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A principled machine learning framework improves accuracy
of stage II colorectal cancer prognosis
Neofytos Dimitriou1, Ognjen Arandjelović1, David J. Harrison2 and Peter D. Caie2

Accurate prognosis is fundamental in planning an appropriate therapy for cancer patients. Consequent to the heterogeneity of the
disease, intra- and inter-pathologist variability, and the inherent limitations of current pathological reporting systems, patient
outcome varies considerably within similarly staged patient cohorts. This is particularly true when classifying stage II colorectal
cancer patients using the current TNM guidelines. The aim of the present work is to address this problem through the use of
machine learning. In particular, we introduce a data driven framework which makes use of a large number of diverse types of
features, readily collected from immunofluorescence imagery. Its outstanding performance in predicting mortality in stage II
patients (AUROC= 0:94), exceeds that of current clinical guidelines such as pT stage (AUROC= 0:65), and is demonstrated on a
cohort of 173 colorectal cancer patients.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer
worldwide and the leading cause of death among gastrointestinal
tumours.1,2 Annually, there are 1.4 million new cases and more
than half a million of deaths worldwide.1 A typical CRC diagnosis
requires the evaluation of histopathological slides from a biopsy or
resected specimen by a pathologist.3,4 Subsequent to a positive
diagnosis, prognosis is assessed based on the tumour-node-
metastasis (TNM) staging system.5 The TNM stage is considered by
far one of the best predictors of CRC6 and as a consequence,
statistics specific to the stage primarily guide therapy. However,
stages that exhibit higher variability in survival, encounter greater
uncertainty. Stage II patients do not experience nodal (N) or
distant (M) metastasis of their cancer and so only the depth of
local invasion (T) is reported under TNM staging. Stage II CRC
patients countenance an estimated 20% of 5-year poor prognosis,
and 35% of 10 years poor prognosis.7,8 Nevertheless, there are no
definite criteria for selecting which, if any, stage II patients should
undergo adjuvant chemotherapy with different trials reaching
inconsistent conclusions.9,10 It is therefore imperative to improve
upon the prognosis of stage II CRC patients to better aid clinical
guidance, reduce the survivability variance, and consequently,
ameliorate treatment research.
Histopathological review of patient tissue sections by a

pathologist remains subjective and thus suffers from inherent
inter- and intra-observer variability. This affects TNM staging,
especially due to the introduction of criteria within the staging
guidelines, which are harder to standardize.11,12 Nevertheless, this
has a greater negative impact when reporting features indepen-
dent of TNM that may aid in determining stage II patients with a
higher risk of disease specific death.11,12 One such feature is
histological grading, or equivalently differentiation, currently
within the core data set of international reporting guidelines for
CRC.3,13 Despite attempts to maintain consistency in reporting this
feature, such as moving from a three-tiered system down to two

tiers, reproducibility issues persist.3,13 Other promising histopatho-
logical features for further stratifying stage II CRC patients include
lymphatic vessel invasion and tumour budding.14–16 However,
they are currently listed within non-core data items,3 despite
consistent demonstration of their prognostic significance. This has
been attributed to the high observer variability and hence,
methodological shortcomings of quantifying these features in a
standardized manner.17,18

Both medical practice and research are moving towards a more
nuanced approach in clinical decision-making. Pathology is now
embracing the era of digitization with a multitude of interdisci-
plinary studies employing techniques from fields such image
analysis, machine learning (ML) and deep learning.19–22 The use of
these techniques markedly increases efficiency and efficacy
compared to traditional methods, while removing the subjectivity
imposed by the human pathologist.23–25 Moreover, multiplexed
detection of target proteins is becoming more commonplace in
pathology research through wider adoption of immunofluores-
cence (IF). Data collected through IF provide a multi-dimensional
representation of the tumour micro-environment with each
biomarker co-registered to the same physical coordinates in the
tissue. In addition, utilizing specific antibodies to visualize
histopathological features overcomes common issues of reporting
from H&E stained tissue, such as retraction artefact confounding
lymphatic vessel invasion and high density immune infiltrate
obscuring tumour buds.17,18 Therefore, employment of techniques
from the aforementioned fields on IF data have the potential to
exploit multidimensional data, ranging from morphometric to
spatial characteristics of selected histopathological features, and
aid in improving prognosis for stage II CRC patients.
The present work builds upon previous efforts in the field,26

