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ABSTRACT

While aberrant expression or splicing of metastasis genes conveys to cancers the 
ability to break through tissue barriers and disseminate, the genetic basis for organ 
preference in metastasis formation has remained incompletely understood. Utilizing 
the gene expression profiles from 653 GEO datasets, we investigate whether the 
signatures by diverse cancers in various metastatic sites display common features. 
We corroborate the meta-analysis in a murine model. Metastases are generally 
characterized by a core program of gene expression that induces the oxidative 
metabolism, activates vascularization/tissue remodeling, silences extracellular matrix 
interactions, and alters ion homeostasis. This program distinguishes metastases 
from their originating primary tumors as well as from their target host tissues. Site-
selectivity is accomplished through specific components that adjust to the target 
micro-environment. The same functional groups of gene expression programs are 
activated in the metastases of B16-F10 cells to various target organs. It remains 
to be investigated whether these genetic signatures precede implantation and 
thus determine organ preference or are shaped by the target site and are thus a 
consequence of implantation. Conceivably, chemotherapy of disseminated cancer 
might be more efficacious if selected to match the genetic makeup of the metastases 
rather than the organ of origin by the primary tumor.

INTRODUCTION

The organ preference in cancer metastasis has been 
a subject of study and numerous hypotheses for over 
125 years. In 1889, the English surgeon Stephen Paget 
described the propensity of various types of cancer to 
form metastases in specific organs, which led him to coin 
the metaphor that the patterns of outgrowth were due to 
the dependence of the “seeds” (the cancer cells) on the 
“congenial soil” (the target organ for metastasis) [1]. Even 
though the analogy continues to be cited in abundance, 
it has provided absolutely no mechanistic insight. Later, 
the pathologist James Ewing formulated a more scientific 
explanation by suggesting that circulatory patterns (of 
blood and lymph vessels) between a primary tumor and 

specific secondary organs were sufficient to account for 
most of the targeted metastases [2]. His model implied 
a passive role for the cancer cells that are released from 
their primary tumors and – consistent with their large size 
and low deformability – get stuck in the first capillary bed 
they encounter. However, serial passage of a melanoma 
cell line through mice generated sub-lines with increasing 
invasive potential and demonstrated that metastasis 
formation depends – at least in part – on intrinsic 
characteristics within the transformed cells [3]. Since the 
mid-1980s [4-6], it has become increasingly clear that the 
phenomenon of cancer metastasis can be directed by gene 
expression programs within the tumor cells. Metastatic 
potential is acquired by these tumor cells through the 
aberrant expression or splicing of stress response genes [7, 
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8]. Further, it has been elucidated that beside the positive 
regulators of dissemination there are gene regulation 
programs for metastasis suppression [9-11], which need 
to be inactivated for cancers to disseminate.

In regard to colorectal cancer, there is a knowledge 
base for the molecular characteristics of metastases 
to various sites. Genomic signatures are conserved in 
colorectal liver metastases [12] and include chromosome 
20p11 gains [13]. The chemokine receptor CCL-
7 [14], the adhesion molecule P-Cadherin [15], the 
growth factor IGF2 and the intestinal stem cell-specific 
transcription factor ASCL2 [12] are over-expressed, 
whereas MMP1 and MMP2 are under-expressed [16] in 
liver metastasis compared with the primary tumors. 46 
genes are differentially regulated between hepatic and 
pulmonary metastases [17]. A gene expression signature 
that characterizes lung foci involves the upregulation of 
FN1, CCL7, MMP7, IGF1, VEGFA, and SRC [18]. The 
CTHRC1 (Collagen Triple Helix Repeat Containing 1) 
gene is associated with peritoneal carcinomatosis [19]. 
The expression of mesenchyme forkhead 1 (FOXC2) in 
the primary tumor correlates with the degree of lymph 
node metastasis [20].

