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A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The
approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step
process. First, the two-dimensional discrete wavelet transform (DWT) is applied to obtain the HH high-frequency subband image.
Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered
image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM)
binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images. The obtained
classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter
banks for feature extraction.

1. Introduction

Computer-aided diagnosis (CAD) has been the subject of a
lot of research as a tool to help health professionals inmedical
decision making. As a result, many CAD systems integrate
image processing, computer vision, and intelligent and sta-
tistical machine learning methods to aid radiologists in the
interpretation ofmedical images and ultimately help improve
diagnostic accuracy. These systems have been employed to
analyze and classify various types of digitized biomedical
images, including retina [1, 2], mammograms [3–5], brain
magnetic resonance images [6–8], skin cancer images [9, 10],
lung images [11, 12], and ulcer detection in endoscopy images
[13, 14], just to name a few.

The typical CAD process starts with a segmentation stage
to identify one or more regions of interest (ROI) in the
image of interest. Then, the ROI(s) is processed for image
enhancement and/or feature extraction before classification.
Because the segmentation step requires prior knowledge of
discriminant image features and its implementation typically
calls for numerous parameter settings, recent works have

attempted to eliminate it. These approaches realize feature
space reduction by applying one or more transforms to the
whole image and extracting the feature vector to classify from
one or more of the obtained components [3, 5, 7–14].

Texture analysis has played an important role in the char-
acterization of biomedical images. Texture analysis methods
can be categorized as statistical, geometrical, and signal
processing types [14]. Statisticalmethods aremainly based on
the spatial distribution of pixel gray values, while geometrical
approaches depend on the geometric properties of texture
primitives. As for signal processingmethods, they use texture
filtering in the spatial or frequency domain to extract relevant
features.

Multiresolution analysis is the most widely employed
signal processing technique for characterizing biomedical
images due to its capability to obtain high time-frequency
resolutions. The wavelet-transform family methods are typi-
cal examples ofmultiresolution analysis techniques.The basic
wavelet transform [15, 16] starts with a basis function, the
mother wavelet, and decomposes a signal into components
of different time and frequency scales; longer time intervals

http://dx.doi.org/10.1155/2013/104684


2 Journal of Medical Engineering

are used to obtain low-frequency information and shorter
intervals are used to obtain high-frequency information.

The most commonly used wavelet transform in biomedi-
cal image processing is the discrete wavelet transform (DWT)
[14] whose discrete time shifting and stretching variables lead
to a sparse and efficient representation. The DWT takes an
input image and decomposes into four subimage components
that characterize it for different orientations in the horizontal
and vertical frequency axes.The process can be repeated with
one or more subimages if needed. More precisely, the DWT
decomposition yields the approximation subband (LL), the
horizontal detail subband (LH), the vertical detail subband
(HL), and the diagonal detail subband (HH). These describe,
respectively, the low-frequency components in the horizontal
and vertical directions, the low-frequency components in
the horizontal direction and high-frequency components in
the vertical direction, the high-frequency components in
the horizontal direction and low-frequency components in
the vertical direction, and the high-frequency components
in both directions. Thus, in essence, the standard DWT
algorithm yields horizontal, vertical, and diagonal directional
information about the frequency spectrum of an image.
However, these three directions may not be sufficient to
express all the directional information in digital images, par-
ticularly biomedical images [4, 14]. In an attempt to express
the directional features more efficiently, several directional
wavelet systems have been proposed.These include theGabor
wavelets [17], the dual-tree complex wavelet transform (DT-
CWT) [18], the ridgelet [19], the curvelet [20], and the
contourlet [21]. There exist also reports on biomedical appli-
cations of Gabor filter banks [22], DT-CWT [4], ridgelets
[23], curvelets [24], and contourlets [5].

The two-dimensional (2D) Gabor filter decomposes an
image into components corresponding to different scales
and orientations. As a result, it captures visual properties
such as spatial localization, orientation selectivity, and spatial
frequency. The 2D Gabor filter has real and imaginary parts
and is highly flexible in its representation as its parameters
can be adapted to the structure of the patterns that one wants
to analyze in the image. It is however difficult to find the
optimal set of parameters to characterize a given image. In
comparison, the DT-CWT transform provides directional
selectivity, shift invariant features, and complex images.
However, it suffers from limited orientation selectivity [25]
and redundancy of information [26]. The ridgelet transform
is appropriate to capture radial directional details in the
frequency domain; in particular it is optimal for representing
straight-line singularities. However, those structures are not
dominant in medical images and are rarely observed in
real world images. This limits the suitability of the ridgelet
transform to characterize the texture of real images [27]. The
curvelet transform is an extension of the ridgelet transform
for detecting image edges and singularities along curveswhile
analyzing images at multiple scales, locations, and desired
orientations. It is particularly suitable for image features
with discontinuities across straight lines. Unfortunately, the
curvelet transform is highly redundant [28] and only few
choices of mother functions are available for the curvelets
as opposed to the many choices available for the standard

wavelet transform [29]. Finally, the contourlet transform
can capture directional details and smooth contours in a
given image. In particular, it is suitable in the analysis of
images containing textures and oscillatory patterns. Its main
drawback is the high degree of information redundancy and
occurrence of artefacts [30, 31].

