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Abstract: Chronic Hepatitis B Virus (HBV) infection is linked to hepatocellular carcinoma (HCC)
pathogenesis. Despite the availability of a HBV vaccine, current treatments for HCC are inadequate.
Globally, 257 million people are chronic HBV carriers, and children born from HBV-infected mothers
become chronic carriers, destined to develop liver cancer. Thus, new therapeutic approaches
are needed to target essential pathways involved in HCC pathogenesis. Accumulating evidence
supports existence of hepatic cancer stem cells (hCSCs), which contribute to chemotherapy resistance
and cancer recurrence after treatment or surgery. Understanding how hCSCs form will enable
development of therapeutic strategies to prevent their formation. Recent studies have identified
an epigenetic mechanism involving the downregulation of the chromatin modifying Polycomb
Repressive Complex 2 (PRC2) during HBV infection, which results in re-expression of hCSC marker
genes in infected hepatocytes and HBV-associated liver tumors. However, the genesis of hCSCs
requires, in addition to the expression of hCSC markers cellular changes, rewiring of metabolism,
cell survival, escape from programmed cell death, and immune evasion. How these changes occur
in chronically HBV-infected hepatocytes is not yet understood. In this review, we will present the
basics about HBV infection and hepatocarcinogenesis. Next, we will discuss studies describing the
mutational landscape of liver cancers and how epigenetic mechanisms likely orchestrate cellular
reprograming of hepatocytes to enable formation of hCSCs.
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1. Hepatitis

Hepatitis is inflammation of the liver due to metabolic (toxins, drug, alcohol), genetic,
autoimmune, ischemic, infection (virus, parasite, bacteria), and other reasons [1–8]. Among them, viral
hepatitis is the most common type of hepatitis worldwide [6]. All five hepatitis viruses (A, B, C, D
and E) cause inflammation of the liver. Hepatitis A and E viruses usually cause acute hepatitis while
hepatitis B, C and D viruses could cause either acute or chronic hepatitis [9]. Particularly, hepatitis B
virus (HBV) and hepatitis C virus (HCV) infection could cause chronic inflammation leading to liver
cancer or hepatocellular carcinoma (HCC) [9].

2. The HBV Life Cycle

HBV is a non-cytopathic, partially double-stranded hepatotropic DNA virus, belonging to the
hepadnaviridae family. The 3.2 kb HBV genome encodes four overlapping open reading frames [10–12]
(Table 1).
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Table 1. Genes and Proteins encoded by Hepatitis B Virus (HBV).

Gene Protein

P Reverse transcriptase/DNA polymerase (Pol)
X HBx protein
C Capsid protein/Core antigen (HBcAg)
S Surface/Envelope antigen (HBsAg)

Hepatitis B e antigen (HBeAg) is a circulating peptide derived by proteolytic processing of the
pre-core protein encoded by gene C that is then modified and secreted from liver cells. It usually
serves as a marker of active viral replication. The HBsAg gene is one long open reading frame that
contains three in frame “start” (ATG) codons which divide the gene into three sections, pre-S1, pre-S2,
and S. Because of the multiple start codons, three polypeptides are produced [13] referred to as large
hepatitis B surface antigen (LHBsAg) containing pre-S1, pre-S2, and S; middle hepatitis B surface
antigen (MHBsAg) containing pre-S2, S and small hepatitis B surface antigen (SHBsAg). The LHBsAg,
MHBsAg and SHBsAg envelope proteins associate with the endoplasmic reticulum (ER) membrane as
part of their replication process [14]. A schematic of the HBV genomic structure [15] and life cycle [15]
is shown in Figures 1 and 2, respectively.
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Figure 1. Hepatitis B Virus (HBV) Genome Organization. The innermost two black lines represent the
full-length minus (–) strand (with the terminal protein attached to its 5′ end) and the incomplete plus
(+) strand. The outer black lines represent the 3.5, 2.4, 2.1 and 0.7 kb mRNA transcripts. The outermost
lines indicate the translated HBV proteins.
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Figure 2. HBV Life Cycle. HBV uses the Sodium Taurocholate Co-transporting Polypeptide (NTCP)
receptor to attach to hepatocytes. After entry, HBV nucleocapsids transport the HBV DNA to the
nucleus, where the relaxed circular DNA is converted into covalently closed circular (ccc) DNA. The
cccDNA assumes a minichromosome-like structure and acts as the template for transcription of four
viral RNAs (0.7 kb, 2.1 kb, 2.4 kb and 3.5 kb). The mRNA transcripts are exported to the cytoplasm and
used for translation of the HBV proteins. The longest (pre-genomic) RNA also functions as the template
for replication, which occurs within nucleocapsids in the cytoplasm. Nucleocapsids are enveloped
during their passage through the endoplasmic reticulum (ER) and/or Golgi complex and secreted from
the cell. HBeAg: Hepatitis B e antigen; HBsAg: Hepatitis B surface antigen, HBx: Hepatitis B X protein.
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3. Chronic Viral Hepatitis B and Hepatocellular Carcinoma (HCC)

