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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only currently
available curative treatment for sickle cell disease (SCD). However, the effects of HSCT
on SCD pathophysiology are poorly elucidated. Here, we assessed red blood cell (RBC)
adhesiveness, intensity of hemolysis, vascular tone markers and systemic inflammation, in
SCD patients treated with allogeneic HSCT. Thirty-two SCD patients were evaluated
before and on long-term follow-up after HSCT. Overall survival was 94% with no severe
(grade III-IV) graft-vs-host disease and a 22% rejection rate (graft failure). Hematological
parameters, reticulocyte counts, and levels of lactate dehydrogenase (LDH), endothelin-1
and VCAM-1 normalized in SCD patients post-HSCT. Expression of adhesion molecules
on reticulocytes and RBC was lower in patients with sustained engraftment. Levels of
IL-18, IL-15 and LDH were higher in patients that developed graft failure. Increased levels
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of plasma pro-inflammatory cytokines, mainly TNF-a, were found in SCD patients long-
term after transplantation. SCD patients with sustained engraftment after allo-HSCT
showed decreased reticulocyte counts and adhesiveness, diminished hemolysis, and
lower levels of vascular tonus markers. Nevertheless, systemic inflammation persists for at
least five years after transplantation, indicating that allo-HSCT does not equally affect all
aspects of SCD pathophysiology.
Keywords: sickle cell disease, chronic inflammation, allogeneic hematopoietic stem cell transplantation,
hematological reconstitution, adhesion molecules
INTRODUCTION

Sickle cell disease (SCD) is one of the most prevalent monogenic
disease in the world caused by a one pointmutation at position 6 of
the b-globin gene, which results in abnormal production of
hemoglobin S (1–3). SCD pathophysiology is characterized by
chronic inflammatory processes, triggered by hemolytic and vaso-
occlusive events, which lead to diverse clinical complications, such
org 2
as chronic hemolytic anemia, splenic sequestration crises, pain,
acute chest syndrome, strokes, leg ulcers, retinopathy, dactylitis,
priapism, pulmonary hypertension, heart failure, and increased
susceptibility to infections (1). The hallmarks of the disease are the
vaso-occlusion crises (VOC), severe pain episodes characterized by
tissue ischemia and infarction (1, 4), associatedwith increased levels
of soluble VCAM-1, ICAM-1, endothelin-1, IL-6, IL-8, and TNF-a
(5–9).
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The pathogenesis of SCD is a multifactorial process that
comprehends recurrent vaso-occlusions, ischemia-reperfusion
injury and oxidative stress (10). In SCD patients, hemoglobin S
polymerizes at low oxygen levels, resulting in altered cellular
architecture of red blood cells (RBC) and exposure of adhesion
molecules on the cell surface, including CD36, CD47, CD49d,
and BCAM/Lu (11–14). Sickle red blood cells have a reduced
lifespan, leading to accelerated red cell turnover. Circulating
reticulocytes, increased in number, express high concentrations
of adhesion molecules, contributing to increased adhesiveness of
the sickle cells and the occurrence of VOC (11, 15). In addition,
sickle cells are more susceptible to lysis and release of free
hemoglobin, lactate dehydrogenase (LDH) and arginase in the
plasma (16, 17). Free hemoglobin and circulating arginase
consume nitric oxide (NO), an important vasodilator (18),
further contributing to occlusive crises. Free hemoglobin also
releases heme molecules, which in turn activate the immune
system and thereby intensify VOC episodes (19, 20).

The vascular endothelium contributes to the inflammatory
process in SCD patients. During VOC, damaged endothelial cells
trigger the coagulation cascade and induce expression of VCAM-
1 (cell-vascular adhesion molecule 1), ICAM-1 (intercellular
adhesion molecule 1), P-selectin and E-selectin, which facilitate
the adherence of blood cells to the endothelium (17). Endothelial
cells produce endothelin-1, not only a potent vasoconstrictor, but
also a pro-inflammatory molecule that increases levels of soluble
VCAM-1 and ICAM-1 (21, 22), stimulates monocytes to secrete
inflammatory cytokines in vitro (23) and induces production of
superoxide by neutrophils in vitro (24, 25).