In past works, we proposed several transform-based
approaches to account for directional features in classifying
biomedical images. For instance, in the case of brainmagnetic
resonance images, we proposed a simple methodology in
[32, 33] where features are extracted from the LH and HL
components of the DWT instead of the more common LL,
or image approximation, component. We found that the LH
and HL coefficients are efficient at characterizing changes
in the biological tissue and help distinguish normal and
abnormal image textures. For mammograms, we investigated
in [34] a hybrid processing system that sequentially uses
the discrete cosine transform (DCT) to obtain the high-
frequency component of the mammogram and then applies
the Radon transform (RT) to the result in order to extract its
directional features.The validation results showed that the RT
helps improve the recognition rate of the detection system. In
subsequent work, we combined the DWT and RT transforms
[35]. The approach targeted the HH component of the DWT
decomposition and improved classification accuracy when
compared to using the DWT or RT alone or the DCT-
RT used in [34]. Our previous works clearly showed that
directional information helps improve classification accu-
racy. In addition, the DWT-RT detection system was more
efficient for classifying normal and abnormal images than the
DCT-RT, possibly because of the multiresolution capability
of the DWT and the fact that it leads to a sparser signal
representation than the DCT. Still, the RT cannot capture
spatial frequency, a potential feature to improve further the
classification accuracy.

In this paper, we describe a hybrid biomedical image
processing and classification system that uses both the DWT
and Gabor filter as directional transforms and statistical
features derived from them for the classification task which
is accomplished by support vector machines (SVMs) [36].
As stated before, the DWT is powerful at providing sparse
and efficient image representations [14]. However, except
for the LH and HL subbands whose coefficients depend on
image row and column information, respectively (an effect
of the subband coding used by the algorithm), the standard
DWT is essentially an image compression tool and it cannot
perform directional analysis at arbitrary directions. On the
other hand, the Gabor filter can process images in terms
of preferred orientations at arbitrary spatial frequencies.
Moreover, it provides nonredundant information and can
offer high directional selectivity. Thus, combining DWT and
Gabor filter banks in sequence may lead to improved feature
extraction from biomedical images and better classification
of normal versus abnormal images in comparison to using
DWT or Gabor filter banks alone. In this hybrid processing
scheme, theDWTacts both as high-frequency filter to extract
abrupt changes in image texture and image compression
engine to reduce image dimensionality and a Gabor filter
bank extracts the directional information.
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In a preliminary work [37], the previously mentioned
DWT-Gabor hybrid systemwas successfully applied tomam-
mograms to extract features that allow discriminating normal
and cancer images. More specifically, the goal was to detect
the presence of malign microcalcifications (specs of calcium
in the breast tissue that appear in the mammogram as small
bright spots that are scattered or grouped in clusters), whose
early detection is important for cancer screening [38, 39].
The results showed the superiority of the approach over
simply using the DWT alone. In the present work, we
widen our study to retina digital images and brain magnetic
resonance images to investigate the effectiveness of theDWT-
Gabor approach across application domains with similar
image features. Indeed, the images of some pathologies
related to brain, retina, and breast present similar contrast
features characterized by abrupt changes in image texture
with directional properties (see examples in Figures 1, 2,
and 3). For instance, breast cancer is characterized by dense
concentration of contrast cells in the biological tissue, cancer
in brain magnetic resonance images is often characterized by
large cells with high contrast, and many forms of retinopathy
are characterized by the presence of spots on the retina or
covering the macula. As a result, the DWT-Gabor hybrid
system we have used in our previous work [37] to detect
cancer in mammograms could potentially also be applied to
brain magnetic resonance images and retina digital images
with similar properties. Next is a brief description of the
pathologies that were studied in this work.

Circinate retinopathy is a retinal degeneration charac-
terized by a circle of white spots encircling the macula
that causes complete foveal blindness [40]; retinal microa-
neurysms are due to a swelling of the capillaries caused by
a weakening of the vessel wall [41] and are considered to
be the earliest sign of diabetic retinopathy, among others.
Magnetic resonance imaging (MRI) is a noninvasive imaging
modality largely used for brain imaging to detect diseases
such as Alzheimer’s and multiple sclerosis [6, 8]. Alzheimer’s
disease is the most frequent cause of age-related dementia
and multiple sclerosis is a progressive neurological disorder
that can result in various dysfunctions [42]. Additional brain
pathologies that can be detected fromMR images and that are
investigated in this work include glioma, herpes encephalitis,
and metastatic bronchogenic carcinoma (Figure 1). All of
these are characterized by large cells with high contrast,
hence the interest in being able to detect them with the same
algorithm.