An estimated 257 million people are currently chronically infected with HBV [6]. About 887,000
die every year due to HBV complications [16]. Several mechanisms by which chronic HBV infection
leads to cancer have been identified. Following HBV infection, a robust T-cell immune response is
elicited to combat the infection. This results in hepatocyte necrosis, inflammation and consequently
regeneration, to compensate for lost hepatocytes [15,17,18]. When the immune system fails to clear HBV,
there are sustained cycles of necrosis-inflammation-regeneration [17]. Such continuous proliferation of
hepatocytes likely enables propagation of epigenetic alterations, oncogenic mutations, and telomere
shortening with consequent genomic instability.

In addition to chronic inflammation, another mechanism through which HBV contributes to
hepatocarcinogenesis is via viral protein-endoplasmic reticulum (ER) interactions [19]. Specifically,
interaction of LHBsAg, MHBsAg and SHBsAg proteins with the host ER induces ER stress leading
to induction of oxidative stress [20]. This stimulates growth and survival signaling pathways, causes
mutations through the generation of free radicals, and activates stellate cells [17,21]. Furthermore,
the HBV genome is found integrated in the host genome in nearly all HBV-associated liver tumors,
likely contributing to hepatocyte transformation. Mechanisms by which the integration of HBV DNA
could contribute to hepatocarcinogenesis include host DNA alterations at several cancer-relevant
genes including cyclin A, telomerase reverse transcriptase (TERT), platelet-derived-growth-factor
receptor-beta (PDGFRB), mitogen activated protein kinase 1 (MAPK1) and others [22,23].

Furthermore, the HBV encoded HBx protein, a 16.5 KDa protein which is essential for the
viral life cycle, activates cellular mitogenic signaling cascades and their downstream transcription
factors including NF-kB, AP-1, AP-2, c-EBP, ATF/CREB, thereby altering expression of growth-control
genes [24–28]. Significantly, Terradillos et al. showed that although transgenic mice expressing HBx in
the liver did not develop liver tumors, HBx/c-Myc bi-transgenic mice expressing c-Myc under the
control of the Woodchuck Hepatitis Virus regulatory elements, exhibit accelerated formation of liver
tumors by 2–3 months [29]. Whether HBx accelerates tumor formation by inhibiting DNA repair or
promoting cell cycle progression was studied by Madden et al. [30]. Transgenic mice expressing HBx
(ATX mice) and having an integrated lambda transgene (to measure mutation frequency) were treated
with DEN (Di-Ethyl-Nitrosamine) to induce DNA damage. DEN-treated ATX mice developed 70%
more expansible, basophilic, focal lesions than DEN-treated wild-type mice, without a significant
increase in the accumulation of DNA mutations. These results demonstrated that HBx did not affect
DNA repair following DEN-induced DNA damage. Importantly, the rates of hepatocyte proliferation,
measured by immunohistochemical detection of proliferating cell nuclear antigen (PCNA) and by
5-bromo-2′-deoxyuridine (BrdU) incorporation, were significantly increased in livers of ATX mice.
Accordingly, it was concluded that HBx contributes to development of DEN-induced liver cancer by
promoting proliferation of “altered cells” rather than by inhibiting DNA repair [30].