which make use of image analysis for the extraction of
histopathological features (such as nuclear grade, tumour budding
and lymphatic vessel invasion, cellular shape, size, texture, etc.), a
priori known or expected to be salient, and simple statistical
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techniques for the subsequent inference. In particular, we describe
a principled and data driven framework which uses modern
machine learning to predict the survival outcome for a stage II CRC
patient from a large number of histopathological features.

RESULTS
Full feature set based prognosis
Each baseline classifier’s hyperparameter values were learnt by
maximizing the corresponding average area under the receiver
operating characteristic curve (AUROC) on the validation data
corpus. Table 1 summarizes the results. The average AUROC across
all classifiers was found to be 0.89 both for 5- and 10-year
prognosis. One-way analysis of variance (ANOVA) and Tukey’s
honest significance difference test (THSD) showed no statistical
significance between classifiers for 10-year prognosis. The only
statistically significant difference is that between naïve Bayes (NB)

and logistic regression (LR)-based approaches for 5-year prognosis
(ANOVA p value < 0.01, THSD p value < 0.003).
To demonstrate the importance of model selection, we also

compared the performance of all classifiers using hyperparameter
values, which were learnt as described in the previous section, and
with the a priori set hyperparameters values as in the existing
literature. As expected, using the latter approach a drop in the
average AUROC was observed both for 5- and 10-year prognosis,
to respectively 0.82 (approximately 8.0% drop) and 0.85 (approxi-
mately 4.5% drop). The results are visualized in Fig. 1.

Reduced feature sets
Feature selection. The evaluation of each subset of features was
performed by tenfold cross-validation on the training data. To
reduce outcome variability caused by stochastic effects we adapt
the method proposed by Dune et al.27. In particular, we performed
sequential floating forward search (SFFS) and sequential floating

Table 1. Average AUROC and standard deviation (for n= 200) of trained classifiers on the training set using 20-times repeated tenfold cross-
validation

LSVM RSVM LR RF KNN NB

5 year 0.89 ± 0.12 0.89 ± 0.13 0.91 ± 0.12 0.89 ± 0.13 0.88 ± 0.12 0.86 ± 0.14

10 year 0.89 ± 0.13 0.89 ± 0.12 0.91 ± 0.119 0.90 ± 0.13 0.89 ± 0.13 0.88 ± 0.12

LSVM linear kernel SVM, RLSVM radial basis function kernel SVM

Fig. 1 Tukey’s significance difference test. No hyperparameter learning was employed in the experiments corresponding to the plots a and b,
in contrast to c and d
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backwards search (SFBS) 40 times using different random
partitions, each time retaining the feature subset that achieved
the best performance. Following aggregation—see Figs. 2 and 3—
the subsets from SFFS and SFBS were combined and features
ordered based on the frequency of occurrence. Starting with an
empty set, features were added in an incremental fashion based
on their average AUROC rank, estimated through 20-times
repeated tenfold cross-validation. The subset of features that
achieved the highest averaged AUROC was selected for each
prognostic term, as summarized in Table 2.

Experiments. We followed the same approach to classifier
training, model selection, and evaluation as in the previous

section. The sole difference is that instead of the full feature set,
for this set of experiments a reduced set of selected features (as
described previously) was used.
As expected, we observed a significant improvement in

performance already at the coarsest level of analysis, with the
average AUROC across classifiers reaching 0.94, both for 5- and 10-
year prognosis. In line with our previous findings, no statistically
significant difference was observed between different classifiers,
except for the inferiority of random forest (RFs) for 10-year
prognosis (ANOVA p < 0.0001, THSD p < 0.01). Just as in the
previous set of experiments, our data driven approach to
hyperparameter selection was always found to effect a statistically
significant improvement over their being set a priori; see Fig. 4.