The contribution of our work can be summarized as
follows. First, we propose a relatively simple and fast approach
to biomedical image characterization that relies on the direc-
tional properties of high-frequency components.TheDWT is
applied first to extract high-frequency components that char-
acterize abrupt changes in the biological tissue and, then, the
Gabor filter is applied to the obtainedHH subimage to extract
directional features. Second, the statistical features extracted
from the hybrid DWT-Gabor transform are processed by an
SVM for classification. This statistical binary classifier has
proven its efficiency [4–6, 32–35, 37] and ease of tuning in
comparison to alternatives such as artificial neural networks.
Another desirable feature is its scalability and ability to avoid

local minima [36]. Third, contrary to alternatives that focus
on ROIs or specific image details, the proposed methodology
is ofmore general reach as three different types of images used
for validation show.

The paper is organized as follows. Section 2 reviews
previous works related to the automatic classification of
normal versus abnormal images in the context of brain mag-
netic (MR) resonance imaging, mammograms, and retina
digital images. Section 3 describes our proposed approach for
directional features extraction from biomedical images using
discrete wavelet transform followed by Gabor filter banks
and support vector machines classifier. Section 4 presents
experimental results. Finally Section 5 draws the conclusions
and gives future work to be done.

2. Related Works

Mammograms, retina, and MR images are the subject of
many research efforts on feature extraction and subsequent
classification. Next is a summary of some recent works
related to DWTs and/or Gabor filters. In the problem of
automatic classification of mammograms, the authors in [3]
used Gabor filter banks to process images and 𝑘 nearest
neighbour (𝑘-NN) algorithm as classifier. The obtained clas-
sification rate was 80%. In [4] the dual-tree complex wavelet
transform (DT-CWT) and support vector machine (SVM)
were employed to classify benign and malignant images. The
experimental result achieved 88.64% classification accuracy.
The authors in [5] employed the contourlet transform and
successive enhancement learning (SEL) weighted SVM to
obtain 96.6% correct classification rate. The previous studies
all used images of size 1024 × 1024 pixels.

In the problem of retina digital image classification, the
authors in [1] employed the Belkyns’s shift-invariant DWT
to classify normal against abnormal retina images of size
700 × 605 pixels. The pathologies of the abnormal images
included exudates, large drusen, fine drusen, choroidal neo-
vascularization, central vein and artery occlusion, histoplas-
mosis, arteriosclerotic retinopathy, hemicentral retinal vein
occlusion and more. In order to capture texture directional
features, they employed normalized gray level cooccurrence
matrices (GLCMs).The obtained classification accuracy with
linear discriminant analysis (LDA) was 82.2%. The authors
in [2] employed the probabilistic boosting algorithm and
morphological scale space analysis and GLCM to extract
texture features. The purpose was to classify normal images
versus drusen images with various texture complexities. The
detection accuracy of normal images varied between 81.3%
and 92.2%, and that of abnormal images varied between
71.7% and 85.2% depending on texture complexity (grade
of pathology). The authors in [43] used four approaches to
extract features from retina digital images of size 300 × 300
pixels to automatically classify glaucoma images. The first set
of features is obtained by taking the pixel intensities as input
to principal component analysis. The second features are
obtained from Gabor texture filter responses. The third set of
features is computed from the coefficients of the fast Fourier
transform and the fourth set of features is obtained from
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(a) Normal (b) Alzheimer’s disease (c) Glioma

(d) Herpes encephalitis (e) Metastatic bronchogenic carcinoma (f) Multiple sclerosis

Figure 1: Examples of brain MR images.

(a) Normal (b) Microaneurysms (c) Circinate

Figure 2: Examples of retina images.

the histogram of the intensity distribution of the image.
Finally, support vector machines were employed for the clas-
sification task. The performance of the classifications using
one feature set only was 73% with the histogram features,
76%with the fast Fourier transform coefficients, 80%with the
Gabor textures, and 83% with the pixel intensities.

Finally, in the problem of brain MRI classification, the
authors in [6] used the wavelet coefficients as input to a
support vector machine to classify normal and abnormal

Alzheimer’s disease images of size 256 × 256 pixels. The
classification accuracy was 98% using SVM with a radial
basis kernel. More recently, the authors in [42] used voxels
to represent each brain MRI of size 512 × 512 pixels. Using
cross-validated tests, the obtained correct classification rates
of normal and Alzheimer images were 90%, 92%, and
78%, respectively, when using classification by SVM, naı̈ve
Bayes classifier, and voting feature intervals (VFIs). Still
more recently, the authors in [8] employed the DWT to
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(a) Normal (b) Abnormal

Figure 3: Examples of mammograms.

extract features from brain magnetic resonance images of
size 256 × 256 pixels, and then principal component analysis
was used to reduce the dimensions of the features space. The
abnormal images included glioma,meningioma,Alzheimer’s,
Alzheimer’s plus visual agnosia, Pick’s disease, sarcoma,
and Huntington’s disease. The classification accuracies using
backpropagation neural network (BPNN) were 100% using
learning and testing sets of 33 images each.

