monoamine transporter 2) (128). Endogenous GSK3b activity
might affect PLK2-mediated regulation of a-Syn (129). The
expression of Tau protein is also correlated with the significant
increase of PLK2 level, which could activate different kinases,
leading to the phosphorylation of Tau and other proteins
(including a-Syn), and result in the development of PD (130).
PLK2 is regulated by ubiquitination degradation (28, 127).
Overexpression of the conserved E3 ubiquitin ligase Parkin
(synergistic with E1 activase and E2 binding enzyme) activates
the ubiquitination, reducing PLK2, PARP, caspase-3 and CD3d
levels, and promoting a-Syn degradation (131–133). a-Syn-
PLk2-ROS signaling pathway is involved in PD with insulin
resistance (134).
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In cell line and primary culture, inhibiting PLK2 increases a-Syn
in presence of GSK3b (129). Kinase activity of PLK2 could
suppress a-Syn toxicity and eliminate it through autophage,
protect TH+ neurons, and inhibit Neurodegeneration as well as
hemiparkinsonian motor symptoms; The PLK2/a-Syn co-
overexpression by Stereotaxic injection results in symmetrical rats’
forelimbs, while loss of PLK2 kinase activity leads to impaired
opposite forelimb activities (135). Phosphorylation at Ser129 is not
necessary for PLK2 reducing a-Syn but macroautophagy (136).
PLK2 interacts with N-terminal of a-Syn, forming a protein
complex degraded through macroautophagy; inhibition of
autophagy leads to a-Syn accumulation and PLK2 elevation;
PLK2 overexpression decreases a-Syn in HEK-293T and multi-
ubiquitination also plays its role (137). So, it is considered PLK2
possesses dual kinase/chaperone activity (138). On the contrary,
presynaptic total and phosphorylated a-Syn decreases after BI 2536
inhibition, while aggregation of a-Syn does not change; But both
phosphorylation and aggregation decrease after PLK2 KO,
preventing neuropathy (139). Under iron overload, a-Syn
expression and phosphorylation (Ser129) are increased, and PLK2
and Casein kinase 2 (CK2) are upregulated (140). InMPTP induced
PD models, the expression of PLK2 is significantly upregulated,
accompanied by increased levels of total, phosphorylated and
oligomized a-Syn, and decreased levels of PP2A, TH, and
dopamine transporter (DAT) (reflecting the function/number of
dopaminergic neurons) (141). Therefore, PLK2 exerts different
effects on a-Syn under different research settings.

Although the regulation of total a-Syn by PLK2 is
controversial, it could significantly alter the phosphorylation
status of a-Syn and cause neurotoxicity (15, 16). Lewy bodies
(LBs) resulted from a-Syn phosphorylation and polyaggregation
is the major feature of PD, dementia with LBs and other
neurological diseases (17). a-Syn overexpression is associated
with reduced immune proteasome function, which in turn limits
PLK2 degradation, exacerbates a-Syn phosphorylation and
aggregation, and ultimately leads to neurodegeneration (142).
PLK2 is a major kinase that catalyzes the phosphorylation of a-
Syn at Ser129 in central nerve system (143, 144), and the
conversion is efficient (>95% conversion) (145); But the
membrane binding and internalization abilities of different a-
Syn mutants and phosphorylated proteins are different (146).
More than 80% of p-Ser129 a-Syn is co-located with PLK2. In
addition, the number of double-positive cells in the substantia
nigra cells of older monkeys is more than 3 times higher than
that of adult monkeys, suggesting PLK2 might be closely related
to the accumulation of p-Ser129 a-Syn induced by aging (147).
Moreover, PD patients’ hippocampus with dementia contains
more p-Ser129 a-Syn dramatically than without, revealing
phosphorylated a-Syn exhibits strong neurotoxicity and plays
a significant role in the development of PD (148). More
phosphorylated and oligomerized a-Syn appears in sera or
brain of PD patients and older monkeys, due to increased
PLK2 and decreased PP2A expression. Phosphorylated a-Syn
enters neuron, exacerbates PP2A activity decline, and promotes
a-Syn phosphorylation and oligomerization (149, 150).
Phosphorylation at Ser129 also regulates the inhibition of TH
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by a-Syn; PLK2 reduces its ability to inhibit TH or activate PP2A
by phosphorylation of a-Syn (126). PLK2 mainly phosphorylates
soluble a-Syn (151); Inhibition of PLK2 triggers autophagic
elimination of a-Syn (152). Oxidative stress might play a key
role in PLK2 phosphorylation of a-Syn, and antioxidant NAC
could completely block iron-induced up-regulation of PLK2,
CK2 and p-Ser129 a-Syn (140); However, as PLK2 induces
elevation of a-Syn in copper-treated SHSY5Y neuroblastoma
cells, both PP2A level and oxidative status remains unchanged
(153). Glutamate-mediated excitotoxicity is often considered as
the mechanism of cell death in PD (154); Group II metabotropic
glutamate receptors (mGLU2/3) are highly expressed in the
preterminal region of subthalamic synapses, and activation of
them could inhibit glutamate release from the presynaptic
membrane (155, 156). In MPTP-induced PD, both expression
and function of PLK2 are inhibited by mGLU2/3 (157).

