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Background: Different parts of an organism like the gut, endocrine, nervous
and immune systems constantly exchange information. Understanding the
pathogenesis of various systemic chronic diseases increasingly relies
on understanding how these subsystems orchestrate their activities. Methods:
We started from theworking hypothesis that energy is a fundamental quantity
that governs activity levels of all subsystems and that interactions between
subsystems control the distribution of energy according to acute needs.
Based on physiological knowledge, we constructed a mathematical model
for the energy flow between subsystems and analysed the resulting organis-
mal responses to in silico infections. Results: The model reproduces common
behaviour in acute infections and suggests several host parameters that modu-
late infection duration and therapeutic responsiveness. Moreover, the model
allows the formulation of conditions for the induction of chronic infections
and predicts that alterations in energy released from fat can lead to the tran-
sition from clearance of acute infections to a chronic inflammatory state.
Impact: These results suggest a fundamental role for brain and fat in control-
ling immune response through systemic energy control. In particular, it
suggests that lipolysis resistance, which is known to be involved in obesity
and ageing,might be a survival programme for copingwith chronic infections.
1. Introduction
Brain, gut and immune system are part of a complex network with interactions
mediated by molecules, cells and wired connections [1–3]. Knowledge concerning
interactions in this complex network is accumulating, having reached a level that
challenges holistic understanding. Energy is needed in all vital subsystems to
retain functionality and maintain organ integrity. Accordingly, energy homeostasis
is tightly regulated both locally (within-organ level) andglobally (trans-organ level).
Excess energy is stored in fat tissue and can be released upon increased needs, by
mechanisms such as β-adrenergic stimulation of lipolysis [4]. Increased needs are
signalled in response to various physiological stresses, for example, immune
responses to invading pathogens. We have developed a mathematical model of
energy flow between five main vital compartments, thus aiming to explore the
potential synergisms and/or energy trade-offs between organs, to provide an
holistic understanding of the whole network.

Mathematical models can help in understanding the functional interdepen-
dence of the network of interacting subsystems of an organism. Such network
models have been developed at various scales, such as genetic networks [5],

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0206&domain=pdf&date_stamp=2022-06-22
mailto:rainer.straub@ukr.de
mailto:mmh@theoretical-biology.de
https://doi.org/10.6084/m9.figshare.c.6016899
https://doi.org/10.6084/m9.figshare.c.6016899
http://orcid.org/
http://orcid.org/0000-0002-2897-6633
http://orcid.org/0000-0002-4300-2474
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Uf

IVB

B

V

I

F
F

V

Ui

UbUi

Ui

V

B

F

Ui
Ub

Ub

one-sided inhibition

activation

inhibition

bi-phasic regulation

fat

500 000 kJ

eating/gut2000
kJ d–1

7500
kJ d–1

1600
kJ d–1

F

Jf

brain
260 kJ

vessel
250 kJ

immune
500 kJ

Ui

JiJb

Jg

Je UiUb

Ub

Figure 1. Schematic of the energy-flow model. The four compartments of the network comprise brain (B), immune system (I ), blood vessel (V ) and fat tissue (F ).
Energy enters the system from the gut (Jg) for use by the brain (Ub), immune system (Ui) and other tissues (Je). Fat tissue acts as an energy buffer and blood vessels
as a central connector of these compartments. The amount of usable energy in the brain and immune system undercuts their daily usage even under healthy
conditions, indicating that these two organs largely rely on energy flow from fat (Uf ) or gut (Jg) to blood (V ), and subsequently from blood to the brain
(Jb) and to immune system (Ji). Energy flow between compartments is regulated by network variables (symbols linked to signs in the legend; colours depict
the regulating compartment). One-sided inhibition operates only when the regulating factor is below its homeostatic level. See text for details. Numbers indicate
homeostatic levels of energy in kJ or energy flow in kJ d−1.
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molecular networks connecting different subsystems [6], net-
works of cellular trafficking between organs [7] and multi-
organ networks [8] up to population levels [9]. The systems
biology community has developed theories and software tools
that incorporate energy conservation laws into biochemical net-
works based on thermodynamic principles [10–13]. At the same
time, mathematical models ofmetabolic energy regulation,with
complexities ranging from simple glucose control loops to
neural-endocrine control of appetite involving various kinds
of nutrients, have been extensively studied in the field of dia-
betes and obesity [14–17], as well as in sports physiology [18].