In vitro studies have also provided mechanistic insight towards understanding HBV-mediated
hepatocarcinogenesis [31]. Specifically, HBx expressing cells exhibited increased CDT1 (a DNA
replication licensing factor, required for pre-replication complex assembly) as well as reduced
geminin expression (a protein that inhibits DNA replication by preventing the incorporation of Mini
Chromosome Maintenance complex into the pre-replication complex). This altered expression of CDT1
and geminin results in an increased CDT1 to geminin ratio, allowing DNA re-replication in the G2 phase
of HBx expressing cells [31]. Moreover, HBx expressing cells in the G2 phase activate ATR signaling,
indicative of replication stress, without activation of the DNA damage checkpoint kinase CHK1.
In support of this observation, it was found that in HBx expressing cells, the expression of the mitotic
kinase PLK1 which mediates recovery from G2/M checkpoint was also elevated [32]. Significantly,
concurrent staining of phospho-Histone 3 and γH2AX in the G2/M phase of HBx-expressing cells
indicated propagation of DNA damage, due to DNA re-replication, to daughter cells [31]. Continued
propagation of DNA damage to daughter cells eventually results in oncogenic transformation which
can be suppressed by PLK1 inhibition, as was shown in an in vitro cellular system model [33] and is
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also supported by in vivo animal studies [34]. Based on these results, it is now well-accepted that HBx
acts as a co-factor in hepatocarcinogenesis.

4. Mutational Landscape of HBV-Related HCC

Using whole genome and whole exome sequencing, researchers have analyzed the genetic
landscape of HCCs [35–39]. Unlike most solid tumors, multiple mutations with significant incidence
have been observed in HCC. This heterogeneity of HCC is unlike other cancers, e.g., pancreatic and
lung cancers characterized by activating RasV12 mutations. Accordingly, molecular classification and
biomarker identification of HCC is challenging. The majority of the genomic studies performed to date
have analyzed HCC samples of different etiologies, i.e., due to chronic infection by HBV and HCV,
alcohol abuse, metabolic syndrome etc. As the number of tissue samples analyzed increase, specific
mutational patterns emerge, linked to tumor etiology.

Recent studies observed that single nucleotide polymorphisms (SNPs) of genes including GSTM1
(Glutathione S-Transferase Mu1), GSTT1 (Glutathione S-Transferase Theta1), STAT4 (Signal Transducer
and Activator of Transcription 4), TPTE2 (Transmembrane Phosphoinositide 3-Phosphatase and Tensin
Homolog 2), DCL1 (CD302 Molecule), KIF1B (Kinesin Family Member 1B) and PGD (Phosphogluconate
Dehydrogenase) are associated with increased risk of HBV-mediated HCC [40]. Totoki et al. analyzed
503 liver cancer genomes (117 HBV positive cases) from different countries to identify candidate
driver genes [35]. It was observed that HBV-infected patients displayed TERT promoter mutations,
TERT gene amplification, which rarely co-occurred with HBV integration in the TERT locus. Also,
AXIN1 was found to be more frequently mutated in HBV positive than in HCV positive or non-virus
HCC cases. In another study, Guichard et al., performed copy number analysis in 125 HCC tumors
and whole exome sequencing of 24 tumors [36]. They found that highly rearranged copy number
profiles were more frequent in HBV HCC tumors as compared to HCC tumors of other etiology. Also,
IRF2 (Interferon Regulatory Factor 2) which interacts with MDM2 and plays key role in cell growth
regulation and immune response was mutated in ≈17% (6 out of 35) of HBV-associated liver tumors.

Moreover, mutations in the tumor suppressor p53 (TP53), WNT pathway (APC, AXIN1, CTNNB1),
telomere maintenance (TERT), and epigenetic enzymes (ARID1A, ARID2, MLL4) have also been
reported in HBV-mediated HCC [40,41]. Some of these mutations occur due to HBV insertion, although
it is not understood what causes mutations in other instances. Repeated cycles of cell proliferation
and cell death during inflammation are likely responsible for the genesis of the above described
mutations. Alternatively, HBV infection may alter the chromosomal architecture or genome topology
of the infected hepatocyte, an area of study that remains to be explored and better understood. More
importantly, how these mutations (excluding p53 and WNT signaling) contribute to the mechanism of
HBV-related HCC pathogenesis remains to be understood.