In this work, we are interested in how a DWT-Gabor-
based approach for feature extraction may provide better
classification results than those reported in the previous
works, particularly those based on the DWT alone. The next
section provides the details of our methodology.

3. Methodology

The overall methodology proceeds as follows. First, the
DWT is applied to the biomedical image to obtain its high-
frequency image component since it often contains most
of the desired information about the biological tissue [39].
Indeed, sudden changes in the texture of the image are typical
indicators of the presence of abnormal biological tissue.
Second, a bank of Gabor filters with different scales and
orientations is applied to the high-frequency image to obtain
Gabor-filtered images along different spatial orientations.
Third, statistical features are extracted from the Gabor-
filtered images. Finally, the SVM is used to classify the
resulting feature vector for final diagnosis.The block diagram
of the DWT-Gabor system is shown in Figure 4. Figure 5
summarizes the DWT approach in comparison.

3.1. Discrete Wavelet Transform. The two-dimensional dis-
crete wavelet transform (2D-DWT) [14–16] performs a
subband coding of an image in terms of spectral spa-
tial/frequency components, using an iterative and recursive
process. Figure 6 illustrates the case of two-level decompo-
sition. The image is first represented by LH, HL, and HH
subbands that encode the image details in three directions
and an LL subband which provides an approximation of it.

Source image DWT
Extract DWT 

high frequency 

Gabor filter

Extract Gabor 
filtered images

Compute 
statistics

SVM Classification

Figure 4: Schematic diagram of the DWT-Gabor approach.

Mammogram DWT Extract DWT 
high frequency 

Compute 
statistics

SVMClassification

Figure 5: Schematic diagram of the DWT approach.

The obtained detail or approximation images can be decom-
posed again to obtain second-level detail and approximation
images, and the process can be repeated for finer analysis as
each iteration doubles the image scale.

The computation of the 2D-DWT proceeds from that of
the 1D-DWT, the discrete version of the one-dimensional
continuous wavelet transform. The one-dimensional contin-
uous wavelet transform of a signal 𝑥(𝑡) is defined by [7, 8]

𝑊𝜓 (𝑎, 𝑏) = ∫

+∞

−∞

𝑥 (𝑡) 𝜓
∗

𝑎,𝑏
(𝑡) 𝑑𝑡, (1)

𝜓𝑎,𝑏 (𝑡) =
1

√|𝑎|
𝜓(

𝑡 − 𝑏

𝑎
) , (2)

where 𝜓𝑎,𝑏(⋅) stands for a given wavelet function and 𝑎 and 𝑏
are the scale and translation parameters, respectively.The 1D-
DWT is obtained by sampling 𝑎 and 𝑏 so that (1) becomes that
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ℎ(𝑛)

Figure 6: 2D-DWT decomposition of an image.

of a sequence. In dyadic sampling, 𝑎 and 𝑏 are, respectively, a
power of 2 and multiples thereof, and the sequence elements
(wavelet coefficients) are given by

𝑐𝑗𝑘 = 𝑊𝜓 (2
−𝑗
, 2
−𝑗
𝑘) , (3a)

where 𝑗 represents the discrete scale factor and 𝑘 the discrete
translation factor. In other words, 𝑎 and 𝑏 in (1) are replaced
by 2𝑗 and 2𝑗𝑘, respectively.

The one-dimensional wavelet decomposition is extended
to an image by applying it to the row variable first and then
to the column variable of the obtained result [44]. At each
step, two subimages are created with half the number of
pixels of the row or column that was processed. In the end,
an 𝑀 × 𝑁 image is decomposed into 4 subimages, each
with 𝑀/2 × 𝑁/2 resolution and preserved scale. However,
(1) has only theoretical merit due to the infinite ranges of
𝑎 and 𝑏. For a practical implementation, the fact that (1)
is essentially a measure of correlation between a signal and
various wavelets derived from a mother is exploited, and the
DWT decomposition is turned into a filtering operation with
a sequence of high-pass and low-pass filters [45]. Following
the notation in [7, 8], the discrete form of (1) can then be
written as

𝑐𝑎𝑗,𝑘 [𝑥 (𝑡)] = DS [∑𝑥 (𝑡) 𝑔
∗

𝑗
(𝑡 − 2

𝑗
𝑘)] ,

𝑐𝑑𝑗,𝑘 [𝑥 (𝑡)] = DS [∑𝑥 (𝑡) ℎ
∗

𝑗
(𝑡 − 2

𝑗
𝑘)] ,

(4)

where coefficients 𝑐𝑎𝑗,𝑘 and 𝑐𝑑𝑗,𝑘 specify approximation
and details components provided by the 𝑔(𝑛) low-pass and
ℎ(𝑛) high-pass impulse responses, respectively, and the DS
operator performs downsampling by a factor of 2. The one-
dimensional wavelet decomposition is extended to two-
dimensional objects by using row and column decomposi-
tions as shown in Figure 6. In our work, the most frequently
used wavelet (Daubechies-4) [25] is considered to extract the
HH image component.