To the best of our knowledge, energywas never a network-
focus of interacting organismal subsystems. Here, interactions
between organs/tissues are formulated in terms of energy
flow, where competition, synergisms and trade-offs on the
energy-flow level have been naturally translated to the func-
tional level of participant organs/tissues. Our working
hypothesis is that dysregulation of energy homeostasis, and
the subsequent trade-offs between various organs/tissues,
might explain pathogenesis of various systemic diseases, and
reveal a potential advantage of this modelling approach over
traditional biomolecular/cellular pathway-based modelling.

We have illustrated the concept by drawing on the example
of energy flow adaptation induced by immune responses.
Given that an immune response, in particular, the acute phase
response, is usually associated with anorexia of various degrees,
it is expected that sufficient energy stored in fat tissue or supplied
environmentally by food is fundamental to success [19], and that
the highly energy-dependent inflammation must cease within
several weeks to prevent long-term deterioration [20].

However, chronic inflammation is ubiquitous and has
emerged as a shared factor in a variety of diseases, notably
type 2 diabetes, cardiovascular disease, chronic obstructive
pulmonary disease, cancer, asthma, Alzheimer’s disease and
autoimmune diseases like rheumatoid arthritis, multiple
sclerosis and systemic lupus erythematosus [20,21]. Moreover,
inflammatory pathways and their associatedmolecules are con-
tinually being identified as reliable markers of ageing, and as
risk factors for diseases associated with ageing [22–24]. Chronic
inflammation, whether occurring in the absence of overt infec-
tion or due to latent pathogens, leads to immune senescence
[25,26]. There is also growingmechanistic evidence that chronic
inflammation both accelerates and is exacerbated by systemic
ageing processes [27–30]. Although growing fast, our current
understanding of the precise aetiologyof chronic inflammation,
aswell as its role in immunity and obesity throughout lifespans,
remains woefully insufficient [31,32].

The energy-based modelling work presented in this
paper allowed us to reproduce common systemic behaviour
in acute infections. Moreover, we were able to formulate
conditions for the transition between acute and chronic
infections revealing a hitherto unappreciated role played
by fat tissue.
2. Results
2.1. A model of energy flow
Energy flow in a network of four connected human organis-
mal compartments was formulated in the simplest possible
manner, albeit strictly based on known physiological prin-
ciples (figure 1; electronic supplementary material, Methods):

(1) Stress (Ub) and immune (Ui) responses (units in kJ d−1)
regulate energy release from fat by lipolysis (Uf, units
in kJ d−1) [33], and energy uptake (Jf, units in kJ d−1) by
modulation of insulin secretion [34] and resistance [35].

(2) Brain and immune system are mutually regulatory: the
immune response (Ui) triggers the HPA axis (Ub) [36]
and limits energy uptake by the brain (Jb, units in kJ d−1)
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[37]. HPA axis activation (Ub) leads to cortisol release,
which has profound inhibitory effects on the immune
system (Ui and Ji, units in kJ d−1), such as suppressing
the activities of key signalling molecules and transcrip-
tion factors in inflammatory pathways and inducing
thymocyte apoptosis [38]. However, the sympathetic
nervous system and HPA axis (Ub) are also pro-
inflammatory in specific contexts [38], especially when
briefly activated to an intermediate level [39], implying
biphasic regulation of Ui by Ub.