The management of SCD is a challenge (3, 26, 27) and
allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is the only currently available curative treatment (28–31). To
date, hundreds of SCD patients have already been successfully
transplanted worldwide (29, 31). Patients with HLA-identical
sibling donors have high overall and event-free survival rates,
ranging from 90% to 100% (29, 32). The graft rejection rate (graft
failure) varies extensively among different studies (31) and
addition of anti-thymocyte globulin (ATG) to the transplant
regimen is associated with a decrease in the incidence of graft
rejection from 22.6% to 3% (33).

To our knowledge, the effects of allo-HSCT on the
pathophysiological processes of SCD have not yet been fully
investigated. We would like to understand if systemic
inflammation and endothelial dysfunction subside after
transplantation and how these events correlate with clinical
complications, such as secondary graft failure and graft versus host
disease (GVHD). Therefore, in this work we assessed red blood cell
adhesiveness, intensity of hemolysis, vascular tone markers and
systemic inflammation, in SCD patients treated with allo-HSCT.
MATERIAL, SUBJECTS AND METHODS

Patients and Healthy Donors
Thirty-two SCD patients treated with allogeneic HLA-identical
sibling HSCT at a single center, between April 2013 and August
Frontiers in Immunology | www.frontiersin.org 3
2017, had peripheral blood collected for laboratory monitoring at
pre-HSCT (baseline) and at 1, 3, 6, 12, 24, 36, 48 and 60 months
after allo-HSCT (Table 1 andTable S1). Bonemarrowwas the stem
cell source for all transplants. Except for one, all patients were
treated with myeloablative conditioning regimen of fludarabine,
busulfan and anti-thymocyte globulin (ATG) (Tables S1, S2).
Methotrexate and cyclosporine A were used as initial GVHD
prophylaxis, according to institutional protocol. Eleven patients
had cyclosporin-A related toxicity, therefore were administered
alternative agents for prophylaxis (sirolimus, mycophenolate
mofetil, tacrolimus or corticosteroids). Diagnosis and classification
of acute and chronic GVHD were defined according to the
Glucksberg modified score and the National Institute of Health
2014 criteria, respectively (34, 35). First line treatment was initiated
at diagnosis of GVHD and consisted of corticosteroids.

Graft failure was classified as primary, when patients never
achieved an absolute neutrophil count > 0.5 X 109/L, or as
secondary, when patients lost the donor chimera, identified
through qualitative variable number tandem repeats (VNTR)
analysis (36).

The median (range) of follow-up was 34 (4–52) months, seven
(21.9%) for the SCD-patients who had graft failure. Fifteen
(46,9%) patients developed non-life threatening aGVHD
(grade I or II) and six (18,6%) cGVHD (Table S1). All patients
who developed GVHD (acute or chronic) were successfully
treated. None of the patients presented primary graft failure.

We retrospectively clustered patients into engraftment group
– 25 patients with sustained engraftment after transplantation,
with complete or mixed donor chimera by qualitative VNTR
analysis; and graft failure group – 7 patients who presented
secondary graft failure (Table S3). Groups were similar for age,
gender, race, and conditioning regimen intensity (Table S4). We
also clustered patients in aGVHD - patients who developed acute
GVHD and non-GVHD - patients who did not develop acute or
chronic GVHD. Three patients who developed only chronic
GVHD were not included.

Peripheral blood samples from 19 healthy donors (controls)
were collected and used for comparisons. The Institutional
Ethics Committee approved all protocols (processes number
3551/2002 and 2479/2015). Patients and controls (or a legally
authorized representative) signed informed consent forms before
study enrollment.

Blood Counts and Hemoglobin
S Quantification
Red cell counts, and hemoglobin concentrations were measured
on a KX-21N automatic analyzer (Sysmex America, Inc., USA).
Hemoglobin S was quantified by high-performance liquid
chromatography (HPLC) technique using a Variant II (Bio-
Rad Laboratories Inc., California, USA), according to
manufacturer’s recommendations.

Hematological Characterization
Reticulocyte frequency and expression of adhesion molecules
(CD36, CD47 and CD49d) on reticulocytes were assessed by
flow cytometry. Cells were analyzed using FACSCalibur flow
cytometer (Becton-Dickinson, San Diego, CA, USA) and FlowJo
December 2021 | Volume 12 | Article 774442
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TABLE 1 | Characteristics of 32 SCD patients treated with allogeneic HSCT.

