
polymers

Article

Lignin-Based Gel Polymer Electrolyte for Cationic Conductivity

Nabi S. Shabanov 1,2, Kamil Sh. Rabadanov 1, Malik M. Gafurov 1, Abdulgalim B. Isaev 2 ,
Dinara S. Sobola 3,4,* , Sagim I. Suleimanov 1, Akhmed M. Amirov 1 and Abil Sh. Asvarov 5

����������
�������

Citation: Shabanov, N.S.; Rabadanov,

K.S.; Gafurov, M.M.; Isaev, A.B.;

Sobola, D.S.; Suleimanov, S.I.; Amirov,

A.M.; Asvarov, A.S. Lignin-Based Gel

Polymer Electrolyte for Cationic

Conductivity. Polymers 2021, 13, 2306.

https://doi.org/10.3390/

polym13142306

Academic Editor:

Antonios Papadopoulos

Received: 30 June 2021

Accepted: 9 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Analytical Center for Collective Use, Dagestan Federal Research Centre of the Russian Academy of Sciences,
367001 Makhachkala, Russia; shabanov.nabi@yandex.ru (N.S.S.); rksh@mail.ru (K.S.R.);
malik52@mail.ru (M.M.G.); s.sagim.i@yandex.ru (S.I.S.); aamirov@mail.ru (A.M.A.)

2 Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, Ulitsa Batyraya 4a,
367008 Makhachkala, Russia; abdul-77@yandex.ru

3 Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology,
Technická 2848/8, 616 00 Brno, Czech Republic

4 Institute of Physics of Materials, Academy of Sciences CR, Zizkova 22, 616 62 Brno, Czech Republic
5 Shubnikov Institute of Crystallography, Federal Scientific Research Center, “Crystallography and Photonics”

of Russian Academy of Sciences, 59, Leninsky Pr., 117333 Moscow, Russia; abil-as@list.ru
* Correspondence: sobola@vutbr.cz; Tel.: +420-774-324-077

Abstract: The article presents the results of the preparation and study of a gel-polymer electrolyte
based on lignin obtained from Pinus sylvestris. Sulfonation and subsequent chlorination of lignin
make possible implementation of the principle of mono-ionic conductivity in a natural biopolymer
matrix, which provides predominantly cationic conductivity of the electrolyte. Based on the results of
the qualitative and quantitative analysis of the synthesized samples, the mechanisms of the chemical
conversion of the biopolymer, the structure models of the converted fragments of macromolecules, as
well as the quantum-chemical calculation of their electronic and geometric parameters are presented.
The key electronic characteristics of the gel polymer electrolytes (GPE) based on a composite of
lignins with 20 wt.% polyvinyl alcohol are determined by impedance spectroscopy. The maximum
value of the specific volume conductivity is 2.48 × 10−4 S cm−1, which is comparable with most
commercial electrolytes of this type, but at the same time, record values are reached in the number of
lithium cation transfer t+Li of 0.89. The studies allow to identify the basic laws of the effect of chemical
modification on the structure of GPE and describe the mechanism of ionic conductivity.

Keywords: gel polymer electrolytes; bio-sourced materials; lithium cation transfer

1. Introduction

In recent decades, there has been a noticeable interest in clean energy storage systems
to meet the growing abundance of energy from intermittent renewable sources such as
wind, sun and sea waves. The rechargeable lithium-ion battery (LIB) is considered to be one
of the main energy storage devices enabling renormalization of said intermittent sources,
due to its high output voltage, large specific capacity, and longer service life as compared
to alternative devices [1–3]. The use of a liquid electrolyte in storage devices suffers from
several drawbacks, including solvent leakage, risk of fire, and explosion. To solve these
problems and increase the stability of LIBs, solid and pseudo-liquid electrolytes, such as
polymer electrolyte (PE) [4–6] and gel polymer electrolyte (GPE) [7–9] were created.