(3) Homeostatic self-regulation of energy in brain (B, units in
kJ), immune system (I, units in kJ) and blood vessels (V,
units in kJ): these include the effect of B on Jb, I on Ji,
and V on Uf and Jg (units in kJ d−1). This reflects homeo-
static mechanisms, such as regulation of glucose
transporters, on the cell membrane by cytoplasmic ATP
[40], of insulin and glucagon secretion in the endocrine
system, and of eating regulated by blood glucose [34].

(4) Fat tissue homeostasis by indirect regulation of other
compartments, comprising (i) fat (F, units in kJ) regu-
lation of brain energy usage (Ub) via afferent sensory
nerve fibres [41]; (ii) fat (F ) regulation of immune
energy usage (Ui), for example via leptin [42,43];
and (iii) lack of fat energy (F ) increases eating behaviour
(Jg) via leptin, which, in turn, signals negative energy bal-
ance and decreased energy stores (one-sided inhibition)
[44].

(5) Brain and immune system request energy upon stimu-
lation: the brain (B) ensures energy supply from blood
vessels by regulating appetite and digestion (Jg) [34]. At
low energy in blood vessels (V ), a brain response (Ub) is
initiated (one-sided inhibition), which then increases
energy flow from fat tissue to blood vessels [45,46]. The
immune response (Ui) blocks energy expenditure for fora-
ging (Jg) by cytokine-induced anorexia and fatigue [47].

Homeostatic levels of usable energy in each compartment
were estimated by considering various forms of biomolecules
(carbohydrates, lipids, ketone bodies, etc.) in blood, and by
assuming a linear relationship between the energy level and
the mass of the organ/tissue. Homeostatic energy flow was
estimated based on published values. Regulation of energy
flow was modelled parsimoniously by assuming the simplest
form. Refer to the electronic supplementary material,
methods, for a detailed explanation of the model.
2.2. Response to infections and therapies
At first, we challenged the energy flow model at its healthy
homeostatic state with a one-time pathogen dose, sub-
sequently inducing competition between pathogen growth
and pathogen clearance by the immune response (Ui). The
pathogen clearance rate (dp) determined the duration of the
infection (figure 2a), as well as the time required to re-estab-
lish homeostasis (figure 2b). Below a critical pathogen
clearance rate (Ccrit; see electronic supplementary material,
figure S1), the pathogen persisted and the infection became
chronic (figure 2a, negative values). Thus, the model captures
acute and chronic infections.

In the acute infection regime, a higher pathogen clearance
rate (dp) was associated with shorter infection duration
(figure 2a) and with a faster return to homeostasis
(figure 2b). The infection was associated with weight loss
and the fat compartment started a slow recovery only after
pathogen clearance (figure 2c). In this example, the pathogen
was cleared at day 10 while the fat compartment recovered in
more than two months (figure 2c). In the chronic infection
regime, the system reached a new steady state associated
with a persistent pathogen load. This transition was slow
(figure 2b, left of the red point), where higher pathogen clear-
ance rates (dp) were associated with lower homeostatic
pathogen load (electronic supplementary material, figure S1A)
and longer time to reach homeostasis (figure 2b).

Because a lower critical clearance rate (Ccrit) indicates facili-
tated pathogen clearance, we next investigated how this
depends on pathogen and host properties (electronic sup-
plementary material, figure S2). The pathogen replication rate
(rp) and the carrying capacity (Pmax) were the most sensitive
pathogen properties (electronic supplementary material,
figure S2E,F). Higher values increased infection duration and
Ccrit. Part of the host factors are parameters vb, vi and v0 (defined
in figure 2d) for the bimodal effect of the brain stress response
(Ub) on the immune response (Ui). A sensitivity analysis ident-
ified vi and vb and the homeostatic lipolysis rate (Lh, see
electronic supplementary material, equation S15) as most
important for Ccrit: higher Lh and higher vi both led to lower
Ccrit (figure 2e) and shorter infection duration (electronic
supplementary material, figure S2A). The impact of vb was
biphasic (figure 2e), consistent with the existence of an optimal
brain stress response for most efficient immunity [48]. The opti-
mal vb (figure 2e, magenta, minimum) was modulated by Lh
and vi (electronic supplementary material, figure S2C,D).
These results suggest that the brain stress response and lipolysis
are host parameters critical for pathogen clearance.