Fig. 2 Frequency of occurrence of each feature from the 20 runs of SFFS and SFBS each for 5-year prognosis. Only features with at least one
occurrence are shown for clarity

Fig. 3 Frequency of occurrence of each feature from the 20 runs of SFFS and SFBS each for 10-year prognosis. Only features with at least one
occurrence are shown for clarity
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Final testing
We started by examining training set performance of different
classifiers using 20-times repeated tenfold cross-validation. It can
be readily seen that classifiers trained on the subset of features
selected by SFFS and SFBS performed better, as illustrated in
Tables 1 and 3. Though simple, the best performing classifier was
found to be KNN-based classifier (with the Minkowski distance
metric) both for 5-year (k= 36) and 10-year prognosis (k= 28).
Kaplan-Meier (KM) survival curves were employed to visualize

the difference in survivability between the predicted prognosis
groups, and the log-rank test used for objective quantification
thereof. For 5-year prognosis, our KNN-based approach achieved
the AUROC of 0.77, effecting a good separation patients into high
and low-risk (p value < .02). On 10-year prognosis, the classifier
achieved the AUROC of 0.94, significantly outperforming the
current clinical gold standard of pT stage (AUROC of 0.65), and

even better separation between high- and low-risk patients (log-
rank test p < .0001). The sensitivity of 42.9%, specificity of 89.2%,
and accuracy of 81.8% were achieved for 5-year prognosis, and
the sensitivity of 100%, specificity of 84%, and accuracy of 88.9%,
for 10-year prognosis. The differentiation (poor/moderate vs.
good) and T stage discrimination (T3 vs. T4) results are
summarized in Figs. 5, 6 and 7, as well as in Table 4.

DISCUSSION
CRC is a highly heterogeneous disease, which limits the prognostic
accuracy of the TNM staging system or the reporting based on
individual features such as tumour budding,28 or lymphatic vessel
invasion and density.29 Prior work on the use of automated image
analysis and ML applied to other types of cancer has focused on
parameters solely from tumour cells.20,21 However, the evidence

Table 2. Features of significance to both prognosis terms, and those which were specific to a particular term; seven and six features were used for 5
and 10-year prognosis, respectively

# Features

Unique to 5-year prognosis 4 Nuclei in tumour mean DAPI intensity, number of CK objects with no associated nuclei, sum area of vessels, average
DAPI intensity (tumour area)

Unique to 10-year prognosis 3 Nuclei in tumour mean D240 intensity, mean compactness of tumour glands, number of PDCs

Common to both prognoses 3 Nuclei in tumour bud mean DAPI intensity, tumour gland relative area (%), sum area of vessels

CK pancytokeratin, PDCs poorly differentiated clusters

Fig. 4 Tukey’s significance difference test. No hyperparameter learning was employed in the experiments corresponding to the plots a and b,
in contrast to c and d
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Table 3. Average AUROC and standard deviation (for n= 200) of each trained classifier using only features selected by SFFS and SFBS

LSVM RSVM LR RF KNN NB

5 years 0.95 ± 0.08 0.95 ± 0.08 0.95 ± 0.08 0.93 ± 0.11 0.95 ± 0.08 0.93 ± 0.10

10 years 0.95 ± 0.08 0.95 ± 0.08 0.95 ± 0.08 0.92 ± 0.10 0.95 ± 0.07 0.94 ± 0.09

The experiments were performed by 20 times repeating tenfold cross-validation on training data.