The development of an electrolyte based on lignin (L), which is the second-most
abundant biopolymer on Earth (after alginate) [10], would decrease the impact on the
environment and provide devices for energy storage and conversion with cheap and
readily available raw sources. L is a three-dimensional polymer consisting of nine-carbon
phenolpropane units linked by various types of bonds. As a natural biopolymer, L is
also more preferable for use than synthetic materials due to its higher biocompatibility.
Moreover, L as a by-product of large-tonnage cellulose pulp production processes is
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currently readily available, cheap, and represents an under-utilized raw material [11].
About 50 million tons of L are produced annually worldwide, but less than 10% is used
rather than burnt as low-grade biomass [12]. Therefore, extensive research aimed at finding
sustainable uses of lignin is an extremely relevant research direction. The original natural
biopolymer is inert from a chemical and physical (electronic) point of view, and it is suitable
primarily as a fuel in unmodified form. At the same time, lignin is an inexhaustible source
of cheap hydrocarbon, the processing and modification of which opens up a wide range
of its applications. The main direction in solving this problem is modification of L by
its chemical or fermentative transformation in order to change its physical and chemical
properties [13–15]. There are very few publications where L is studied as an electrolyte.
Papers [16–19] present the results of preparation of polyelectrolyte complexes, GPE, and
aqueous electrolytes based on L. However, in currently available works, the possibility
of using L as a macromolecular anion, i.e., the implementation of the principle of mono-
ionic conductivity, is lacking or has not been studied in detail. Polymers with fixed acid
functional groups in the matrix have several advantages associated with the stability of
the LIB [20]. In particular, the cation is, as a rule, less mobile than the anion since their
motion is strongly connected with the motion of the main Lewis sites in the polymer
matrix. This is the reason for the small number of cation transfers with bipolar charge
carriers in polymer electrolytes, which is usually less than 0.5. Besides, anions tend to
accumulate on the anode and block it, forming a concentration gradient [21]. This leads to
electrical polarization and, consequently, to a poor behavior, such as voltage loss, higher
internal impedance and undesirable reactions, and higher likelihood of element failure [22].
Accordingly, the ultimate challenge facing green and sustainable energy approach is to
achieve a balance between cost savings, superior operating performance of the device
and use of environmentally friendly materials. Preparation of L-based electrolytes with
embedded acid functional groups can significantly reduce manufacturing costs while
maintaining the quality suitable for actual use in the LIB, which is an urgent task from both
technological and economic points of view.

2. Materials and Methods

The L was prepared from coniferous wood of Pinus sylvestris by hydrolysis of its
cellulose component. Lithium hydroxide (99.5%), sodium hydroxide (99.5%), sulfuric acid
(93%), polyvinyl alcohol (6000) (Prime chemicals group, Moscow, Russia), sodium sulfide
(99.5%) (JSC L.Ya. Karpov Chemical Plant, Kazan, Russia), and chlorine gas (99.6%) (M-gas
Company, Moscow, Russia) were used.

2.1. Lignin Preparation

To obtain L, we used coniferous wood chips, from which L was isolated by acid
treatment. The volume of 250 mL of 72% H2SO4 was added to 50 g of pulverized wood
chips and kept at 24–25 ◦C for 2.5 h with intermittent gentle stirring. The mixture was then
transferred into a 2000 mL conical flask and 1000 mL of distilled water was added. The
diluted mixture was refluxed on electric stove for 1 h, allowing the formed the L particles
to become larger and settle. Then the L was filtered, washed with deionized water, and
dried at 110 ◦C for 3 h. The L yield achieved, defined as the ratio of the obtained mass of
lignin to the mass of the original chips, was 40%.

To obtain a homogeneous mass, the precipitated L was hydrolyzed in an aqueous
alkaline medium of 10% NaOH at 180 ◦C for 2 h. The process took place in a Teflon®-lined
autoclave. As a result, low-molecular-weight water-soluble L was obtained, subsequently
precipitated by neutralization with sulfuric acid. The precipitate was a brown homogeneous
powder of the low-molecular-weight L. The resulting powder was also filtered, washed
with deionized water, and dried.
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2.2. Lignin Sulfonation

L was sulphonated by boiling in the autoclave in sodium sulfite solution of 10%
Na2SO3. The volume of solution per gram of L was 10 mL. The boiling process was carried
out in two stages. The first stage lasted for 1–1.5 h at 105–110 ◦C. This stage involved L
swelling and impregnation with the salt system accompanied by partial sulfonation of
the same L. The second stage lasted for 2–2.5 h at 160–180 ◦C and involved additional
sulfonation of the L. It resulted in water-dissolved sodium lignosulfonate, which was
converted into precipitate of lignosulfonic (LS) acid by acidification with sulfuric acid, and
the obtained precipitate was then filtered, washed, and dried.