Recently, epigenetic mechanisms initiated by HBx have been shown to be involved in HBV
mediated HCC, and importantly, these studies also provided evidence that these epigenetic
mechanisms have a role in virus biosynthesis [42]. The template of viral transcription in the
infected hepatocyte nucleus is cccDNA, which associates with histones forming chromatin-like
structure, the viral minichromosome [43]. Accordingly, the accessibility of the HBV cccDNA
to regulatory transcription factors, based on the histone modifications associated with the HBV
minichromosome, determines the rate of viral transcription. Indeed, acetylation of histones associated
with the HBV cccDNA/minichromosome resulted in increased HBV replication in a HepG2 cell-based
model [44], while methylation of HBV cccDNA reduced viral gene expression [45]. Accordingly,
epigenetic mechanisms deregulated by HBV infection likely contribute to both the regulation of virus
biosynthesis and HCC pathogenesis. However, more in depth mechanistic studies are needed to prove
this connection.
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5. Epigenetic Mechanisms in HBV-Related HCC

Epigenetic modifications are heritable changes in gene expression that do not result from changes
in the genomic sequence. These may be due to: (i) DNA modifications (methylation of cytosine
residues generating 5-methylcytosine, oxidation of 5-methylcytosine to 5-hydroxymethylcytosine);
(ii) Histone modifications (methylation, acetylation, phosphorylation, and ubiquitination of N-terminal
of histone tails); (iii) Nucleosome re-structuring by ATP-dependent chromatin remodeling complexes,
and (iv) altered expression of long non-coding RNAs (lncRNA) and microRNAs (miRNAs).

Environmental factors (life style, diet, viral infections) are proposed to be the main drivers of
epigenetic changes. These epigenetic changes are required for normal development of an organism
as well as cellular functions. However, abnormal epigenetic changes could also lead to disease
pathogenesis. Epigenetics is involved in the initiation, progression and metastasis of liver cancer [46,47].
All four categories of epigenetic modifications have been identified in liver cancer (Table 2).

Table 2. Epigenetic Modifications and Regulators in Hepatocellular Carcinoma (HCC).

Epigenetic Modification Epigenetic Regulators

Global hypomethylation, promoter
hypermethylation of tumor suppressor
and anti-proliferative genes

DNA methyltransferases DNMT1, DNMT3A and DNMT3B
over-expressed[48,49]

miRNA and Lnc RNA mis-expression
Downregulated: miR-26[50], miR-195, miR-199a, miR-200a,
miR-125a, miR-122[51]
Upregulated: miR-224, miR-106b~25, miR-17~92, miR-18 [52]

Histone modifications

Histone deacetylases: overexpression of HDAC1, HDAC2 and
HDAC3 [53].
Overexpression of EZH2 [54] and proteasomal degradation of
SUZ12 [55,56], both core subunits of PRC2.

Nucleosome re-structuring
Mutations in subunits of SWI/SNF (ARID1A, ARID1B) [57],
poly-bromo and BRG1-associated (PBAF) remodeling complex
(ARID2) [58]

Since epigenetic mechanisms are involved in developmental programming of normal stem cells
to specific lineages during cellular differentiation [59,60], deregulation of epigenetic mechanisms may
also cause loss of differentiation ability and acquisition of stem cell-like characteristics during cancer
pathogenesis [61]. These stem-like cells are termed cancer stem cells (CSCs) because they exhibit
characteristics including extensive self-renewal, expression of pluripotency genes, altered expression
of genes involved in cellular metabolism, in cell cycle progression and survival mechanisms, and
potent tumor initiating potential [61–63]. How all of these cellular changes are orchestrated during
oncogenic transformation leading to formation of CSCs is not fully understood [64,65]. For example,
c-Myc, which is frequently overexpressed in liver cancer [66], can regulate pluripotent stem cell fate
through regulation of metabolic flux [67]. Signaling pathways including Wnt, Hedgehog, and Notch
also modulate the stem cell state via induction of their downstream target genes through epigenetic
regulation [68–70]. Hence, aberrant epigenetic modifications could deregulate a variety of cellular
processes to promote cancer progression, but the detailed mechanisms remain to be deciphered.