3.2. Gabor Filter. The two-dimensional (2D) Gabor filter
decomposes an image into components corresponding to
different scales and orientations [22], thus capturing visual
properties such as spatial localization, orientation selectivity,
and spatial frequency. The 2D Gabor filter consists of a
complex exponential centered at a given frequency and
modulated by a Gaussian envelope. Because of the complex

exponential, the filter has both real and imaginary parts. The
general form of the real part is defined as follows:

𝐺(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦, 𝑓, 𝜃) = exp[−1
2
((

𝑥


𝜎𝑥

)

2

+ (
𝑦


𝜎𝑦

)

2

)]

× cos (2𝜋𝑓𝑥) ,

(5)

where

𝑥

= 𝑥 cos (𝜃) + 𝑦 sin (𝜃) ,

𝑦

= 𝑦 cos (𝜃) − 𝑥 sin (𝜃)

(6)

and where 𝜎𝑥 and 𝜎𝑦 are the standard deviations of the
Gaussian envelope along the 𝑥 and 𝑦 axes. The parameters 𝑓
and 𝜃 are, respectively, the central frequency and the rotation
of the Gabor filter. To obtain the Gabor-filtered image𝑓(𝑥, 𝑦)
of a given image 𝑖(𝑥, 𝑦) the 2D convolution operation (∗) is
performed:

𝑓 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦, 𝑓, 𝜃) ∗ 𝑖 (𝑥, 𝑦) . (7)

The selection of parameters 𝜎𝑥, 𝜎𝑦, 𝑓, and 𝜃 plays an
important role in the filter’s operation. However, no formal
technique exists for choosing them and experience-guided
intuition, trial and error, or heuristic searchmust be used. For
retina digital images and brain MR images, 𝜎𝑥 and 𝜎𝑦 were
arbitrarily set to unity. In the case of mammograms, 𝜎𝑥 and
𝜎𝑦 were set to the values used in [46], which were determined
empirically. Consequently, we used 𝜎𝑥 = 𝜏/2.35, where 𝜏 is
the full width at half-maximumof theGaussian and𝜎𝑦 = 8𝜎𝑥.
No values of𝜎𝑥 and𝜎𝑦 other than the previous oneswere tried
since optimalitywas not the primary concern of thiswork and
we obtained satisfactory results with these values.

Four orientations, 𝜃 = 0, 𝜋/4, 𝜋/2, and 3𝜋/4, were used as
in [22, 33]. These values seemed reasonable as a first try since
they covered both image axis directions and the forward and
backward diagonals. Finally, the central frequency 𝑓 was set
to 2, 2.5, and 3. Given that the Gabor filter is modulated by
the cosine of 𝑓, large values of 𝑓 lead to a compressed cosine
and, consequently, the filter output is more likely to show
fast or frequent changes in biological tissue texture. This in
turn would help verify our hypothesis that abnormal images
are characterized by sudden and frequent variations in image
texture. In the end, the application of the Gabor filter bank to
the HH image component obtained with the 2D-DWT leads
to twelve Gabor-filtered HH images components, for each
choice of 𝑓 and 𝜃.

3.3. Feature Extraction. Statistical measures are employed to
extract features from both the DWTHH subband image and
the real Gabor-filtered HH image components. More pre-
cisely, the entropy (𝐸) and uniformity (𝑈) of the coefficients
of each one are computed. Entropy and uniformity were
selected as features because previousworks onmammograms
have shown that uniformity is correlated with suspicious
malignancy [47] and that entropy can successfully charac-
terize breast biological tissue [48]. In this study, the entropy
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and uniformity statistics are hypothesized to also characterize
retina andbrainMR imageswith similar contrast information
(i.e., abrupt and/or frequent variations in texture). Entropy
(𝐸) and uniformity (𝑈) are defined by [49]

𝐸 = −∑𝑝 (𝑧) × log (𝑝 (𝑧)) ,

𝑈 = ∑𝑝
2
(𝑧) ,

(8)

where 𝑧 is a random variable that represents a coefficient
in the Gabor filtered image and 𝑝(𝑧) is its probability of
occurrence as estimated by its relative frequency.

To investigate the performance of the previous approach-
es, the image features were extracted from HH at both
level-one DWT decomposition (HH1) and level-two DWT
decomposition (HH2), with and without filtering by a Gabor
filter bank. We also applied the Gabor filter directly to the
original image without the DWT for comparison purpose.
For eachDWTHH subband image, the feature vector is given
by

𝑉DWT,𝑎 = [𝐸𝑎, 𝑈𝑎] , (9)

where 𝑎 is the level of wavelet analysis (decomposition).
Similarly, for each of the twelve outputs generated by the
Gabor filter bank (4 angles × 3 central frequencies), the
entropy and uniformity are computed and a twenty-four
component feature vector is formed to represent the initial
image. We thus have

𝑉Gabor,𝑎 = [𝐸1,𝑎, 𝐸2,𝑎, . . . , 𝐸12,𝑎, 𝑈1,𝑎, 𝑈2,𝑎, . . . , 𝑈12,𝑎] . (10)

Either feature vector is subsequently fed to the SVM to
classify normal versus pathological images.