2.3. Chlorination of Lignosulfonic Acid

The obtained LS acid was additionally chlorinated. The 30 mL of deionized water
was poured into 100 mL of flat-bottomed flask and then 3 g of the L was added. Chlorine
gas was passed through the resulting mixture at the rate of 10 mL per minute for 3 h
under vigorous stirring. During chlorination, the LS precipitate changed its color from
dark brown to yellow. The resulting chloro-lignosulfonic acid (LS-Cl) was also filtered and
washed with deionized water and ethanol.

2.4. Obtaining A Gel Polymer Electrolyte

The stages described above resulted in preparation of powders of low-molecular-
weight L, LS acid, and LS-Cl acid, from which GPEs were formed. At the first stage, the
powders were transferred to a soluble state by neutralizing L acid groups with lithium
hydroxide. For this purpose, 10 mL of deionized water was added to 1 g of L and, under
vigorous stirring, titrated with 0.1 M of LiOH under the control of a pH meter. For a
complete dissolution of the L, titration was conducted up to pH = 8–9. The resulting
solution was allowed to stand for 30 min. If pH value was less than 8, the solution was
basified until stable values were established. The amount of LiOH consumed to neutralize
completely its acid groups was calculated according to the formula:

νLi =
C1 × V1 −

(
10−pOH − 10−7)× V2

m
(1)

where C1 V1 are the titrant concentration (molLi/glignin) and volume, respectively, V2 is the
volume of the solution to be titrated, pOH is the hydroxide value after titration, and m is
the mass of the L quantity.

Then, in order to get rid of unreacted lithium hydroxide and, possibly, mineral salts
formed, the solutions were treated with an ion-exchange resin until pH ≈ 7. As a result,
solutions of lithium salts L, LS, and LS-Cl were obtained, which were then evaporated and
dried at 80 ◦C in a vacuum oven. Next, membranes were formed from the obtained L salts.
However, the main drawback of L is its relatively weak mechanical strength, which cannot
meet the requirements of actual application in LIB [23]. Polyvinyl alcohol (PVA), which has
excellent thermal, mechanical, and chemical stability and high film-forming properties was
used to impart the required mechanical properties [24–26]. For this purpose, L: PVA, LS:
PVA, and LS-Cl: PVA composites at the weight ratio of 80:20 were prepared by dissolving
the corresponding polymers in dimethyl sulfoxide (DMSO). The obtained solutions with
20% concentration of polymers in DMSO were poured into Teflon® dishes and dried in a
dry box at 60 ◦C for 24 h. As a result, we obtained GPEs based on low-molecular-weight L
(GPE-L), lignosulfonate (GPE-LS), and chloro-lignosulfonate (GPE-LS-Cl) in the form of
flexible and elastic films (shown in Figure S1).

2.5. Characterization and Performance Evaluation

IR absorption spectra were recorded by the FT-IR spectrometer Vertex 70 (Bruker,
Billerica, MA, USA) with the resolution of 2 cm−1 and a sample averaging of 128. Samples
for studies were prepared from the mixture of KBr powder and lignin under study at the
ratio of 250 mg/1 mg in the shape of pressed tablets. For all the spectra, the baseline was a
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polyline going through points with minimal absorption near wave numbers 740, 1850, and
3750 cm−1. Then, the corrected spectroscopic data were normalized to integral absorption
in the considered spectral range of 740–1850.

Elemental analysis was performed by ASPEX Express electron microscope equipped
by the OmegaMax EDX detector (ASPEX Corporation, Delmont, PA, USA) at accelerating
voltage 20 kV.

Quantum-chemical calculations were performed using the HyperChem program by
PM3 semi-empirical method. A distinctive feature of the PM3 method is that it satisfactorily
reproduces structure and energy of the compounds. For all the compounds under study,
the lowest spin multiplicity was specified. The spin state was calculated by the restricted
Hartree-Fock method. To increase the convergence rate of calculations, the Accelerate
convergence procedure (direct inversion of the iterative subspace) was used.