Pluripotent cells have the ability to self-renew and differentiate into all cell types in the body.
Similar to a normal stem cell, cancer stem cells have been discovered in several cancers [71–74]
including liver cancer [75]. CSCs are considered pluripotent in their ability to self-renew and give
rise to diverse tumor cells Thus, CSCs contribute to tumor heterogeneity and tumor relapse after
chemotherapy; however, mechanisms resulting in the formation of CSCs are incompletely understood.
Two main models have been proposed regarding the cellular origin of CSCs: (i) CSCs are formed from
normal stem cells/or tissue progenitors due to mutations, epigenetic changes, and other mechanisms;
(ii) CSCs are formed due to dedifferentiation/cellular reprogramming of differentiated somatic cells.
Widschwendter et al. provided evidence supporting the former model [76]. Embryonic stem cells rely
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on Polycomb group proteins to reversibly repress genes required for differentiation. These Polycomb
gene targets are up to 12-fold more likely to have cancer-specific promoter DNA hypermethylation
than non-targets, supporting a stem cell origin of cancer [76]. Specifically, reversible gene repression,
replaced by permanent silencing, e.g., DNA methylation, locks the cell into a malignant stem cell-like
state. However, other researchers have provided evidence supporting the latter model.

Regarding liver cancer and the cellular origin of hCSCs, in vivo studies employing mouse hepatic
progenitor cells, lineage-committed hepatoblasts, and differentiated adult hepatocytes transduced
with transgenes encoding H-RAS and SV40LT acquired markers of CSCs and self-renewal ability,
and formed tumors in mice [77]. These studies clearly established two important points; first, every
hepatic lineage cell is susceptible to oncogene-driven transformation, and second, every hepatic
lineage cell could develop features characteristic of hCSCs, resulting in an aggressive phenotype [77].
Other studies also support the de-differentiation of adult hepatocytes, for example, via loss of p53 or
overexpression of YAP1, into progenitor-like cells capable of malignant transformation [78,79]. Lineage
tracing studies in mice showed that following liver injury, differentiated hepatocytes reprogram to
a distinct cell population resembling hepatic progenitors [80,81]. Human hepatocytes also have the
same capacity [80]. Since HBV biosynthesis requires the transcription factor HNF4α expressed in
differentiated hepatocytes [82], we reason that chronic HBV infection must promote the reprogramming
of differentiated hepatocytes to hepatic-like progenitors or hCSC during liver cancer pathogenesis, by
a mechanism not fully understood. This idea is supported by recent studies demonstrating resistance
of stem cells to viral infection [83], which would exclude HBV infection of hepatic progenitors.

Thus, the question is how does chronic HBV infection mediate the cellular reprogramming of the
differentiated hepatocyte to hCSCs? From the study of mouse embryonic fibroblasts, the epithelial cell
adhesion molecule (EpCAM) and its associated protein Claudin-7 were shown to promote pluripotency
reprogramming through upregulation of pluripotency transcription factors and repression of p53 and
p21 expression [84]. Interestingly, EPCAM is repressed by the chromatin modifying PRC2 complex [85],
suggesting that loss of PRC2 function has a role in this cellular reprogramming, as has recently been
shown for therapy-resistant leukemias with PRC2 inactivation [86].