Nevertheless, PLK2-induced a-Syn phosphorylation is not the
only mechanism of neurodegeneration (158, 159); Transfection of
PLK2 into the substantia nigra induced p-Ser129 a-Syn elevation
does not lead to dopaminergic cell death neither (160). In PD,
PLK2 could affect the expression, phosphorylation and aggregation
of a-Syn, leading to neurotoxicity, impaired function and even
death of dopaminergic neurons, and ultimately PD is still a widely
held view. The use of PLK2 inhibitors to treat neurodegenerative
diseases such as PD has become a possible option and will be
reviewed below.

Fibrotic Diseases
The essence of fibrosis is that under the action of various
pathogenic factors (smoking and dust in lung, drinking in liver,
hepatitis virus infection, ischemia in heart, etc.), relying on distinct
trigger mechanism and subsequent activated signal pathways
(mainly transforming growth factor-b, platelet-derived growth
factor, WNT, and Hh), fibrous connective tissue is excessively
deposited in target organs, causing organ remodeling,
malfunction, or even failure (161). In this decade, the role of
PLK2 in fibrotic diseases has attracted growing attention. A recent
study suggested that PLK2 KO fibroblasts exhibited higher
spontaneous myofibroblast differentiation, reduced proliferation
rate, and overexpression of pro-fibrotic OPN (53). PLK2
expression decreases in patients with pulmonary fibrosis;
Primary fibroblasts with PLK2 KO shows myofibroblast
phenotype; The expressions of OPN, IL-18, ACTA2, COL1A1
and COL3A1 in the lung tissues of PLK2 KOmice are significantly
increased; And drug inhibition of PLK2 in human lung fibroblasts
leads to a fibrotic phenotype (52). PLK2 is upregulated as a node
gene 7 days after acute myocardial infarction, and interacts with
Rasl11b, Atxn10, Myl12B-Rock2 etc. to participate myocardial
remodeling (162). Promoter methylation induced by hypoxia
results in a 50% decrease in PLK2 expression in atrial fibrillation
(AF) patients; In canine tachycardia, PLK2 expression is decreased
in tissues of atria, but not ventricles; Drug inhibition or KO of
PLK2 leads to cardiac fibroblasts displaying myofibroblast
phenotype; PLK2 KO mouse heart fibroblasts secretes
inflammatory OPN; The concentration of OPN in peripheral
blood of AF patients with myocardial fibrosis is significantly
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higher than that of patients with sinus rhythm and AF patients
without fibrosis. PLK2 KOmice might serve as a model of diastolic
heart failure, showing left ventricular diastolic dysfunction,
tachycardia, and typical fibrotic surface electrocardiogram
abnormalities (PQ and QRS prolonged) (22, 23). In terms of
mechanism, ERK1/2 signaling pathway is the molecular
association between the decrease of PLK2 expression and the
upregulation of OPN (22, 23, 53).
PROSPECT OF PLK2 APPLICATION IN
DISEASE DIAGNOSIS AND TREATMENT

Since PLK2 is extensively and deeply involved in the basic life
activities of cells and the occurrence and development of
diseases, its expression level may have predictive significance in
the diagnosis and prognosis of diseases. The expression of PLK2
increases in people with high formaldehyde exposure, which can
be used as an indicator of formaldehyde exposure (163). PLK2 is
overexpressed in bladder cancer, and quantitative analysis of
urine has showed that it is also associated with transitional cell
carcinoma, which is predictive with a sensitivity of 80% and a
specificity of 64% (164). Additionally, a low level of PLK2
expression indicates a poor prognosis for patients treated with
radiation therapy after breast-conserving surgery (165).