Thermal properties of the GPE were studied using an STA 449 F3 Jupiter simultaneous
thermal analyzer from NETZSCH (Bobingen, Germany), at the heating rate of 5 ◦C/min in
the temperature range of 30–350 ◦C. The sample mass was 9–10 mg.

The ionic conductivity of electrolytes was determined by impedance spectroscopy on
a RLC meter E7-20 (St. Petersburg, Russia) in the frequency range from 25 Hz to 1 MHz
and the signal amplitude of 100 mV within the temperature range of 20–50 ◦C. The cell
was a cylindrical vessel with the diameter of 25 mm with a clamping electrode fixed on the
pressure cap. The cell temperature was maintained by an RH25-6A water thermostat. The
measured sample was sandwiched between two lithium electrodes with the diameter of
≈10 mm. The cell was prepared in a dry box in an inert atmosphere of argon (shown in
Figure S2).

The values of the diffusion coefficient (D), mobility (µ), and the concentration of
mobile charge carriers (n) were calculated according to the equations [27,28].

The values of the diffusion coefficient (D), mobility (µ), and the concentration of
mobile charge carriers (n) were calculated according to the equations [27]:

D =
d2ω2

δ2 (2)

where d is half of the electrolyte layer thickness, δ is the ratio of squares of circular frequen-
cies: ω1

2/ω2
2, where ω1 is the frequency at Z”(max), ω2 is the frequency at Z”(min).

µ =
eD
kT

(3)

where 2d is the electrolyte layer thickness, S is the cross-section area of the electrolyte, R is
the resistance of the electrolyte.

The activation energy of electrolytes was determined graphically, by measuring spe-
cific resistivity in the temperature range of 20–50 ◦C and determining the slope of the line
in the coordinate plane with the ordinates. ln ρ and abscissae 1/T.

The transport number of lithium ions (t+Li) was obtained according to the Evans
method [28], by polarization of a symmetrical cell Li/GPE/Li with direct current (DC) in
combination with the method of impedance spectroscopy and subsequent calculation by
the equation:

t+Li =
Is(∆V − R0 I0)

I0(∆V − Rs Is)
(4)

where I0 and Is are the initial and stationary values of direct current, respectively; R0 and
Rs are the initial and stationary values of volume resistance, respectively; and ∆V is the
applied potential.

3. Results and Discussion

The results of chemical modification of L were studied by IR spectrometer in the
spectral range of 1800–700 cm−1, where the greatest number of absorption bands of the



Polymers 2021, 13, 2306 5 of 13

samples were observed (Figure 1, Table 1). This area is known as the “fingerprint” region,
which is suitable for identifying complex compounds such as L and determining the nature
of their structural changes.
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Figure 1. IR spectra of lignin (L) (a), lignosulfonate (LS) (b), and chloro-lignosulfonate (LS-Cl)
(c) within the frequency range of 750–1800 cm−1.
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Table 1. Absorption bands of lignin base oscillation in the 1800–700 cm−1 range.

Wavenumber, cm−1 Interpretation of Absorption Bands

1710 Stretching vibrations of the R-C=O bond in non-conjugated ketones of
carbonyl, carboxyl, and ether groups

1660 Oscillations of the Ar=O bond conjugated to the aromatic ring
1610, 1615, 1515, 1423 Skeletal vibrations of the aromatic ring

1457 Deformation vibrations O-CH3; scissor vibrations CH2

1374 Deformation vibrations of the C-H bond in C-CH3; deformation plane
vibrations of phenolic O-H groups.

1325 Vibrations of the syringyl ring with stretching vibrations of CO groups.
1265 Vibrations of the guaiacyl ring with stretching vibrations of CO groups.
1215 Ar-Ovibrations in Ar-OH and Ar-O-CH3
1152 Plane deformation vibrations of aromatic CH bonds

1032 Plane deformation vibrations of CH; stretching vibrations of
SO3 groups

972 Out-of-plane deformation vibrations of the CCH groups in
trans-HC=CH

The experimental frequencies of the IR absorption bands of main vibrations in the
range of 1800–700 cm−1 are presented in the table, where their possible interpretation is
given with allowance for the literature data [29–38].