A barrier to understanding the genetic signatures of 
organ preference has been the inherent heterogeneity and 
clonal evolution of malignant tumors. Studies of breast 
cancer have increasingly focused on this phenomenon 
[21]. While a shared pathophysiology is implied by 
somatic mutations within three genes (TP53, PIK3CA, 
GATA3) that occur in more than 10% of cases, distinct 
subsets of genetic and epigenetic abnormalities generate 
four main breast cancer types [22]. Many mutational 
processes emerge late, but contribute extensive genetic 
variation. While most genetic alterations arise in just 
a fraction of tumor cells, there is a dominant subclonal 
lineage in every tumor that represents more than half of 
its cells. The expansion of this dominant subclone to an 
appreciable mass may represent the final rate-limiting 
step in breast cancer progression [23]. Tumor cell 
dissemination, primarily into bone marrow, is an early 
event in the disease history [24]. There are extensive 
biomarker differences between the primary tumor and 
its metastases, as well as among multiple metastases 
from the same patient. Estrogen and progesterone 
receptors tend to be down-regulated in the metastatic 
growths. Variable overexpression occurs in the colonies 
for cyclooxygenase-2 (COX2), epidermal growth factor 
receptor (EGFR), MET, and mesothelin [25].

Tumor-host interactions contribute to determining 
organ preference in metastasis. Circulating cancer cells 
can recognize target organs through the use of tissue 
markers [26], such as the interactions of addressins or 
chemokines with their cognate receptors [27, 28]. The 
binding motifs of tri-peptides or tetra-peptides on the 
vasculature may also provide homing signals [29]. As 
such, the sequence SRL encodes a brain homing motif, 

CGFE is a motif in lung homing peptides recognized by 
membrane dipeptidase, and the integrin binding RGD 
motif homes to sites of neovascularization.

Despite variation from tumor heterogeneity, clonal 
evolution and host factors, consistent genetic adjustments 
are required within the tumor cells to complete the 
process of metastasis. Although research over the past 
fifteen years has identified some genes, the expression 
of which is associated with cancer dissemination to 
specific sites [30-32, 17, 18], gene regulation maps that 
reflect organ specificity in cancer spread are still lacking. 
Here we expand on earlier microarray analyses [33, 34] 
and investigate metastasis-specificity in gene expression 
signatures from various primary tumors, their metastases, 
and host tissue in target sites to identify genetically 
encoded programs that distinguish the disseminated 
growths.

RESULTS

Gene expression differences delineate metastases 
from their primary cancers and from their target 
tissues

To assess overall relatedness across GEO data 
sets (Supplement 1), we compared samples by principal 
component analysis. The existence of tight clusters 
suggests shared features among the metastases; their 
frequent grouping away from primary tumors and from 
host tissues implies uniqueness of the metastatic gene 
expression (top graphs in Figures 1A and 1B). Breast 
cancer (primary tumor and metastases) displays three 
distinct clusters, comprising metastases that group far 
from the primary tumors and only select target sites 
that group with their primary tumors. Colon cancer has 
metastases that spread broadly away from the primary 
tumors (Figure 1A). While metastases to liver and lymph 
nodes mostly group at a distance to the host tissue (with 
the exception of breast cancer metastases to the liver and 
vulva metastases to the lymph nodes), they form distinct 
clusters (Figure 1B), implying the existence of common 
genetically encoded programs that uniquely characterize 
the metastases. We set out to identify the features that set 
metastases apart from their sources and from their targets.

Metastases are characterized by gene expression 
changes in four functional groups

We set up a meta-analysis type study to 
comprehensively evaluate relevant gene expression 
profiles of solid tumor metastases retrieved from GEO. 
The initial differential expression analysis compared 
metastases from various primary sites to the same target 
organ (all source sites combined for each target organ). 
Up-regulated genes identify those with higher expression 
levels in the metastasis samples as compared to the 
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Figure 1: Principal component analysis. (A) Comparison of primary tumors to their metastases in various organs. (B) Comparison 
of healthy host tissue in metastatic target sites to the metastases in those sites, having originated from various primary tumors. The top 
graph (A, B) shows the PCA results of the entire data set (the metastases are represented by color-filled circles, the reference values for 
primary tumors in A and for host tissue in B are depicted as color-matched x, while each gene expression profile is one data point there is 
overlap). The graphs for the individual sites of cancer origin or individual metastatic target sites (middle and bottom) are subset analyses 
(the PCA was done separately for each subset shown), selectively for a specific primary tumor and its colonies (A) or a specific healthy 
host tissue and metastases that target it (B). The primary tumor sites (A) or the host sites (B) are displayed as horizontal black lines. The 
round symbols, indicating the principal component coordinates for the metastases, are color coded by target site (A) or source tumor (B). 
Note that all graphs (x-axis PC1 and y-axis PC2) have the same scale to facilitate the comparison of cluster tightness. With the exception 
of colon cancer, the PC1 contribution was 50-65% and the PC2 contribution was 15-22%.
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healthy host tissues, down-regulated genes are lower in 
the metastases than in the host tissue (Supplement 2). We 
then performed pathway enrichment analysis to identify 
biological processes significantly affected by the up- 
and down-regulated genes. Regardless of the metastatic 
target site, common gene expression differences from the 
host tissues predominantly reflect functional entities that 
regulate metabolism, vascularization/tissue remodeling, 
motility/extracellular matrix interactions, as well as 
pathways for inorganic ion transport/homeostasis (Figure 
2). These four functional groups comprise about one fourth 
(25.5%) of the top changes in gene ontology categories as 
compared to the host organ (Supplement 2). In addition, 
site-specific alterations have consistent characteristics 
(manuscript in preparation). In sum, the gene expression 
profile of metastasis is characterized by a core program 
component plus a specific program component that adjusts 
to the target site.