Patient N. Genotype Sex/Age (y) at
baseline

Race Baseline treatment Donor Conditioning
Regimen

Graft function Death

SCD01 HbSS F/9 White Chronic transfusion Sickle cell trait Myeloablative
(BUCY-ATG)

Engraftment No

SCD02 HbSS M/20 Biracial Hydroxyurea Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Engraftment No

SCD03 HbS/b0 F/27 White Hydroxyurea Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD04 HbSS F/17 White Hydroxyurea and Chronic
transfusion

Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Engraftment No

SCD05 HbSS F/14 White Hydroxyurea Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Engraftment No

SCD06 HbSS F/10 White Chronic transfusion Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD07 HbS/b0 M/35 Biracial Chronic transfusion Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD08 HbS/b0 F/31 White Hydroxyurea Sickle cell trait Myeloablative
(BUFLU-ATG)

Poor graft
Function

Yes

SCD09 HbSS M/24 Biracial Hydroxyurea and Chronic
transfusion

Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Engraftment No

SCD10 HbS/b0 M/13 White Chronic transfusion Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Failure No

SCD11 HbS/b0 F/30 White Chronic transfusion Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD12 HbS/b0 M/25 Biracial Hydroxyurea Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Failure No

SCD13 HbS/HbC M/7 Biracial Hydroxyurea and Chronic
transfusion

Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD14 HbSS M/18 White Hydroxyurea and Chronic
transfusion

Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD15 HbSS F/14 White Hydroxyurea Sickle cell trait Myeloablative
(BUFLU-ATG)

Failure No

SCD16 HbSS F/23 Biracial Chronic transfusion Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Engraftment No

SCD17 HbSS F/19 White Hydroxyurea Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD18 HbSS M/14 Biracial Hydroxyurea and Chronic
transfusion

Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Engraftment No

SCD19 HbSS F/10 White Chronic transfusion Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD20 HbSS M/11 Biracial Hydroxyurea and Chronic
transfusion

Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD21 HbSS M/10 White Chronic transfusion Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Failure No

SCD22 HbSS M/30 Biracial * Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD23 HbS/HbC M/26 White Hydroxyurea Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD24 HbS/b0 M/16 White Hydroxyurea Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Engraftment No

SCD25 HbSS M/12 White Chronic transfusion Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD26 HbSS M/20 Biracial Hydroxyurea Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD27 HbSS M/7 White Chronic transfusion Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD28 HbSS F/33 Black Hydroxyurea Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD29 HbSS M/12 White Hydroxyurea Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No

SCD30 HbSS F/32 White Hydroxyurea Sickle cell trait
negative

Myeloablative
(BUFLU-ATG)

Failure Yes

SCD31 HbSS F/13 White Simple and Chronic transfusion Sickle cell trait Myeloablative
(BUFLU-ATG)

Failure No

SCD32 HbSS F/12 Biracial Hydroxyurea and Chronic
transfusion

Sickle cell trait Myeloablative
(BUFLU-ATG)

Engraftment No
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software (FLOWJO LLC, Oregon, USA). For the evaluation of
reticulocyte percentage, monoclonal antibodies CD36-PE,
CD47-PE and CD49d-PerCP-Cy5.5 (Becton-Dickinson, San
Diego, CA, USA) and Thiazole Orange (Sigma, St. Louis,
Missouri, USA) were used. Whole peripheral blood (5 ml) was
incubated with 1 mL of Thiazole Orange or with 1 ml of PBS 1x
(control) for 30 minutes in the dark, at room temperature.
For the analysis of adhesion molecules, whole blood was
centrifuged at 270 g for 3 minutes, plasma was discarded, and
the red cell solution was washed with PBS1x three times, diluted
200-fold (10 mL red cell solution plus 1990 mL PBS 1x) and used
for labeling. Aliquots of diluted red blood cells (100mL) were
incubated with 5 mL of monoclonal antibodies or control
isotypes for 15 minutes in the dark, at room temperature.
Then, 1mL of Thiazole Orange (or PBS 1x in the control
tubes) was added and incubated for 30 minutes in the dark, at
room temperature. Results were given as percentages of
reticulocytes, Thiazole+CD36+ cells, Thiazole+CD49d+
and Thiazole+CD47+. Detailed gate strategy is available in
Figure S1.