Fig. 5 ROC curves for the two prognostic terms of interest

Fig. 6 KM curves for 5-year prognosis
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from an increasing number of studies suggests that the tumour
micro-environment is just as informative,30–32 which motivated us
to use information not only from tumour nuclei but also from
numerous hierarchical features such as texture, morphology,
fluorescence intensity, and spatial relationships across the micro-
environment of the invasive margin. Hence, we introduced a
carefully crafted ML based framework capable of nuanced
prediction of survival for stage II CRC patients. Our methodology
was shown to outperform significantly the current gold standard
in the form of pT staging. Specifically, our method achieved
AUROC of over 77 and 94% for 5 and 10-year prognoses
respectively, compared to pT stage, which stratifies patients with
the AUROC of approximately 62% both for 5- and 10-year
prognosis, and the differentiation, which achieves the correspond-
ing AUROC of approximately 62 and 65%, respectively. Moreover,
we demonstrated high interpretability of the proposed approach,
allowing clinicians to gain new insight by identifying prognos-
tically the most salient features.
Confirming findings from prior empirical research as well as one

of the premises of the present work, our experiments demon-
strated that a diverse set of characteristics of the entire micro-
environment have a prognostic value. This explains the out-
standing performance of our method and the major improvement
on the current state of the art which focuses on a single aspect
thereof (usually tumour cells). DAPI intensity within the nuclei of
tumour buds was consistently found to carry the greatest
prognostic weight, which too agrees with previous empirical

findings—cells within more invasive and mesenchymal tumour
buds have increased plasticity and gene expression,15,33 which
effects an increase in DAPI intensity. Furthermore, in the present
study, this feature was highly correlated with parameters
associated with tumour bud nuclei morphometry, whereby
features linked to larger and more irregular shaped nuclei (such
as found in more aggressive poorly differentiated cancer cells)
were associated with poorer prognosis. This phenomenon would
further explain an increase in the DAPI intensity within parameters
describing other tumour subpopulations and which are reported
parameters from the model. Tumour gland nuclear morphometry,
also found to be of major prognostic importance, has also been
identified in the past.34,35 Other selected features included known
histopathological features such as the number of PDCs,36 the
number and area of lymphatic vessels,29 and the shape and area
of tumour glands.37,38

It is interesting to observe and comment on our finding that
certain features were specifically associated with a particular
prognostic term. Having looked at this in detail, we found high
correlation between these features, within specific survival terms,
and outcomes, suggesting that the features are not specific to set
survival times per se but are rather associated with poorer
outcomes. For example, the number of small pan cytokeratin
positive objects with no associated nuclei was found to be an
important feature for 5-year survival. On the other hand, the
number of PDCs was found to be an important prognostic feature
for 10-year survival. Nevertheless, both were highly correlated
with the number of tumour buds.
Digital pathology is becoming more common in the clinical

workflow, with recently, Glasgow and Oxford hospitals committing
to a fully digital workflow. The digitization of pathology will allow
the embedding of image analysis and AI solutions into a
pathologist's routine practice. Fully automated workflow, such as
the one presented here, allows results to be reported to the
patient in a shorter time frame while freeing up more of a
pathologist's large workload. Studies such as these add to the
body of work exemplifying proof of concepts, which use image
analysis and AI for cancer pathology. In order for automated

Fig. 7 KM curves for 10-year prognosis

Table 4. Summary of low vs. high risk patient separation results

Differentiation (5/10 year) T stage (5/10
year)

KNN (5/10
year)

Specificity 0.95/0.88 0.82/0.84 0.89/0.84

Sensitivity 0.39/0.36 0.43/0.46 0.43/1.00

Accuracy 0.84/0.72 0.75/0.72 0.82/0.89

AUROC 0.62/0.62 0.62/0.65 0.77/0.94
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image analysis and AI to be translated into the clinic further
regulatory approved validation studies must be applied utilizing
large patient cohorts sourced from multiple institutions.
In summary, the present work made several important

contributions: (i) a principled framework for data driven ML based
precise prognosis of stage II CRC cancer outcomes, (ii) significantly
better performance than the current state of the art, (iii) clinical
insight into the disease, and (iv) demonstrated the general
potential of modern ML in digital pathology and health care more
broadly. Following the highly promising results reported herein,
our future work will focus on the application of computer vision
and ML directly on histopathological tissue slides, so as to avoid
the loss of information associated with ‘atomization’ of the
process39 effected by human driven feature extraction and the
subsequently applied learning from these. Additionally, in order to
increase the potential for clinical adoption of the developed
methodologies, it will likely be of interest to consider how the
results should be presented to the clinician.40,41