Based on the results of IR spectroscopy, chemical transformations occurring during the
process of L modification under various conditions can be tracked. The processes occurring
in the solutions during L chemical modification have been studied in sufficient details by
various authors [14,31,34–44].

As can be seen from Figure 1a, a characteristic feature of the initial L is a high intensity
of the absorption line of 1710 cm−1, corresponding to stretching vibrations of carbonyl
and carboxyl groups as well as the intense line of 1214 cm−1 assigned to the OH group
conjugated to the aromatic ring (Ar-OH).

A detailed description of the possible transformations of lignin as a result of chemical
exposure is given in Supplementary Material Figure S3.

The resulting L compounds were investigated using an EDX to determine the elemen-
tal composition of samples. The elemental analysis of L revealed the degree of incorporation
of chlorine and sulfur into L macromolecule (Figure 2).
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As can be seen from the figure, the initial L consists of 71.2 wt.% of carbon and
28.8 wt.% of oxygen. In the process of sulfonation, 6.3 wt.% of sulfur was bound with L
molecules, which corresponds to one sulfo group per three phenylpropane units. Besides,
there is a slight increase in the oxygen content with respect to carbon.
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The high reactivity of active chlorine led to its more substantial penetration into the
polymer matrix, the values of which reached 15.3% of the total identified mass of the
sample. This content corresponds to about 5 chlorine atoms per three phenylpropane units.
However, high oxygen content in LS-Cl should also be mentioned, which is probably due
to oxidative processes taking place with the participation of oxygen formed during the
reaction of hypochlorite with L macromolecule. In addition, high values of oxygen in the
spectrum are possibly due to the content of bound water, which is also consistent with the
results of IR spectroscopy.

To determine the amount of lithium required to neutralize the acid groups of L, the
samples were titrated with 0.1 M of LiOH solution. As a result of titration and subsequent
calculation, the following values were determined: 0.0055, 0.0072, and 0.0077 mol/g for the
samples L, LS, and LS-Cl, respectively. In the original L, lithium absorption is mainly due
to neutralization of acid phenolic hydroxyls.

Sulfonation of L leads to 30% increase in the absorption of Li ions, which is obviously
associated with neutralization of the sulfo group. Chlorination of L also leads to an increase
of this parameter, but the increase is about 7%, which is probably due to the formation
of complexes with coordination bonds between chlorine and lithium introduced into the
polymer structure.

Thus, taking into account general ideas of the structure of L, the most probable
chemical transformations, as well as the elemental composition of the samples obtained by
EDX analysis and titration with lithium hydroxide was taken into account, fragments of
L macromolecules were simulated for further quantum-chemical calculation of electronic
and geometric parameters in order to determine the effect of chemical modification on
the polarity of Li atoms conjugated to various functional groups of the L (Figure 3). More
detailed information on the structure and types of chemical bonds can be found on the
schematic 2D image of the molecules shown in Figure S3.
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The models shown in the figure have the following empirical formulas: L–C80H83Li7O26;
LS–C80H80Li10O31S3; LS-C–lC59H37Cl10Li10O26 S2.

Although the methods of computational chemistry have a number of restrictions
associated with the fact that the models do not take into account a number of parameters,
including the actual size of the molecules, their environment, as well as the peculiarity
of the supramolecular structure of the polymer [45,46]. However, the results of quantum-
chemical calculations can be useful in interpreting the mechanism of charge transfer and
establishing the effect of chemical modification of L on its electrical properties.

The charges on lithium atoms calculated by the semi-empirical PM3 method and the
geometric characteristics of the bonds of Li atoms with the functional groups of L, LS, and
LS-Cl compounds are given in Table 2.

The table presents average values of the characteristic charges of lithium (q (Li)) and
associated atoms (q (A*)), as well as the length of bonds (l (Li–A*)) and the total dipole
moment (µ) of the fragment of the L macromolecule. The calculation shows that in the
pristine L, the bonds of lithium with phenolic hydroxyl Ar–O–Li have a certain polarity due
to the shift of electron density from lithium to more electronegative oxygen. Incorporation
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of sulfo groups into the L macromolecule leads to a noticeable increase in polarity of this
bond due to redistribution of electron density. In this case, the R–SO2–O–Li bond has
the highest polarity in the L molecules. This may testify an increased solvating ability of
lithium atoms in the environment of polar solvents.