Differential expression analysis was also performed 
comparing primary tumors of specific tissue origin to 
their respective metastases (all target sites combined for 
each primary tumor site). Up-regulated genes identify 
those with higher expression levels in the metastases as 
compared to the primary cancer of origin, down-regulated 
genes are lower in the metastases (Supplement 3). We 
performed pathway enrichment analysis to identify 
biological pathways significantly affected among up- 
and down-regulated genes for all metastasis sites from 
each source site. General changes in the metastases, 
compared to their primary tumors, occur predominantly in 
pathways that regulate metabolism, vascularization/tissue 
remodeling, extracellular matrix interactions/motility, and 
inorganic ion homeostasis (see Figure 2; Supplement 3). 
Further, there are changes that are unique for specific 
metastases-versus-primary tumor comparisons. The results 
were confirmed in an analysis of the largest GEO data set 
on breast cancer (Supplement 4).

Metastases are distinguished from their target 
sites by common gene expression signatures

Select genes are up- or down- regulated compared 
to host tissue in all or most of the target sites analyzed 
(Table 1). The deregulation of numerous zinc finger 
proteins and other transcription factors may reflect the 
control by designated genetic programs. At all 7 metastatic 
target sites evaluated, two genes (BSN, YAF2) are induced 
and one gene (CKAP5) is suppressed in the metastases. 
Multiple genes are induced or suppressed in 5 or 6 target 
sites. Those sets of genes seem to constitute essential 
mediators of metastasis, possibly conveying the ability to 
survive and expand in a non-cognate microenvironment. 
It is implied that they are critical for determining whether 
a cancer forms clinically relevant metastases.

To extend the meta-analysis, we also investigated 
an individual GEO data set (GSE2109) that contains 

metastases from various primary cancer specimens. A 
comparison of 47 gene expression signatures reveals 
distinct patterns among primary and metastatic sites. Not 
only do the colorectal cancers cluster, metastases from 
various primary tumors to the same organ also appear to 
share gene expression signatures. Most liver metastases 
cluster together, so do most ovarian metastases, whereas 
the clustering of lung metastases is less tight (Figure 
3A). Metastatic signatures were initially identified by 
comparing the gene expression levels in primary colon 
cancers (Figure 3B) to the gene expression levels of colon 
cancer metastases in the livers (Figure 3C). The gene 
regulation profiles of the metastases were clearly distinct 
from the primary tumor. It was possible that contamination 
from the host tissue (liver) accounted for the altered gene 
expression profiles. When comparing the metastases to 
intact liver, it was apparent that some up-regulated genes 
were likely contributed by the host tissue (ASGR2, CRP, 
FGA, FGG, FGB, CYP2C9, ACSM2, ALB) (Figure 3D). 
However, the predominant expression profile in the target 
organ is very different from the expression profile in the 
residing metastases. This supports the notion of a specific 
signature that characterizes metastases (Supplement 5).

Metastases are distinct from their originating 
primary tumors through shared gene expression 
signatures

While cancers have lists for site-specific gene 
deregulation in their metastatic growths compared to 
their originating tumors (manuscript in preparation), the 
expression of some genes is altered in the metastases of all 
types of cancer, suggesting that these genes are generally 
essential for conveying invasive potential to a primary 
tumor (Table 2). Two genes (MAGEA12, TRPC7) are up-
regulated and one gene (FCGRT) is down-regulated in the 
metastases from the 4 cancer types with significant gene 
lists. Multiple genes are deregulated in the metastases 
derived from 3 types of cancer. It may be important to 
note that the gene list in Table 2  may represent necessary 
contributors for metastasis initiation, while the gene list in 
Table 1  is likely reflective of metastasis outgrowth.