Plasma Soluble Adhesion
Molecules Dosage
Plasma adhesion molecules were determined by multiplex assays
(Magnetic Luminex Assay, R&D System Inc., Minnesota, USA or
Bio-Plex, Bio-Rad Laboratories Inc., California, USA), according
to manufacturers’ recommendations.

Plasma Inflammatory Mediators Dosage
TGF-b was measured by Cytometric Bead Array flex (CBA;
Becton-Dickinson, San Jose, CA, EUA) and other inflammatory
mediators were determined by multiplex assays (Magnetic
Luminex Assay, R&D System Inc., Minnesota, USA or Bio-
Plex, Bio-Rad Laboratories Inc., California, USA), according to
manufacturers’ recommendations.

Nitric Oxide Dosage
Serum quantification of products derived from nitric oxide
metabolism (nitrite and nitrate) was performed by colorimetric
assay (GREISS reaction) (37).

Heme and Lactate Dehydrogenase
(LDH) Dosage
Serum heme levels were analyzed by Heme Assay Kit (Sigma-
Aldrich, Steinhein, Germany) and LDH levels were analyzed by
optimized UV method (Wiener lab, Rosario, AR), according to
manufacturer’s recommendations.

Data Analysis
A linear regression mixed model, composed of random and fixed
effects, was used to analyze data from hematological reconstitution
and plasma marker levels. For variable frequency, the data
underwent logarithmic transformation. This model allows
multiple longitudinal observations per individual across a
baseline period and subsequent time points after transplantation.
Besides, this model applies to the analysis of data in which
Frontiers in Immunology | www.frontiersin.org 5
responses are grouped (more than one measure to the same
individual), when the assumption of independence among
observations in the same group is not adequate. The fixed
effects were groups and periods. The random effects were
associated with patients since it was necessary to control
correlations among repeated measures. For variable frequency,
we used a logarithmic transformation to fit the data to the
proposed model. The analyses of each variable were controlled
by patient’s age. Data analysis was performed using SAS®9.0
statistical software (SAS Institute Inc., Cary, NC, USA).
Receiver-operating characteristic (ROC) curves were calculated
to identify potential markers of graft failure and area under the
curves (AUC) ≥ 0.7 were considered. Significance was set at P<.05
and n≥3. Statistical significance was set at p < 0.05.
RESULTS

This study included 32 SCD patients who were treated with
allogeneic HSCT. Patients were followed-up for a mean
(standard deviation) time of 30 (13) months, and clustered
according to post-transplant chimerism determined by VNTR.
Two patients from the graft failure group died at 7 and 49 months
after transplantation, both due to infectious complications.

Normalization of Hematological
Parameters After Transplantation
At baseline, patients presented low numbers of red blood cells,
hematocrit and hemoglobin levels and increased reticulocyte
counts when compared to healthy donors (Figure 1). Early after
HSCT, there was an increase in the number of red blood cells,
hematocrit and hemoglobin levels, while the reticulocyte counts
decreased. When patients were clustered according to
engraftment, the graft failure group had lower red blood cell
counts, hematocrit, and hemoglobin levels at 6 and 24 months
after HSCT and higher reticulocyte counts at 24 and 36 months
compared to the engraftment group (Figures 1B, D, F, H). Figure
S2 shows hemoglobin S levels at different time points in patients
clustered according to post-transplantation engraftment.

Adhesion Molecules Decrease
in Red Blood Cells, but Not in
the Peripheral Blood
To evaluate the impact of HSCT on cellular adhesiveness, we
measured the expression of adhesion molecules on reticulocytes
and mature RBC in SCD patients before and after
transplantation and in healthy individuals. The frequency of
reticulocytes expressing CD47 was higher in SCD patients at
baseline compared with healthy donors (Figure 2A). This
frequency decreased shortly after the procedure and remained
low up to 60 months after transplantation. Reticulocytes
expressing CD49d were more frequent at baseline than in
healthy donors but decreased at 3 months after transplantation
(Figure 2E). CD36 expression on SCD reticulocytes at baseline
was not different from healthy controls and decreased at 24 and
48 months after transplantation (Figure 2C).
December 2021 | Volume 12 | Article 774442
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A B
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E F