Starting from a chronic infection (figure 2f, red, dp =
1.12 d−1), we investigated the effect of a therapy that boosts
the pathogen clearance rate (dp) to a higher ‘therapeutic dp’
(dp = 1.20 d−1). An identical therapy resolved the infection
when applied from day 5 (figure 2f, blue), but not if applied
from day 10 onwards (figure 2f, black). In this example, the
critical time to start a successful therapy was 8 days post-
infection (figure 2g, dashed black line). The emergence of a
critical therapy initiation time is related to dynamic modu-
lation of immune energy usage (Ui) due to interactions with
other network compartments. This critical time was longer
for stronger therapies (figure 2g), suggesting that weak thera-
pies must be applied early to ensure pathogen clearance. At a
minimal therapeutic strength (figure 2g, blue vertical line),
clearance was achieved irrespective of its initiation time
(figure 2g) while minimizing (potential) side effects.

For weak regimens, critical therapy initiation time (Tc)
depended on the impact of brain stress on the immune response
(vb and vi in figure 2d). These twoparameters exhibited consider-
able and opposing impacts on Tc (figure 2h,i). For strong
therapies associated with longer critical times, their impact was
negligible and the parameter controlling maximum inhibition
of the immune response by brain stress (v0) became important
(electronic supplementary material, figure S3A). The effect of
the homeostatic lipolysis rate (Lh, see electronic supplementary
material, equation S15) was twofold: higher values prolonged
the critical time when less than 15 days, and shortened it other-
wise (electronic supplementarymaterial, figure S3B). The impact
of other host factors on the critical therapy initiation time was
small (electronic supplementary material, figure S3C). These
results suggest that after 15 days of infection, the organism
switches its mode of coping with persistent infections.
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Next, we further characterized energy dynamics in
response to infections in network compartments. In the
course of acute in silico infections (figure 3, blue curves, cor-
responding to the blue point in figure 2a), energy in blood
vessels was transiently upregulated (figure 3b), while
energy flow from gut was suppressed (figure 3c), reflecting
increased serum levels of fatty acids [49] and anorexia [50]
during acute infections, respectively. Energy in the brain
was transiently reduced to less than 70% (figure 3d ) but
recovered after pathogen clearance, corresponding to acute
infection-induced sickness behaviour [37].

Although energy in the brain and the immune system
showed similar dynamics (figure 3d,e), increased energy
inflow and usage was more pronounced and prolonged for
the immune response (figure 3g,j versus 3h,k). The inflow of
energy into fat tissue was downregulated (figure 3i) while
outflow was upregulated (figure 3l ), consistent with its role
as the energy supplier during infections in a state of acute
anorexia [51]. The extent of energy loss in fat tissue
(figure 3f ) was less than 5%. Recovery was slow (figure 3f,
see also figure 2c) and relied on slowly increasing appetite
(figure 3c) when brain and immune usage rates returned to
normal (figure 3j,k) and their energy content restored
(figure 3d,e). The overshoot in energy uptake in gut, brain
and immune system at day 10 (figure 3c–e) was required to
return to healthy homeostasis. This is also reflected in the
fat turnover (figure 3i,l) which compensates loss of fat
energy. Overall, the model was consistent with known
physiologic dynamics in response to acute infections [52].

In chronic in silico infections (figure 3, red dashed lines, cor-
responding to the red point in figure 2a), the network was
driven into a new homeostatic state—that associated with
inflammation. Compared with the healthy state, the diseased
state after 175 days of infection was associated with increased
energy in the vessel compartment (figure 3b), slightly increased
energy inflow from gut (figure 3c), reduced brain and immune
system energy (85% of the healthy state; figure 3d,e), and
reduced fat energy (75% of the healthy state; figure 3f ).