3.4. The Support Vector Machine Classifier. Introduced by
Vapnik [36], the support vector machine (SVM) classifier
is based on statistical learning theory. It implements the
principle of structural risk minimization and has excellent
generalization ability as a result, even when the data sample is
small. Moreover, SVM can tolerate high-dimensional and/or
incomplete data [50]. It has been used with great success in
various applications, including speech emotion recognition
[51], card-sharing traffic detection [52], fault diagnosis [53],
cardiac decision making [54], Parkinson’s disease diagnosis
[55], and Alzheimer’s disease detection [56].

The support vector machine performs classification tasks
by constructing an optimal separating hyperplane that maxi-
mizes themargin between the two nearest data points belong-
ing to two separate classes. Given a training set {(𝑥𝑖, 𝑦𝑖), 𝑖 =
1, 2, . . . , 𝑚}, where the input 𝑥𝑖 ∈ 𝑅

𝑑 and class labels 𝑦𝑖 ∈
{+1, −1}, the separation hyperplane for a linearly separable
binary classification problem is given by

𝑓 (𝑥) = ⟨𝑤 ⋅ 𝑥⟩ + 𝑏, (11)

where 𝑤 is a weight vector and 𝑏 is a bias. The optimal
separation hyperplane is found by solving the following
optimization problem:

minimize
𝑤,𝑏,𝜉

1

2
⟨𝑤 ⋅ 𝑤⟩ + 𝐶

𝑚

∑

𝑖=1

𝜉𝑖

Subject to: 𝑦𝑖 (⟨𝑤 ⋅ 𝑥𝑖⟩ + 𝑏) + 𝜉𝑖 − 1 ≥ 0, 𝜉𝑖 ≥ 0,

(12)

where 𝐶 is a penalty parameter that controls the tradeoff
between the complexity of the decision function and the
number of misclassified training examples and 𝜉 is a positive
slack variable.Theprevious optimizationmodel can be solved
by introducing Lagrange multipliers and using the Karush-
Kuhn-Tucker theorem of optimization to obtain the solution
as

𝑤 =

𝑚

∑

𝑖=1

𝛼𝑖𝑦𝑖𝑥𝑖. (13)

The 𝑥𝑖 values corresponding to positive Lagrange multipliers
𝛼𝑖 are called support vectors which define the decision
boundary. The 𝑥𝑖 values corresponding to zero 𝛼𝑖 are irrel-
evant. Once the optimal solution 𝛼

∗

𝑖
is found, the optimal

hyperplane parameters 𝑤∗ and 𝑏∗ are determined. Then, the
discriminant function of the SVM for a linearly separable
binary classification problem is [32]

𝑔 (𝑥) = sign(
𝑚

∑

𝑖=1

𝑦𝑖𝛼
∗

𝑖
⟨𝑥𝑖 ⋅ 𝑥⟩ + 𝑏

∗
) . (14)

In the nonlinearly separable case, the SVM classifier nonlin-
early maps the training points to a high-dimensional feature
space using a kernel function Φ, where linear separation can
be possible. The scalar product ⟨Φ(𝑥𝑖) ⋅ Φ(𝑥𝑗)⟩ is computed
by Mercer kernel function 𝐾 as 𝐾(𝑥𝑖, 𝑥𝑗) = ⟨Φ(𝑥𝑖) ⋅ Φ(𝑥𝑗)⟩.
Then, the nonlinear SVM classifier has the following form:

𝑔 (𝑥) = sign(
𝑚

∑

𝑖=1

𝑦𝑖𝛼
∗

𝑖
𝐾⟨𝑥, 𝑥𝑖⟩ + 𝑏

∗
) . (15)

In this study, a polynomial kernel of degree 2 was used for
the SVM. As a global kernel, it allows data points that are far
away from each other to also have an influence on the kernel
values. The general polynomial kernel is given by

𝐾(𝑥, 𝑥𝑖) = ((𝑥𝑖 ⋅ 𝑥) + 1)
𝑑
, (16)

where 𝑑 is the degree of the polynomial to be used.

4. Experimental Results

Asmentioned previously,mammograms and retina and brain
MR images corresponding to given pathologies are consid-
ered in this work, and the aim is to classify normal versus
abnormal images for each image category. To do so, one
hundred digitalmammograms (171× 364 pixels) consisting of
fifty normal images and fifty cancer images were taken from
The Digital Database for Screening Mammography (DDSM)
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Table 1: Average SVM classification accuracy as a function of feature extraction method and level of DWT decomposition∗.