G H
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FIGURE 1 | Erythropoiesis in SCD-patients following allogeneic HSCT. (A) red blood cell counts in transplanted patients, (B) red blood cell counts in patients
divided according to graft function, (C) hematocrit in transplanted patients, (D) hematocrit in patients divided according to graft function, (E) hemoglobin in
transplanted patients, (F) hemoglobin in patients divided according to graft function, (G) reticulocytes in transplanted patients and (H) reticulocytes in patients divided
according to graft function. Black lines represent the engraftment group and gray lines represent the graft failure group, + indicate the means. Statistical analysis was
performed using a model of multiple regression of mixed effects. *Statistical difference between pre- and post-transplantation time points in the overall group of
patients (A, C, E, G) or in each group (B, D, F, H) (P < 0.05); **Statistical difference between healthy donors and pre-transplant (P < 0.05). #Statistical difference
between engraftment group and graft failure group (P < 0.05); HD, healthy donor; Pre, pre-transplantation period.
Frontiers in Immunology | www.frontiersin.org December 2021 | Volume 12 | Article 7744426
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FIGURE 2 | Expression of adhesion molecules in reticulocytes from SCD-patients treated with allogeneic HSCT. (A) percentage of reticulocytes expressing CD47 in the
overall group of transplanted patients, (B) percentage of reticulocytes expressing CD47 in patients divided according to graft function, (C) percentage of reticulocytes
expressing CD36 in transplanted patients, (D) percentage of reticulocytes expressing CD36 in patients divided according to graft function, (E) percentage of reticulocytes
expressing CD49d in transplanted patients and (F) percentage of reticulocytes expressing CD49d in patients divided according to graft function. Black lines represent the
engraftment group and gray lines represent the graft failure group, + indicate the means. Statistical analysis was performed using a model of multiple regression of mixed
effects. *Statistical difference between pre- and post-transplantation time points in the overall group of patients (A, C, E) or in each group (B, D, F) (P < 0.05);
**Statistical difference between healthy donors and pre-transplantation (P < 0.05). #Statistical difference between engraftment group and graft failure group
(P < 0.05); HD, healthy donor; Pre, pre-transplantation period.
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In the engraftment group, frequencies of reticulocytes
expressing CD47 remained lower than baseline throughout
most of the post-transplantation follow-up (Figure 2B) and
the expression of CD36 on reticulocytes diminished from 24-
60 months post-transplantation (Figure 2D). At 24-36 months
after transplantation, the expression of adhesion molecules
CD47, CD36 and CD49d were higher in the graft failure group
compared with the engraftment group (Figures 2B, D, F).

In the analyses of mature cells, we observed increased
frequencies of RBC expressing CD47 (Figure S3A), mainly in
the engraftment group (Figure S3B). RBC expressing CD36
Frontiers in Immunology | www.frontiersin.org 8
decreased 36-48 months post-transplantation in patients with
successful engraftment (Figures S3C, D), while there were no
changes in CD49d expression in mature RBC (Figures S3E, F).
The expression of adhesion molecules CD36 and CD49d was
increased in the graft failure group compared to the engraftment
group at 36 months (Figures 3D, F).

In patients with good engraftment, the plasma concentration
of P-selectin decreased at one month (Figures 3A, B), while
ICAM-1 levels increased at one- and 6-months post-
transplantation (Figures 3C, D). Before transplantation, the
concentration of ICAM-1 was higher in healthy donors than in
A B

D

E F

C

FIGURE 3 | Levels of soluble adhesion molecules in SCD patients following allogeneic HSCT. Concentration of (A) P-selectin in the overall group of transplanted patients,
(B) P-selectin in patients divided according to graft function, (C) ICAM-1 in the overall group of transplanted patients, (D) ICAM-1 in patients divided according to graft function,
(E) VCAM-1 in the overall group of transplanted patients and (F) VCAM-1 in patients divided according to graft function. Black line representing the engraftment group and gray
line representing the graft failure group, + indicate the means. Statistical analysis was performed using a model of multiple regression of mixed effects. *Statistical difference
between pre- and post-transplantation time points in the overall group of patients (A, C, E) or in each group (B, D, F) (P <0.05); **Statistical difference between healthy donors
and pre-transplantation (P < 0.05); HD, healthy donor; Pre, pre-transplantation period.
December 2021 | Volume 12 | Article 774442
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SCD patients (Figure 3C). Conversely, VCAM-1 levels were
higher in SCD than in controls and decreased up to 5 years after
HSCT compared to baseline (Figures 3E, F). We did not find
sustained changes on reticulocytes counts, the expression of
adhesion molecules on reticulocytes and mature RBC, and the
soluble levels of adhesion markers when patients were clustered
according to GVHD occurrence (Figures S4, S5).