6. Polycomb Repressive Complex 2 (PRC2)

PRC2 consists of three core subunits, SUZ12, EZH2, and EED, mediating the trimethylation of
lysine 27 on Histone 3 (H3K27me3), which represses gene expression [87]. It is involved in lineage
selection during embryogenesis. EZH2 is required to generate mesodermal lineages [88], while
SUZ12 knockout (KO) ESCs fail to generate proper endodermal lineages [89] such as hepatocytes.
Surprisingly, EED KO ESCs are able to differentiate into the three germ layers [90]. PRC2 is also
essential for embryonic development. Eed−/−, Ezh2−/−, and Suz12−/− mouse embryos display
severe defects during gastrulation [89,91,92]. Chromatin modifiers, including polycomb repressor
complexes, also target metabolic enzymes within their active gene sets [93,94]. Furthermore, EZH2,
the methyltransferase component of PRC2, can function independently of the other PRC2 subunits,
methylating non-histone proteins [95]. For instance, EZH2 activates NF-κB target genes in breast
cancer [96], and in a subpopulation of glioblastoma stem cells, EZH2 methylates STAT3, leading to
enhanced STAT3 activation [97]. EZH2 also exhibits PRC2-independent functions in prostate cancer,
where it acts as co-activator for critical transcription factors including the androgen receptor [95].

EZH2 and its associated PRC2 complex are the most significantly deregulated epigenetic
regulators in primary HCC samples [98]. Increased expression of EZH2 in HCC results in activation
of Wnt signaling by silencing Wnt antagonists [99]. Wnt signaling is one of the key pathways that
contribute to expression of pluripotency genes. Interestingly, although EZH2 is overexpressed in most
subtypes of HCC, SUZ12, another core subunit of PRC2 is downregulated at the protein level in certain
subtypes of HCC, including poor prognosis HBV-mediated HCCs [56,85]. The HBx protein encoded
by HBV, essential for the viral life cycle, activates the cellular mitogenic PLK1 kinase [100,101]. In turn,
activated PLK1 induces proteasomal degradation of SUZ12 by site-specific phosphorylation [55].
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PLK1-dependent ubiquitination of SUZ12 is enhanced by overexpression of HOTAIR [56], which serves
as an ubiquitination scaffold in association with RNA binding E3 ubiquitin ligases [102]. Since murine
Suz12−/− embryonic stem cells are characterized by global loss of H3K27me3 [103], downregulation of
SUZ12 protein levels in HBV infected cells could be linked to formation of hCSCs. In HBx-expressing
model cell lines, SUZ12 knockdown results in re-expression of EPCAM and pluripotency genes [56],
and a hCSC-like gene signature was found elevated in poor prognosis HBV-associated HCC [54].
Interestingly, these HBV-associated HCCs overexpressed EZH2 [54], suggesting that in addition to the
downregulation of SUZ12, enhanced expression of EZH2, acting independently of PRC2, could also
contribute to Wnt activation by silencing Wnt antagonists [99].

7. Epithelial Cell Adhesion Molecule (EpCAM) and Wnt Activation

EpCAM is a transmembrane glycoprotein involved in cell signaling, migration, proliferation,
and differentiation [104–107]. EPCAM is highly expressed in carcinomas, tumor-initiating cells, tissue
progenitor cells, embryonic, and adult stem cells, but at lower levels in normal epithelia [108–110].
EPCAM is expressed in hepatic progenitors [111] and hCSCs [112]. Human EpCAM, comprised of
314 amino acids (aa), consists of an N-terminal extracellular domain (EpEX) of 242 aa, a transmembrane
domain of 23 aa, and a C-terminal cytoplasmic domain (EpICD) of 26 aa [113]. EpCAM undergoes
regulated intramembrane proteolysis via the TACE enzyme, resulting in EpEX release in the
extracellular microenvironment, and EpICD release in the cytoplasm [106]. EpICD forms a complex
with FHL2, β-catenin, and transcription factor Lef1, promoting transcription of β-catenin-regulated
genes [106,114], including EPCAM, NANOG, OCT4, KLF4, SOX2, and MYC [115] involved in cell cycle
regulation and stemness.

Yamashita et al. isolated EpCAM positive cells from HCC cell lines and generated evidence
that EpCAM positive HCCs are hCSCs [112]. Also, our work demonstrated that increased EPCAM
expression, activation of Wnt signaling, and expression of pluripotency genes occur in a subpopulation
of HBV replicating cells exhibiting significantly reduced SUZ12 protein levels and properties of
hCSCs [54]. Importantly, increased EPCAM and pluripotency gene expression was quantified by
RT-PCR in a cohort of HBV-related HCCs that exhibited poor prognosis after tumor resection [54].
This increased EPCAM and pluripotency gene expression positively correlated with reduced expression
of another epigenetic regulator, the RNA helicase DDX5 [42].