Table 2. Electronic and geometric characteristics of the bonds of Li atoms with functional groups calculated by the
PM3 method.

Sample Bond of Li Atom with
Functional Group q (Li) q (A *) l (Li–A *), Å µ, D

L Ar–O–Li 0.421 −0.436 1.773 11.677

LS
Ar–O–Li 0.452 −0.463 1.753

18.192R–SO2–O–Li 0.480 −0.814 1.773

LS-Cl
Ar–O–Li 0.544 −0.412 1.862

25.981R–SO2–O–Li 0.653 −0.832 1.766
Ar–Cl–Li 0.396 0.232 2.321

* Charge of anion atom directly associated with lithium ion.

In the LS-Cl compound, polarity of the Ar–O–Li, R–SO2–O–Li bonds significantly
increases due to incorporation of chlorine atoms into phenolic units of L. At the same time,
in coordination bond with lithium (Ar–Cl–Li), chlorine has a positive charge, most likely
due to the positive mesomeric effect in the benzene nucleus. In addition, the total dipole
moments of fragments of model the L macromolecules increase with an increase in the
degree of its modification and reaches the highest value in the model compound LS-Cl.

Thus, it should be noted that sequential sulfonation and chlorination of the L leads
to a noticeable polarization of lithium atoms and the whole molecule. As is known,
an increase in polarity of molecules results in an increase of their solvating ability in
polar solvents [46,47], which in turn has a significant effect on electrical characteristics of
ionic systems.

To study the electrical properties of GPEs, we used the method of impedance spectroscopy.
Figure 4 shows the impedance spectra for the Li/GPE/Li cell obtained at frequencies

of 25 Hz–1 MHz and the signal amplitude of 100 mV at 25 ◦C in a logarithmic scale. Data
presentation in a logarithmic scale is very convenient because it allows presenting various
dependencies with a wide range of values on the same coordinate plane.

Polymers 2021, 13, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 4. Hodograph of the impedance of the gel polymer electrolytes (GPEs) based on low-molec-
ular-weight L (GPE-L), lignosulfonate (GPE-LS), and chloro-lignosulfonate (GPE-LS-Cl), at 25° C. 

It should be assumed that the low-frequency region is the region that characterizes 
the processes occurring at the electrode–electrolyte interface. The corresponding values of 
the R1 minima in this region reflects the process of mass transfer of lithium ions between 
the electrolyte and the electrode. While decreasing frequency, we observe an increase in 
the reactive component of the impedance, due to the process of charge accumulation at 
the electrode–electrolyte interface, which is possible when a passivating hydroxide layer 
forms on the lithium surface. When frequencies are reached, with a R2 minimum, mass 
transfer processes prevail in the electrolyte volume, i.e., this value is the volume resistance 
of the electrolyte. However, the volume of the GPE is not a homogeneous medium and 
consists of macromolecules combined into supramolecular structures [48,49], which in 
turn are combined into a common polymer matrix. Besides, the liquid phase in the elec-
trolyte composition can both have a plasticizing effect on the polymer and be present in it 
as a separate phase [50]. Thus, the difference in electrical properties of the structural ele-
ments of the electrolyte is reflected in the graph by the presence of a semicircle in the high-
frequency region of the impedance with the finite resistance R3. 

The calculation data of the electrical parameters-σ, D, μ, n for the samples are shown 
in Table 3. When comparing the obtained results, it should be noted that the conductivity 
value of the GPE-L sample is low, about 4.19 × 10–5 S cm–1. Sulfonation of L leads to only a 
slight (about 20%) increase in conductivity of GPE-LS, still low for practical uses. Addi-
tional chlorination of the LS leads to a more noticeable increase in conductivity of GPE-
LS-Cl, which is about 2.48 × 10–4, and is comparable with the conductivity of most polymer 
electrolytes [1,2,21]. As can be seen from the table, the increase in conductivity of the sam-
ples is mainly due to an increase in the concentration of charge carriers, which, based on 
a quantum chemical calculation, should be attributed to an increase in the polarity of frag-
ments of the LS-Cl macromolecule and, as a consequence, an increase in the solvating 
ability of lithium ions in it. At the same time, the diffusion coefficient and mobility of 
charge carriers noticeably decrease depending on the degree of the L modification, which 
may be related to the structural features of the Ls in GPEs. 