Hemolysis Markers Improve After HSCT
There was a brief increase of heme concentrations at 3 months
and a transitory decrease at 24 months after transplantation in
the overall population (Figures 4A, B). Conversely, LDH levels
decreased up to 5 years after transplantation in the engraftment
group compared to baseline (Figures 4C, D).

Vascular Tone Markers Are Decreased in
SCD Patients Following HSCT
While there was transient increase of NO metabolites at 3
months after transplantation (Figures 4E, F), we detected
sustained decrease of endothelin-1 from 6 months until last
follow-up post-HSCT in patients with successful engraftment
(Figures 4G, H). Of note, patients in the graft failure group had
increased levels of endothelin-1 already at baseline (Figures 4H).
We did not find sustained changes on NO metabolites and
endothelin-1 levels when patients were clustered according to
occurrence of acute GVHD (Figure S5).

Changes in Inflammatory Mediators
After HSCT
Levels of TNF-a and IL-18 were higher in SCD patients at
baseline compared to healthy controls (Figures 5A, C). Levels of
IL-18 decreased until 5-year post-transplantation in engrafted
patients, but levels of TNF-a increased at 1-2 years after HSCT
(Figures 5B, D). Following transplantation, we did not observe
changes in plasma levels of IL-8, IL-21, IL-22, and IL-33. TGF-b
levels were reduced for 3 months after transplantation in patients
with good engraftment (Figure S6). The concentrations of IL-15
and IL-18 increased at 2 years after HSCT in patients who
underwent graft failure (Figures 5A, B, E, F). Interestingly,
patients who developed aGVHD presented increased levels of
HGF at 1 month after transplantation as well as decreased levels
of TGF-b at 36 months after allo-HSCT (Figure S7). Other
cytokines were not detected in SCD patients enrolled in this
study (Table S5).
DISCUSSION

Hematological parameters normalize in SCD patients
successfully engrafted following allogeneic HSCT (29, 33, 38–
43). Indeed, here we show that HSCT modifies key elements
associated with SCD pathogenesis.

Sickle-cell patients have increased numbers of reticulocytes,
with high expression of adhesion molecules such as CD49d,
CD36 and Lu-BCAM (11). Accordingly, we detected increased
percentages of reticulocytes expressing CD49d in our SCD
Frontiers in Immunology | www.frontiersin.org 9
patients at baseline, when compared to controls. After HSCT,
patients with successful engraftment had lower frequencies of
reticulocytes expressing CD49d and CD36 than patients with
graft failure, suggesting that HSCT substitutes highly adherent
abnormal cells by normal adherent cells. A similar mechanism
has been described in sickle cell patients under treatment with
hydroxyurea, with decreased expression of adhesion molecules,
such as CD36 and CD49d, on reticulocytes (11, 44).

Our SCD patients also had higher percentage of reticulocytes
expressing CD47 at baseline when compared to the healthy
donors. These percentages were reduced after transplantation
in patients with good engraftment. Surprisingly, however, the
expression of CD47 was increased in mature RBC of SCD after
transplantation. CD47 is involved with increased cell adhesion in
SCD patients as part of disease mechanism (45, 46).
CD47 expressed on SCD reticulocytes is able to bind to
thrombospondin, resulting in VLA-4 activation, thereby
increasing their adhesion properties (45, 46). CD47 also plays
an important role in regulating the clearance of senescent RBC
by macrophages, as it binds to macrophage inhibitory receptors
(SIRPa) and prevents phagocytosis (47, 48). This may explain
the greater expression of this molecule in mature RBC
after transplantation.

Plasma concentrations of P-selectin, VCAM-1 and ICAM-1
are increased in SCD patients, a phenomenon associated with
severe clinical symptoms and tissue damage (6, 7, 9, 49, 50). In
our SCD patients, however, baseline concentrations of P-selectin
were similar to those from healthy controls, whereas
concentrations of ICAM-1 were lower than controls. VCAM-1
plasma concentrations, conversely, were higher than controls at
baseline and decreased significantly after HSCT, especially in
patients with good engraftment. The divergences between
ICAM-1 and P-selectin levels measured in our patients and
those reported by the literature may be due to number of
evaluated patients and should be further evaluated in
future studies.