Transition from the acute fight with the pathogen to the
state of chronic coexistence was characterized by a rebound
in the pathogen load at day 6 (figure 3a; electronic supplemen-
tary material, figure S4), concomitant with a transient and
attenuated increase of the immune response (figure 3k; elec-
tronic supplementary material, figure S4A) and a steady
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decrease in the brain stress response (figure 3j; electronic sup-
plementary material, figure S4B). The relationship between
pathogen load and immune response switched around day
18 from a positive to a negative correlation (electronic sup-
plementary material, figure S4A) indicating relative
weakness of the immune system after day 18. Energy in the
brain and immune system started to recover after day 18 (elec-
tronic supplementary material, figure S4C,D), indicating a
trade-off between pathogen clearance and organ integrity
[53]. By contrast, fat energy decreased continuously before
reaching the new disease-related homeostatic state.
2.3. Effects of lipolysis resistance
As the model results identified fat as an important driver of
immune responses, we investigated whether modulations of
energy flow from fat to blood circulation would impact infec-
tion dynamics. We added lipolysis resistance (LR) Lr to the
model (electronic supplementary material, equation S17)
[54–57], where release of energy from fat is inhibited for
values of Lr larger than zero. The effects of manually imposed
LR are shown in figure 4. For acute infections, inhibition of
lipolysis impaired pathogen clearance (figure 4a,b), which
was associated with a reduction of fat energy (figure 4c).
Sufficient LR turned the acute into a chronic infection.

In the setting of chronic infections, a sufficient inhibition
of lipolysis resulted in pathogen clearance (figure 4d,e).
The mechanisms underlying this counterintuitive effect, as
implied by the model, involved the restoration of the fat
compartment due to the orexigenic effect of reduced lipolysis
(figure 4j ). This beneficial effect of reduced lipolysis was
offset by a long-term increase of fat energy associated with
obesity [57] (figure 4f ), energy deprivation from the brain
(figure 4g) and the immune system (figure 4h) as well as
high levels of fatty acids in the vessel compartment
(figure 4i). These would lead to a deregulated state with
impaired bodily functioning and accelerated long-term
inflammation [43].

As a manual introduction of LR induced complex
dynamics in the model, we next investigated the effects of
dynamically regulated LR instead of a stepwise increase.
The energy-flow model was extended by including an
equation (electronic supplementary material, equation S18)
for LR development, where Lr is driven by immune and
stress response with rate α, and decays with rate β. The
extended model is termed the LR model hereafter.

We investigated the impact of LR on infections by varying
the LR growth rate α, while keeping the recovery rate fixed
(β = 0.01 d−1). For an acute infection (i.e. dp = 1.16 d−1), low
LR growth rates did not change the outcome of the infection
(figure 5a, black, left bottom), but the infection duration
increased (figure 5a, green) from 10 to 20 days. At the time
of pathogen clearance, fat energy decreased and LR increased
with α (figure 5b, black and green, respectively). This
suggested the existence of a vicious cycle: a longer infection
duration providing more time for LR development, which
in turn further impairs lipolysis and prolongs infection.
There existed a critical LR growth rate, above which the
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fat ( f ), brain (g), immune (h) and vessel (i) energy. The cyan curves show the reference Lr = 0. The cusps in the curves before day 500 (g–i) reflect rapid dynamics
around pathogen clearance. The left side of the cusp is associated with rapid pathogen clearance (e), the right with increased fat energy ( f ). The inflection points after
day 500 (g,h) are due to the inflection points in the biphasic effects of the stress hormone axes responses onto the immune system (see also figure 2d ). ( j ) Mechanisms
involved in LR improved immune response: the increase in LR leads to reduced lipolysis rate, and consequently lower energy in blood vessel and brain. The latter triggers
an increased gut input rate, which leads to the recovery of the fat compartment and of the immune response. rel., relative to homeostatic level.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220206

6

pathogen persisted and the infection became chronic
(figure 5a, middle part; see also electronic supplementary
material, figure S5, for the corresponding bifurcation dia-
gram). The observed impairment of the clearance of acute
infections in the LR model confirms the model behaviour
upon a manual stepwise LR increase (figure 4a–c).