DWT DWT-Gabor DWT DWT-Gabor
Decomposition level One One Two Two
Mammograms 95.98% (±0.04) 96.67% (±0.05) 89.13% (±0.01) 91.09% (±0.05)
Retina 74.69% (±0.05) 100% 90.98% (±0.03) 100%
Brain MRI 87.80% (±0.00) 97.36% (±0.02) 85.76% (±0.00) 91.18% (±0.04)
∗Tenfold cross-validation used for mammograms and retina images, leave-one-out used for brain MRIs.

Table 2: SVM classification specificity as a function of feature extraction method and level of DWT decomposition∗.

DWT DWT-Gabor DWT DWT-Gabor
Decomposition level One One Two Two
Mammograms 97.81% (±0.02) 100% 88.85% (±0.05) 92.09% (±0.06)
Retina 6.81% (±0.04) 100% 2.32% (±0.10) 100%
Brain MRI 21.55% (±0.01) 99.58% (±0.01) 0% 97.24% (±0.01)
∗Tenfold cross-validation used for mammograms and retina images, leave-one-out used for brain MRIs.

[57]. For retina, a set of 69 color images (150 × 130 pixels)
from the STARE [58] database were employed including
23 normal images, 24 with microaneurysms, and 22 with
circinate. Finally, a collection of 56 axial, T2-weighted, and
MR brain images (256 × 256 pixels) were taken from the
AANLIB database [59] of the Harvard Medical School. They
consisted of 7 normal images, 9 with Alzheimer’s disease, 13
with glioma, 8 with Herpes encephalitis, 8 with metastatic
bronchogenic carcinoma, and 14 with multiple sclerosis. It
is unfortunate that the number of images was not constant
across pathologies, but we had no control over this and used
what was available, with tenfold cross-validation or leave-
one-out cross-validation of the results depending on sample
size. All experiments were based on a binary classification
approach of normal versus abnormal images. Many kinds of
biomedical images could be considered for our experiments;
we focused on mammograms, retina, and brain magnetic
resonance images mainly because of public availability. An
example of the processing of a normal retina and a retina with
circinate is illustrated in Figures 7 and 8, respectively.

For each image type, the average and standard deviation
of the correct classification rate (CCR), sensitivity, and speci-
ficity were computed to evaluate the performance feature
extraction techniquewhen used in conjunctionwith the SVM
classifier. The three performance measures are defined by

CCR =
Classified Samples

Total Number of Samples
,

Sensitivity =
Correctly Classified Positive Samples

True Positive Samples
,

Specificity =
Correctly Classified Negative Samples

True Negative Samples
,

(17)

where positive samples and negative samples are, respectively,
abnormal and normal images.

Finally, all experiments were performed with tenfold
cross-validation, except those for MR images which used
leave-one-out cross-validation due to the small sample size
of each brain image category.

Table 1 shows the obtained average results for the three
types of images that were investigated. The performance of
the SVM classifier improved for all types of images and all
levels of HH decomposition by the DWT. At level one, the
average correct classification rate increased by, respectively,
0.69, 25.31, and 9.56 percentage points for mammograms,
retina, and brain magnetic resonance images when using
the DWT-Gabor approach. At level-two decomposition, the
improvement was, respectively, 1.96, 9.02, and 5.42 percent-
age points.

Tables 2 and 3 provide the average results for classifier
sensitivity and specificity. At level-one DWT decomposition,
the DWT-Gabor approach improved classification specificity
for mammograms and retina images to make it reach 100%,
while it improved it by 78.03 percentage points for brain MR
images. At level-two DWT decomposition, the improvement
was 3.24 percentage points for mammograms, 97.68 percent-
age points for retina images (100% specificity), and 97.24
percentage points for MR images. Regarding sensitivity, the
results were mixed.

At level-one DWT decomposition, the values were about
the same for the DWT-Gabor and DWT-only approaches
for mammograms and retina images, with, respectively,
−0.81 and 0 percentage points differences, but there was a
degradation of −11.33 and −46.16 percentage points for brain
MR images at level one and level two of decomposition,
respectively.

Following the same cross-validation protocol, we also
conducted classification experiments with features extracted
from aGabor filtered image of the original biomedical image.
The purpose was to check whether Gabor-based features
alone help characterize images better than DWT or DWT-
Gabor-based features. The results are given in Table 4.
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Figure 7: Analysis of a normal retina.
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Figure 8: Analysis of a retina with circinate.
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Table 3: SVM classification sensitivity as a function of feature extraction method and level of DWT decomposition∗.

DWT DWT-Gabor DWT DWT-Gabor
Decomposition level One One Two Two
Mammograms 94.14% (±0.06) 93.33% (±0.06) 90.29% (±0.039) 89.78% (±0.04)
Retina 100% 100% 100% 100%
Brain MRI 93.84% (±0.00) 82.51% (±0.16) 100% 53.84% (±0.23)
∗Tenfold cross-validation used for mammograms and retina images, leave-one-out used for brain MRIs.

Table 4: SVM classification performance measures obtained with
Gabor-based features.