In the therapeutic field, 5-ASA may be a valuable new drug
target for the prevention and treatment of AF fibrosis and diastolic
heart failure by restoring physiological PLK2 expression and
blocking OPN release (22, 23). Cell internalization could be
realized by the preparation of nanoparticle encapsulated PLK2
using the total recirculating one machine system (TROMS). In
addition, the phosphorylation activity of PLK2 at a-Syn Ser129 is
maintained. And a drug delivery system (DDS) has been
constructed for continuous delivery of PLK2 into cells, which is
conducive to further study of the biological effects of PLK2 on
dopaminergic neurons (166).

Inhibition of PLK2 is also a potential treatment option for
many diseases. PLK2 inhibitors at therapeutic doses are not
genotoxic and are safe and effective (118). The PLK2 specific
inhibitors C2 and C21 constructed based on tetrahydropteridin
effectively inhibit the growth of various human tumor cell lines in
vitro (167). PLK2 specific inhibitor 7AO (ON1231320) blocks
tumor cell cycle during mitosis, leading to cell apoptosis;
Synergistic action with paclitaxel effectively suppressed tumor
growth in vivo (168). In neurodegenerative diseases, oral
administration of potent selective inhibitors of PLK2 that could
cross the blood-brain barrier significantly reduces the
phosphorylation of a-Syn in rat brain, providing a direction for
the treatment of PD (117). Isorhamnetin-3-O-b-D-glucoside
(IR3G) could bind and inhibit PLK2 with high affinity and may
inhibit macrophage function and exert strong anti-inflammatory
activity, as well as combat neurotoxicity andmotor loss induced by
6-OHDA in SHSY5Y cells (169). Oral administration of PLK2
inhibitor based on dihydropteridinone reduces p-Ser129 a-Syn in
the cerebral cortex of rats by about 41-45% (170). PLK2 also plays
a pathologic role in the pathogenesis of AD, promoting the
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production of Ab in vivo; Drug inhibition of PLK2 prevents the
formation of Ab, synaptic loss and memory decline in AD
mouse models (171). In addition, calcipotriol inhibits the
proliferation of keratin forming cells by inhibiting PLK2 in the
treatment of psoriasis (172). Inhibition of PLK2 promotes
synovial cell apoptosis, alleviates synovial injury, and prevents
cartilage injury and chondrocyte apoptosis to treat knee
osteoarthritis (18).
CONCLUSION

As mentioned above, PLK2, a member of the evolutionarily
conserved PLK family, is extensively and deeply involved in the
normal physiological activities, the stress response to external
stimuli and the development and progression of diseases. In
some aspects, the role of PLK2 is relatively clear. For example,
normal PLK2 expression and function are necessary for the
normal operation of cell cycle, and PLK2 is also involved in
regulating cell differentiation and maintaining the stability of
nervous system function. In addition, in hematological
neoplasma, most of the current studies believe that PLK2 acts
as a tumor suppressor, and the kinase activity of PLK2 is also
Frontiers in Oncology | www.frontiersin.org 9
involved in the pathological mechanism of neurodegenerative
diseases such as PD. Meanwhile, there seems to be a negative
relationship between PLK2 and the development of fibrotic
diseases. However, the role and regulatory mechanism of PLK2
in the stress response to external stimuli and solid organ tumors
development and progression are far from consensus. The
essence behind many seemingly contradictory phenomena is
the complexity of its function and interaction regulatory network
and may also be due to the differences in experimental models
and designs adopted by different studies. Nevertheless, some
preliminary attempts to use PLK2 as a predictor and therapeutic
target for disease have brought encouraging results and showed
promising prospects. There will definitely be more studies
focusing on PLK2, which will help us better understand PLK2
and make better use from principle to practice.
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