LR-induced persistent infections only emerged for an
intermediate range of α (figure 5a). With even larger LR
growth rates α, the pathogen was cleared again (figure 5a,
right bottom), albeit at a sluggish pace on a scale of hundreds
of days (figure 5a, green). Fat energy and LR at the time of
pathogen clearance were higher compared to acute infections
(figure 5b, black and green, respectively). These results are
consistent with the results of the manual stepwise LR in
chronic infections (figure 4d–j).
3. Discussion
Energy is a dominant force for natural selection during
evolution [58]. Immunity is subject to adaptive energy trade-
offs during interplay with many physiological functions
[20,31,59,60]. Although the idea of energy flow between com-
partments is a traditional scheme in physics and ecology [61],
a comparable modelling approach that associated energy
flow with interactions and functions of multiple organs is, to
the best of our knowledge, a novel concept. The modelling
approach presented here was constructed to describe energy
allocation during an immune response to infections in the con-
text of other functional compartments. The trade-offs between
energy needs of different compartments emerged at the net-
work level and gave rise to known associations of acute and
chronic infections with collateral damage to the organism.
Thus, we believe that the mathematical model presented in
the language of energy flow can potentially explain manifold
diseases and their pathogenesis from a transient versus perma-
nent energy shortage in one compartment of the organism and
related adaptations of other compartments.

A high pathogen clearance rate, corresponding to an effi-
cient immune response, led to rapid pathogen removal
(figure 2a) and subsequent return to healthy homeostasis
(figure 2b). Given an extremely efficient immune response,
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Figure 5. Dynamic lipolysis resistance (LR) impacts immune response to infections. In silico experiments in figure 2a were repeated using the LR model for different
LR growth rates (α). (a) Steady state pathogen level (black dots, left axis) and infection duration (green circles, right axis) in simulations with clearance rate dp =
1.16 d−1 (blue point in figure 2a). The infection duration is the time until the pathogen level dropped below 1% of the inoculation dose. (b) The amount of energy in
the fat compartment (black dots, left axis) and the level of LR (green circles, right axis) at the time point of pathogen clearance (green circles in a). The light pink
background indicates that the infection was not cleared within the simulated time frame, which is 100 years. Parameters in electronic supplementary material,
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the synergism arising from interactions with brain and fat
tissue (electronic supplementary material, figure S2) would
have been negligible and unnecessary. However, optimal pro-
tection by the immune system is rarely maximal [62], and
higher clearance rates are also more likely to be associated
with immunopathology (overshooting immune response
and hyperinflammation) [63]. We therefore argue that most
of the infections are cleared by a moderate clearance rate
such that synergism due to brain and fat activities is crucial
to achieve the two competing objectives: minimizing immu-
nopathology and avoidance of chronic infections. In silico,
chronic infections were associated with long-term low
energy in brain and immune system (figure 3d,e), reflect-
ing low performance in other vital functions, such as
wakefulness/fatigue and immunocompetence.

The efficiency of the energy-flow system in supporting an
immune response was quantified by the critical pathogen
clearance rate (Ccrit) that separates acute from chronic infec-
tions. If it is low, the pathogen can be cleared by less
aggressive immune responses associated with lower immu-
nopathology. The mathematical model suggested that brain
and fat tissue regulate the critical clearance rate, thus
suggesting interesting targets for medical or behavioural
interventions. We speculate that the health benefits associated
with intermittent fasting [64] are related to its role in upregu-
lating fat turnover (Lh), which reduces the critical clearance
rate (figure 2e).