METHODS
Our experimental data were obtained from tissue samples of 180 Scottish
patients who had been diagnosed with CRC and who underwent surgical
resection, with a minimum follow-up of 11.5 years. Patients that
succumbed within 5 days of the surgery were excluded to ensure that
surgical complications did not contribute to the cause of death, as were
the three patients that received therapy due to potential effects on the

relevant micro-environment and hence survival.42 Table 5 summarizes the
key clinical and demographic characteristics of the cohort.
The use of tissue samples was approved by the East of Scotland

Research Ethics Service (13/ES/0126). Further ethical clearance was not
required as the acquired data was anonymized. For more detailed patient
information please see the previous work of Caie et al.26

Features
The digitization of the tissue samples, and subsequent quantification and
extraction of histological features were part of the work completed by Caie
et al.26 Both are briefly described hereunder but interested readers should
refer to Caie et al.26 and the corresponding supplementary document for a
more thorough overview.
Tissue samples were prepared for multiplex immunofluorescence with

pan cytokeratin and D2-40 antibodies, along with DAPI stain for the
detection of epithelial cells, lymphatic vessels, and cell nuclei. The invasive
front was manually identified through the pan cytokeratin channel of each
whole-slide image captured at 40× magnification. Fifteen evenly spaced
high-resolution (200× magnification) images were captured across the
invasive front of each sample. Regions of interest (ROIs) (including stroma,
tumour glands, invasive tumour subpopulations, lymphatic vasculature,
and cell nuclei) were detected and segmented from each imported image
using Definiens AG image analysis software package. Each ROI was
described by a collection of morphometric, spatial, and fluorescence
related characteristics associated with each patient, resulting in 123
histopathological features (independent variables); for further detail see
Supplementary Document.
For each patient, pathological and demographic features were collected

as well. The former set comprises the level of differentiation, site of primary
tumour, and the corresponding disease stage, and the latter the patient’s
age, gender, survival status at multiple clinically relevant follow-up
intervals, and (where applicable) time until death. Except for the survival

Table 5. Summary of patient cohort statistics

Number of patients 173

Age (years)

Range 62.5 ± 33.5

Median 67

Gender

Male 86 (50%)

Female 87 (50%)

T Stage

TX 1 (1%)

T1 6 (3%)

T2 7 (4%)

T3 122 (71%)

T4 37 (21%)

N Stage

N0 163 (94%)

N1 8 (5%)

N2 1 (1%)

N3 1 (1%)

M Stage

MX 9 (5%)

M0 161 (93%)

M1 3 (2%)

Site

Rectum 56 (32%)

Colon 117 (68%)

Differentiation

Undetermined 3 (2%)

Poor 25 (14%)

Moderate 138 (80%)

Good 7 (4%)

Table 6. The search space of each classifier based on the distributions
over its hyperparameters (n.b. F denotes feature count; for biased
categorical distributions, tuples (ps, v) designate the sampling
probability and the value assigned)

Classifier Hyperparameter Distribution Values

SVM, linear
kernel

C Log-uniform [ln (1e−5), ln
(1e2)]

Class weight Categorical Balanced or none

SVM, RBF
kernel

C Log-uniform [ln (1e−5), ln
(1e2)]

Gamma Log-uniform [ln (1e−3), ln
(1e3)]

Class weight Categorical Balanced or none

LR Type of penalty Categorical L1 or L2

C Log-uniform [ln (1e−5), ln
(1e2)]

Class weight Categorical Balanced or none

RF Number of trees Log-uniform
integer

[10, 1000]