Table 3. Electrical parameters of the GPS. 

Electrolyte 
Electrical Parameters 

σ, S cm−1 D, cm2s−1 μ, cm2V–1s−1 n, cm−3 
GPE-L 4.19 × 10–5 8.64 × 10–5 3.37 × 10–3 7.76 × 10+16 

GPE-LS 5.01 × 10–5 3.70 × 10–7 1.44 × 10–5 2.17 × 10+19 
GPE-LS-Cl 2.48 × 10–4 3.06 × 10–7 1.19 × 10–5 1.30 × 10+20 

Figure 4. Hodograph of the impedance of the gel polymer electrolytes (GPEs) based on low-molecular-
weight L (GPE-L), lignosulfonate (GPE-LS), and chloro-lignosulfonate (GPE-LS-Cl), at 25◦ C.

As can be seen from the figure, the hodographs of GPE-L, GPE-LS, GPE-LS-Cl sam-
ples are represented by two characteristic sections in the low-frequency (right) and high-
frequency (left) regions limited by the corresponding minima (R1, R2, R3), as shown by the
example of GPE-LS-Cl spectrum.
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It should be assumed that the low-frequency region is the region that characterizes
the processes occurring at the electrode–electrolyte interface. The corresponding values of
the R1 minima in this region reflects the process of mass transfer of lithium ions between
the electrolyte and the electrode. While decreasing frequency, we observe an increase in
the reactive component of the impedance, due to the process of charge accumulation at
the electrode–electrolyte interface, which is possible when a passivating hydroxide layer
forms on the lithium surface. When frequencies are reached, with a R2 minimum, mass
transfer processes prevail in the electrolyte volume, i.e., this value is the volume resistance
of the electrolyte. However, the volume of the GPE is not a homogeneous medium and
consists of macromolecules combined into supramolecular structures [48,49], which in turn
are combined into a common polymer matrix. Besides, the liquid phase in the electrolyte
composition can both have a plasticizing effect on the polymer and be present in it as a
separate phase [50]. Thus, the difference in electrical properties of the structural elements of
the electrolyte is reflected in the graph by the presence of a semicircle in the high-frequency
region of the impedance with the finite resistance R3.

The calculation data of the electrical parameters-σ, D, µ, n for the samples are shown
in Table 3. When comparing the obtained results, it should be noted that the conductivity
value of the GPE-L sample is low, about 4.19 × 10−5 S cm−1. Sulfonation of L leads to
only a slight (about 20%) increase in conductivity of GPE-LS, still low for practical uses.
Additional chlorination of the LS leads to a more noticeable increase in conductivity of
GPE-LS-Cl, which is about 2.48 × 10−4, and is comparable with the conductivity of most
polymer electrolytes [1,2,21]. As can be seen from the table, the increase in conductivity
of the samples is mainly due to an increase in the concentration of charge carriers, which,
based on a quantum chemical calculation, should be attributed to an increase in the polarity
of fragments of the LS-Cl macromolecule and, as a consequence, an increase in the solvating
ability of lithium ions in it. At the same time, the diffusion coefficient and mobility of
charge carriers noticeably decrease depending on the degree of the L modification, which
may be related to the structural features of the Ls in GPEs.

Table 3. Electrical parameters of the GPS.

Electrolyte
Electrical Parameters

σ, S cm−1 D, cm2s−1 µ, cm2V−1s−1 n, cm−3

GPE-L 4.19 × 10−5 8.64 × 10−5 3.37 × 10−3 7.76 × 10+16

GPE-LS 5.01 × 10−5 3.70 × 10−7 1.44 × 10−5 2.17 × 10+19

GPE-LS-Cl 2.48 × 10−4 3.06 × 10−7 1.19 × 10−5 1.30 × 10+20

Thus, based on the results of the research, we can assume that modification influences
the structural and electrical properties of L. As noted above, the results of quantum
chemical calculations show that sulfonation and then chlorination of L lead to a noticeable
polarization of lithium atoms and the whole molecule. These calculations agree quite well
with the results of electronic and thermal studies (S4), where such polarization can cause
an increase in charge carriers, as well as the ability of the polymer to retain the liquid
phase, due to the more active interaction of fragments of the L macromolecule with a polar
solvent DMSO.