8. P68 (DDX5)

DDX5 is a DEAD-box (Asp-Glu-Ala-Asp) family RNA helicase with RNA dependent ATPase
activity [116,117]. It is important for pre-mRNA, rRNA and miRNA processing [118]. It can also
act as a co-activator for transcription factors including estrogen receptor-alpha, androgen receptor,
MyoD, RUNX2 and p53 [119–123]. Abnormal expression of DDX5 has been reported in colon, breast,
prostate, leukemia, glioma and HCC [120,124–128]. Interestingly, although increased expression of
DDX5 is observed in other cancers, it is downregulated in HBV-associated HCC [42,128]. DDX5 has
putative seed sequences of microRNAs (miRNAs) belonging to miR-106b~25 and miR-17~92 clusters
which are upregulated in HBV-HCC [52]. Thus, increased expression of these miRNAs is likely
responsible for the observed downregulation of DDX5 in subtypes of HCC [129]. We have shown
that DDX5 stabilizes SUZ12, a component of PRC2 and protects it from proteasomal degradation [42].
Hence, downregulation of DDX5 by miRNAs could render SUZ12 susceptible to degradation, thereby
reducing PRC2 activity and allowing re-expression of key oncogenes.

9. Hox Transcript Antisense RNA (HOTAIR)

HOTAIR is a 2.2 kb lncRNA encoded by the HOXC locus of the HOX gene cluster [130].
HOTAIR recruits PRC2 to repress expression of genes of the HOXD locus [131]. In addition to
epigenetic repression of genes via PRC2, HOTAIR also functions as competing endogenous RNAs
(ceRNAs) to sponge miRNAs, thereby regulating derepression of miRNA targets [132]. In breast
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cancer, HOTAIR reprograms the PRC2 binding profile to resemble PRC2 occupancy in embryonic
fibroblasts [133]. Most of the genes repressed by HOTAIR-induced PRC2 binding are involved in
cell-cell signaling, metastasis and development [133]. Increased expression of HOTAIR is also observed
in liver cancer tissues, and these patients exhibit increased risk of recurrence after hepatectomy and
lymph node metastasis [134,135]. Other noncoding RNAs involved in liver cancer pathogenesis are
described in a recent and comprehensive review [136]. Zhang et al. showed that PLK1-dependent
ubiquitination of SUZ12 is enhanced by overexpression of HOTAIR [56]. HOTAIR acts as the RNA
scaffold that forms the PRC2/DDX5 complex. HOTAIR also serves as a scaffold for ubiquitination,
binding the E3 ubiquitin ligase Mex3B [137]. DDX5 displaces Mex3B from HOTAIR as a result of
which SUZ12 is stabilized. Upon downregulation of DDX5, Mex3B binds HOTAIR and promotes
SUZ12 ubiquitination [42,56]. Also, HCC patients with at least 2-fold increased expression of PLK1
and HOTAIR, show increased EPCAM expression, a PRC2 target gene [42,56].

10. Summary and Future Directions

Our laboratory has identified several important molecules involved in the development of poor
prognosis HCC due to chronic HBV infection. These include: the RNA helicase DDX5 that stabilizes
the PRC2 complex in association with the lncRNA HOTAIR to repress transcription of select cellular
genes. Upon downregulation of DDX5 by HBV infection, as it has been observed in a subgroup of
poor prognosis HBV-related HCC, the SUZ12 subunit of PRC2 undergoes proteasomal degradation.
In turn, loss of PRC2 function enables re-expression of select PRC2 repressed genes, including EPCAM
and pluripotency genes. Current efforts (Figure 3) are directed towards understanding whether DDX5
alone or in association with PRC2 orchestrates expression of pluripotency genes together with genes
linked to cell survival, rescue from p53-independent regulated cell death, and metabolism-related
genes to reprogram differentiated hepatocytes to a hCSC phenotype. Additional questions that need
to be further investigated include the role of other non-coding RNAs in this epigenetic mechanism,
as well as the role of this epigenetic mechanism in virus biosynthesis.
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