Criterion Categorical Gini or entropy

Maximum features Biased
categorical

(0.2, √F), (0.1, ln F),
(0.1, F), (0.6,U(0, F))

Maximum depth Biased
categorical

(0.1, 2), (0.1, 3),
(0.1, 4), (0.7, none)

Bootstrap Categorical True or False

Class weight Categorical Balanced or none

KNN K Log-uniform
integer

[1, 50]

Weights Categorical Uniform, or
Euclidean distance

Metric Categorical Balanced or none

P Categorical Balanced or none
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status, which was the dependent variables of interest in the present work,
the remaining features were used for the analysis of experimental results,
and not for the actual learning and prediction.

Data preparation
We followed the standard approach to algorithm training and evaluation,
by splitting the cohort dynamically into non-overlapping training,
validation (or development), and test subsets. In particular, data were first
randomly (with stratification) split into two, 70 and 30%, the latter being
the test subset. Using tenfold cross-validation, the former, large subset was
in each iteration of the process further randomly split into training and
validation subsets.
It is worth noting that, given the key aim of the present work, while the

evaluation corpus contain only stage II patients, we decided to include
differently staged patients in the training corpus. Our hypothesis was that
in spite of not being the target population for our prediction, useful
pathological patterns could be learnt from this data too, allowing a degree
of interpolation to take place. Stratified sampling was employed in order to
maintain the prognosis distribution of each cohort as a means of
countering the imbalanced nature of our data, and thus avoid class
under-representation.43 Lastly, features were normalized to zero mean and
unity variance.

Baseline classification and performance assessment
The problem at hand was formalized as a binary, supervised classification
task, whereby the prediction was that of a good or bad prognosis, i.e.
survived or not, respectively. We adopted several well-understood baseline
classifiers, with different underlying assumptions (explicit or implicit) and
mathematical underpinnings. In particular, we compared classifiers based
on support vector machines,44 RFs,45 k-nearest neighbours (KNN),46 NB,47

and LR.48 In an effort to capture performance adequately on a highly
imbalanced data set, the AUROC49 is adopted as the primary performance
measure. In addition, for the sake of consistency with related work and
ease of comparative analysis, we also report specificity and sensitivity, and
accuracy.

Model selection
The capability of a model to represent information, as well the efficiency its
learning is governed by a number of parameters. These parameters,
referred to as hyperparameters, need to be set prior to training. However,
finding the optimal or close to optimal set of hyperparameter values is
challenging. The commonly used and probably the simplest approach, in
the form of a grid search has limited applicability due to its intractability
for complex models. A random search over predefined ranges of
hyperparameters often produces better results while being computation-
ally less demanding.50 However, both techniques are naïve as they do not
take into account historical patterns.
Sequential model based global optimization (SMBO) techniques adopt a

more sophisticated approach, approximating the possibly computationally
expensive fitness function with a simpler surrogate.51 Different SMBO
approaches optimize different criteria which then guide the surrogate of
the fitness function. The one adopted herein is tree-structured Parzen
estimator (TPE), which optimizes the so-called ‘expected improvement’.
Conceptually, TPE initially behaves like a random search, subsequently
refining the search so that hyperparameter values associated with poor
performance are not re-visited.51,52 This process is guided probabilistically,
using suitable densities or distributions associated with the type of
hyperparameter. Those used in the present work are summarized in Table
6. Finally, as the loss function we used the negated AUROC resulting from
tenfold cross-validation, averaged over 20 independent runs and using 500
iterations.

Feature selection
In order to address potential problems associated with the so-called curse
of dimensionality, which becomes of increasing concern with a large
number of features, we examined the use of dimensionality reduction in
the context of the problem at hand.53,54 In particular, motivated by their
successful use in the existing literature55 we employed SFFS and SFBS,55–57

which respectively perform recursive removal or addition of features in an
attempt to improve a specific metric, until the desired reduction in the
feature number is attained.
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