Figure 5 presents an image of the electrolyte micro regions containing various types
of the L. As can be seen from Figure 5a, the GPE consists mainly of dense clusters, inter-
connected by polymer bridges [45,48,49,51]. The volume between these clusters is filled
with liquid electrolyte and forms a heterogeneous system of solid and liquid phases. Con-
sequently, in the GPE with the initial L, most of the lithium ions are blocked in the bulk of
such structures, and cations located at the polymer-DMSO interface are mainly involved
in charge transfer. For this reason, high values of mobility and diffusion coefficient are
recorded, since surface cations have a greater degree of freedom and are less associated
with the polymer matrix. Besides, the low conductivity value may be due to the fact that
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the internal volume of the clusters acts as a dielectric, reducing the total conductivity of the
GPE volume.
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The results of quantum chemical calculations show that the sulfonated L has a higher
polarity of macromolecule fragments than its precursor, which in turn increases its solvating
ability, leading to the penetration of DMSO into the volume of polymer clusters and their
swelling (Figure 5b). In this case, the volume of free solvent decreases markedly, as does
the heterogeneity of the system as a whole; as a result there is a noticeable decrease in the
values of the diffusion coefficient and mobility of charge carriers. On the other hand, this
causes an additional increase in the concentration of mobile charge carriers and the release
of some of them for the charge transfer process in the electrolyte volume.

Due to its high polarity, chloro-lignosulfonate reacts most actively with the solvent,
forming clusters that are much smaller than its precursors. It results in the formation of an
almost homogeneous medium with a small gradient of polymer density in the electrolyte
volume (Figure 5a). And almost all of the solvent is in a bound state. Such structural
transformations lead to a noticeable increase in the concentration of charge carriers, on the
one hand, and a decrease in the volume resistance of the electrolyte, on the other hand,
which causes a sharp increase in the conductivity of the electrolyte based on LS-Cl.

Thus, sequential sulfonation and chlorination of L allows one to obtain an advanced
material for the formation of the GPE with electrical conductivity suitable for its practical
use GPE-LS-Cl. Therefore, additional research was carried out for him to establish the
transfer number of the lithium cation (Figure 6). The transport number of lithium ions t+Li
is one of the most important parameters of electrolytes that determine the ability of charge
and discharge of LIB. Measuring t+Li by the method proposed by Evans et al. [28] it was
determined that the transport number of lithium ions is 0.89 at 50 ◦C (Figure 6, Table 4).
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Table 4. The values of the initial and steady current, the initial and steady resistance, and the
transport number of lithium ions.

Electrolyte V, mV Is, µA Io, µA Rs, Ohm Ro, Ohm t+
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The obtained value is the highest among those available in the literature to date. For
GPEs based on traditional polymer matrices, the range of transport numbers of lithium ions
is usually from 0.20 to 0.70 [52,53], reaching, in some cases, the values of 0.85 0.87 [18,52].
However, the commercial separator Celgard 2730 provides only t+Li 0.27 [54].

4. Conclusions

This paper showed that LS-Cl-based GPE, that have a high transport number of
lithium ions and acceptable conductivity values, can be one of the advanced materials for
LIBs, which can provide fast charging and discharging of the batteries, and high current
density. In addition, the use of lignin meets not only technological requirements, but also
ensures environmental friendliness of the materials based on it. Moreover, this breaks new
ground in using large-tonnage waste, which can provide cheap and available raw materials
for production of products with high added value.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13142306/s1, Figure S1: Gel polymer electrolyte based on low-molecular-weight lignin
(GPE-L), lignosulfonate (GPE-LS) and chloro-lignosulfonate (GPE-LS-Cl). Figure S2: Electrochemical
cell with a clamping electrode: (a) model, internal structure; (b) photo of a cell on a water heater;
Figure S3: information on the structure and types of chemical bonds; Figure S4: results of electronic
and thermal studies.
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