Accuracy Specificity Sensitivity
Mammograms 68.03% (±0.01) 100% 0%
Retina 50.00% (±0.00) 100% 0%
Brain MRI 86.61% (±0.03) 100% 0%

The obtained correct classification rate of mammograms,
retina, and brain magnetic resonance images is, respectively,
68.03% (±0.01), 50.00% (±0.00), and 86.61% (±0.03). The
average results for classifier specificity and sensitivity for all
images are 100% and 0%. This finding indicates that Gabor-
based features are suitable to detect pathological images,
but fails to detect normal images. In sum, the results show
that Gabor-based features do not perform better than DWT
and DWT-Gabor-based features. These findings confirm the
superiority of combining theDWT andGabor filter banks for
feature extraction.

Based on the previous results, it appears that the DWT-
Gabor approach for feature extraction is effective for detect-
ing the abrupt changes in biological tissue that characterize
the pathological patterns that were investigated and it yields
better classification accuracy and specificity than the DWT-
only approach. It also offers equal of better sensitivity, except
for brain MRIs. For brain MRIs, the obtained specificity
and sensitivity results with the DWT-Gabor approach show
improved true negative detection, but lower true positive
performance. Finally, the obtained results reveal also that
level-one DWT decomposition is preferable to level-two
decomposition.

Finally, Table 5 compares the results obtained with the
DWT-Gabor approach to other work that we surveyed. In
many cases, the DWT-Gabor method yields higher clas-
sification rates, particularly for mammograms and retina.
For the problem of brain MRI classification, our obtained
performance is better than the results of [38], but less than
what is reported in [6, 8]. However, these comparisons should
be viewed with caution as not all the results stem from
a common image database and the different authors use
different sample and image sizes.Moreover,many authors use
no cross-validation and simply performa single arbitrary split
of their data into training and test sets to obtain their accuracy
results. Obviously, one cannot generalize or draw definite
conclusion from such efforts, and comparisons between

works cannot be made other than in general terms. In this
respect, it can only be concluded from our results that the
DWT-Gabor for feature extraction is effective for obtaining
high image classification accuracy by an SVM and that it
may outperform other feature extraction and classification
techniques reported in the literature, at least those based
on DWT-only image decomposition. Unfortunately, a more
definite conclusion is impossiblewithout gaining access to the
image databases used by the other authors.

5. Computational Complexity

Finally, the computational complexity of the DWT, Gabor,
contourlet, and curvelet for an 𝑁 × 𝑁 image is, respectively,
𝑂(𝑁), 𝑂(𝑁2 × 𝑀

2
) with 𝑀 being the width of Gabor

(Gaussian) mask filter,𝑂(𝑁2), and𝑂(𝑁2 log(𝑁)). As a result,
the computational complexity of the combination of the
DWT and Gabor filter is 𝑂(𝑁) + 𝑂(𝑁2 × 𝑀2). In terms of
features extraction processing time, the average time required
to process a brain, a mammogram, and a retina image
with the DWT approach (DWT-Gabor) was, respectively,
0.19 (0.31), 0.17 (0.32), and 0.15 seconds (0.35) using Matlab
R2009a on a 1.5 GHz Core2 Duo processor.

6. Conclusion

We proposed a supervised system for biomedical images
classification that uses statistical features obtained from the
combination of the discrete wavelet transform and Gabor
filter to classify normal images versus cancer images, using
support vector machines as classifiers. Our experimental
results show that such a hybrid processing model achieves
higher accuracy in comparison to using DWT or Gabor
filter banks alone. Therefore, the proposed image processing
and features extraction approach seem to be very promis-
ing for the detection of certain pathologies in biomedical
images.

For future works, it is recommended to consider a larger
set of features and a selection process to identify the most
discriminant ones. In addition, the Gabor parameters will
be adjusted for each type of image separately to improve
the accuracy. Furthermore, the DWT-Gabor will be directly
compared to the dual-tree complex wavelet, curvelet, and
contourlet using the same databases and images in order
to draw general conclusions. Also, multilabels classifications
will be considered in future works to investigate the discrim-
inative power of our approach for each type of pathology.
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Table 5: Comparison with the literature.

Features Classifier Accuracy∗

Mammograms
[3] Gabor k-NN 80%
[4] DT-CWT SVM 88.64%
[5] Contourlet SVM 96.6%
Our approach DWT-Gabor SVM 96.67% (±0.05)

Retina
[1] DWT + GLCM LDA 82.2%

[2] Morphological + GLCM Probabilistic boosting algorithm 81.3%–92.2%
71.7%–85.2%

[39] Gabor SVM 83%
Our approach DWT-Gabor SVM 100%

Brain
[6] DWT SVM 98%
[8] DWT + PCA BPNN 100%

SVM 90%
[38] Voxels Bayes 92%

VFI 78%
Our approach DWT-Gabor SVM 97.36% (±0.02)

∗Correct classification rate.

Finally, more experiments on the effect of kernel choice and
its parameter on classification accuracy will be investigated.
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