The energy flow model presented here was strictly based
on current knowledge of the inter-dependence of organismal
compartments. While it also required several assumptions
that should be tested in further studies, some simulation
results, such as the typical duration of an acute infection
(10 days, figure 2a) and fat loss in acute infections (5%,
figure 3f ), are consistent with common experience.

Further, the energy-flow model predicted that the syner-
gism between the immune system and other tissues gives
rise to a critical therapy initiation time, after which a treat-
ment becomes ineffective (figure 2g). It has been recently
established in clinical practice that for severe infections, like
those of the bloodstream [65], severe bacterial infections
[66], or sepsis [67], early instigation of antibiotic therapy
(within 13.6 [67], 24 [66] or 48 [65] hours after diagnosis) is
associated with reduced mortality. The reason for the
observed critical time of antibiotic application will likely
involve multi-organ and multi-level mechanisms. The con-
sistency of simulated and clinical observation supports the
usefulness of our energy-based perspective and serves to
endorse any derived predictions.

The simulations suggested a timeline separating acute
from chronic infections at around 18 days for the given par-
ameter values (electronic supplementary material, figure
S4). This timeline was also corroborated by the findings
that in the context of therapy, the brain stress response was
mainly supportive for immune responses before day 15, but
suppressive for immune responses thereafter (figure 2h,i).
This is in line with the observation that long-term activation
of the brain stress axes can be harmful [48]. Interestingly, day
15 coincides with the peak of germinal centre reactions [68].
One might speculate that the emergence of high affinity anti-
bodies as a last resort to fight infections triggers the switch
from an elimination to a coexistence strategy.

However, the loss of fat energy appeared to dominate the
acute–chronic division, due to its influence on both stress and
immune responses. This is further supported by the
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predicted role of fat tissue LR or catecholamine resistance,
which refers to the phenomenon that the lipolytic response
of adipocytes to a sympathetic drive is attenuated [54–56].
This can happen through loss of β2-adrenoceptor signalling
[56] or lack of local catecholamines [54,55] and is associated
with ageing [55,69] and obesity [57,70]. Contrary to insulin
resistance, which is considered a positively selected acute
programme to deprive insulin-sensitive organs of energy to
support the brain or immune system [71], LR impairs the
flow of energy from fat tissue to circulation (the vessel com-
partment) and subsequently to the brain and immune system.
It was anticipated that LR would delay the immune response
to infection, which was confirmed by the model results
(figure 4a,b and figure 5). However, overcritical inhibition of
lipolysis induced clearance of otherwise chronic infection
(figure 4d,e and figure 5) by its orexigenic effect. Longstand-
ing LR has been associated with obesity [57] and reduced
energy in brain and immune system (figure 4f–h), which
may be associated with long-term changes such as inflamm-
ageing and neurodegeneration. One might speculate that LR
represents an additional layer of energy trade-off that is ben-
eficial over the time scale of years but detrimental over
longer periods. The slow regulation of energy release from
fat might be critical in the development of chronic disease
and accelerated ageing.

The mathematical model presented in this paper is subject
to several limitations, such as the lack inter alia of a muscle
compartment [52,72], daily feeding–fasting cycle and
additional feedbacks in the stress response pathway as well
as in the immune response pathway. Nevertheless, our
energy-flow model enables investigation of the network of
subsystems in diseases without the need for the explicit incor-
poration of complex molecular pathways. It considers the
organism as a network of compartments interacting via
competition for a limited resource—energy—and promises
improved understanding of the mutual interdependence of
subsystems as well as the development of new avenues of dis-
ease treatment with an eye on the whole organism. We hope
these results will stimulate further collaborations between
scientists in biology, physics and medicine, thus generating
new ideas for the promotion of healthy ageing and disease
intervention/management.
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