Lactate dehydrogenase (LDH) levels were reduced up to 5
years after HSCT in patients with good engraftment, which is in
accordance with the successful hematological recovery observed
in our patients. Although LDH has been established as a
biomarker of hemolysis and is associated with severe clinical
symptoms of SCD, such as priapism, leg ulcers, pulmonary
hypertension and death (16), it also reflects tissue damage,
which is involved in the pathogenesis of the disease (51). Thus,
the decreasing levels of LDH may reflect not only an
improvement of hemolysis, but also from reduction in tissue
damage and ischemia.

In our patients, IL-15 and IL-18 levels remained elevated in
SCD patients who experienced graft failure, in contrast with
those with sustained engraftment. It is not clear if the
quantitative changes of these cytokines are cause or
consequence of graft failure since autologous recovery of
abnormal hematopoiesis after graft failure may also resume the
pre-transplantation inflammatory status. Organ transplantation
studies suggest that IL-15 mediates allograft rejection mainly by
NK activation (52) and IL-18 has been associated with poor
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FIGURE 4 | Markers of hemolysis and muscular tone in SCD patients following allogeneic HSCT. Concentration of (A) Heme in the overall group of transplanted
patients, (B) Heme in patients divided according to graft function, (C) LDH in the overall group of transplanted patients, (D) LDH in patients divided according to graft
function. (E) Nitrite and Nitrate in the overall group of transplanted patients, (F) Nitrite and Nitrate in patients divided according to graft function, (G) Endothelin-1 in
the overall group of transplanted patients, (H) Endothelin-1 in patients divided according to graft function. Black line representing the engraftment group and
gray line representing the graft failure group, + indicate the means. Statistical analysis was performed using a model of multiple regression of mixed effects.
*Statistical difference between pre- and post-transplantation time points in the overall group of patients (A, C, E, G) or in each group (B, D, F, H) (P <0.05);
**Statistical difference between healthy donors and pre-transplantation (P < 0.05). #Statistical difference between engraftment group and graft failure group
(P < 0.05); HD, healthy donor; Pre, pre-transplantation period.
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allograft function (53). Conversely, IL-18 is associated with
hemolysis and endothelial activation in SCD patients,
suggesting that this cytokine may contribute to vaso-occlusion
pathophysiology (54). Interestingly, Cerqueira and collaborators
(54) demonstrated a positive correlation between IL-18 and uric
acid plasma levels in SCD patients. Uric acid is a damage-
associated molecular pattern (DAMP) and may trigger the
NLRP3 inflammasome pathway, resulting in secretion of IL-1b
and IL-18 (54). In our study, however, we were not able to find
an association between uric acid levels and clinical outcomes,
Frontiers in Immunology | www.frontiersin.org 11
possibly because of the administration of cyclosporine A to the
patients, a known urate retention agent (data not shown).
Nevertheless, we believe that NLRP3 inflammasome activation
could be a possible underlying mechanism of IL-18 production
in SCD patients that underwent graft failure after HSCT. The
participation of NLRP3 inflammasome and possible triggers in
graft failure should be more specifically investigated in
future studies.

Heme levels in our SCD patients were not higher than control
levels at baseline, possibly because patients were clinically stable
A B

D

E F

C

FIGURE 5 | Levels of pro-inflammatory cytokines in SCD patients following allogeneic HSCT. Concentration of (A) IL-18 in the overall group of transplanted patients,
(B) IL18 in patients divided according to graft function, (C) TNF-a in the overall group of transplanted patients, (D) TNF-a in patients divided according to graft
function, (E) IL-15 in the overall group of transplanted patients, (F) IL-15 in patients divided according to graft function. Black line representing the engraftment group
and gray line representing the graft failure group, + indicate the means. Statistical analysis was performed using a model of multiple regression of mixed effects.
*Statistical difference between pre- and post-transplantation time points in the overall group of patients (A, C, E) or in each group (B, D, F) (P < 0.05); **Statistical
difference between healthy donors and pre-transplantation (P < 0.05). #Statistical difference between engraftment group and graft failure group (P < 0.05); HD,
healthy donor; Pre, pre-transplantation period.
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immediately before transplantation, not presenting sickle cell
crises or severe anemia. Shortly after HSCT, procedure-related
events may have contributed to transient increase in heme levels,
since toxicity from the conditioning regimen, infections, blood
component transfusions with high levels of free heme, ABO
incompatibility, adverse effects from drugs and graft versus host
disease (GVHD) may activate the endothelium and the immune
system (55–57). Later on follow-up, heme levels declined and
resumed normal levels, which can be considered another
indication of favorable outcomes after HSCT. Heme is critical
for endothelial and inflammatory activation in SCD (17, 19, 58,
59). Indeed, in patients who presented graft failure, heme levels
increased after 2 years, due to recurrence of hemolytic anemia
and, probably, of the endothelial dysfunction, as supported by
the VCAM-1 levels. Furthermore, heme has also been described
as an activator molecule of NLRP3 inflammasome (60), which
may explain the increased levels of IL-18 observed in SCD
patients at pre-transplantation and in those who underwent
graft failure.

Recent reports have associated high levels of pre-transplant
IL-18 with non-relapse and overall mortalities (61) and delayed
platelet recovery in transplanted patients (62). We speculate that
the mixed chimerism achieved after allogeneic HSCT, marked by
20-40% HbS in recipient sickle red blood cells, may lead to
release of endogenous ligands that trigger NLRP3 inflammasome
activation (such as heme, uric acid). This activation may initiate
the secretion of mature forms of IL-18 from endothelial cells to
promote further inflammatory processes and oxidative stress in
the endothelium. Administration of immunotherapeutic agents
(such as drugs targeting NLRP3 inflammasome pathway) may
diminish endothelial activation and, as consequence, decrease
systemic inflammation in SCD patients after HSCT. Future
studies addressing the role of NLRP3 inflammasome activation
in graft failure may shed light on HSCT protocol improvements
for SCD patients.

Finally, considering the pivotal role of endothelial function in
clinical events associated with SCD, we evaluated mediators of
vascular tonus associated with VOC in SCD patients (12, 63, 64).
Endothelin-1 levels were increased at baseline, when compared
to healthy controls, and decreased after HSCT, especially in
patients with good engraftment. Baseline endothelin-1 plasma
levels in patients who later developed graft failure were already
higher than in patients with good engraftment after HSCT.
However, ROC curve analyses failed to demonstrate
associations between levels of endothelin-1 at baseline and
transplant outcomes, probably due to reduced number of
patients analyzed. A potential predictive role of endothelin-1
should be tested in a larger cohort of SCD patients treated
with HSCT.

Notably, the presence of acute GVHD in our cohort of
patients seem not to affect the assessment of systemic
inflammatory parameters, except for the levels of HGF and
TGF-b. The levels of HGF were increased early post-transplant
in SCD patients with aGVHD, which is in accordance with the
literature that have described HGF as an important biomarker
for aGVHD occurrence (65, 66).
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We acknowledge here some limitations of this work. First,
this study lacked a treatment control and a non-SCD
transplanted control group of patients for comparisons. We
would need an age-matched group of patients with other
hematological reconstitution, such as aplastic anemia, also
treated with allo-HSCT, for demonstrating whether the
sustained systemic inflammation after is specific of SCD.
Second, the number of overall patients evaluated in this study
is small for biomarkers and multivariate analyses. Thereby,
statistical analyses are difficulted and there is a potential risk of
bias, which should be acknowledged. Furthermore, these data
need to be validated in other carefully designed controlled
clinical studies and/or in other cohorts of patients.

Here, we showed that systemic inflammation persists in SCD
patients long-term after allo-HSCT, evidenced by altered levels of
plasma pro-inflammatory cytokines (mainly TNF-a) adhesion
molecules (P-selectin and ICAM-1), indicating that
transplantation does not equally affect all aspects of SCD
pathogenesis. At 24 months or later after transplantation,
TNF-a levels were persistently high. In SCD patients who
underwent graft failure, IL-18 and IL-15 levels were
significantly increased at 24 months after allo-HSCT.
Following transplantation, we observed increased production
of healthy mature erythrocytes, decreased circulating
reticulocyte counts and adhesiveness, decreased hemolysis, and
improved vascular tone markers in SCD patients with
successful engraftment.
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