A murine metastasis model corroborates the 
meta-analysis results

We tested the meta-analysis results experimentally, 
using the cell line B16-F10. After tail vein injection, it 
is metastatic to multiple sites, and the subcutaneous 
injection approximates a primary tumor. The comparison 
of B16-F10 metastases to host tissue and primary tumor 
reveals groups of up- or down-regulated genes in all 
pairwise comparisons (Figure 4A). A network map 
shows the importance of metabolism, vascularization 
and extracellular matrix interactions (Figure 4B). As 
had been the case in the meta-analysis of human data, 
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the GO categories for biological function by the murine 
metastases displayed the frequent representation of skewed 
metabolism, matrix interaction/migration, vascularization, 
and alteration in ionic homeostasis – for the comparison of 
metastases to their cognate host site as well as metastases 

to the primary tumor (Supplement 6). When comparing 
to the core metastasis signature identified in the meta-
analysis (genes up- or down-regulated in most or all 
metastases in relation to either their primary tumor or 
the target host tissue) a large proportion of the identified 

Figure 2: The gene expression core program of metastasis. (A) Heatmap of enrichment terms. Differentially expressed genes in 
metastases (as compared to their originating primary tumors or to their target host sites) are augmented in four major pathways (colored 
sectioning on the right). Each row represents an enriched pathway group and each column represents a specific analysis. The columns are 
arranged as indicated in the bars on the top; the map has been ordered with hierarchical clustering in Spearman correlation distance. (B-E) 
Networks of differentially expressed genes that are involved the four major pathways of metastasis. Each square represents a gene, and 
each hexagon represents metastases that up-regulate (red label) or down-regulate (green label) those genes compared with either primary 
cells (dark blue border) or target cells (light turquoise border). (B) Genes involved in pathways of the oxidative metabolism are highlighted 
in yellow. (C) Genes involved in vascularization related pathways are highlighted in red. (D) Genes involved in pathways of cell mobility 
are highlighted in turquoise. (E) Genes involved in ion homeostasis related pathways are highlighted in purple. (Bottom panel) Table of 
enrichment terms (GO terms and KEGG pathways) in the four major pathway groups. Representative genes are those that are differentially 
expressed in at least three distinct metastasis comparisons. The functional enrichment analysis of the gene lists was performed using the 
ToppGene Suite.
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Table 1: Up- or down-regulated common genes in metastases compared to target

UP DOWN

gene symbol target tissue gene symbol target tissue gene symbol target tissue gene symbol target tissue

BSN li:pe:ov:ln:bo:ad:lu UTP11L pe:li:ov:bo:lu CKAP5 li:pe:ov:ln:bo:ad:lu FSTL4 li:ln:ov:bo:lu

YAF2 li:pe:ov:ln:bo:ad:lu NUSAP1 li:pe:ln:ov:ad NAB1 li:pe:ov:bo:ad:lu CDC37L1 pe:li:ov:ln:bo

MYO9B li:pe:ov:ln:bo:ad RAB1B li:pe:ov:ad:lu SLC1A1 pe:ov:li:ln:bo:lu CMTM6 li:pe:ov:ad:lu

SNTA1 pe:li:ov:ln:bo:lu A2M pe:li:ov:bo:ad ADH1A pe:li:ln:ov:bo:ad ADAMTS1 pe:li:ov:ln:ad

ZNF551 ov:li:pe:ln:ad:lu SHBG pe:ov:li:ad:lu: CCL24 li:pe:ov:bo:ad:lu: FNBP4 li:pe:ov:bo:ad:

GALNT10 pe:li:ov:ln:ad:lu PLCL2 pe:li:ov:ad:lu TGM1 li:pe:ov:ln:bo:lu FOXA1 ov:li:pe:ad:lu

TAS2R4 pe:li:ov:bo:ad:lu JPH2 li:pe:ov:bo:ad CDCA3 li:ov:pe:bo:ad:lu ZFYVE21 pe:ov:bo:ad:lu

SIRT4 pe:li:ov:ln:ad:lu RBM7 pe:ov:ln:bo:ad SPG21 li:pe:ov:ln:bo:ad RBBP5 li:pe:ov:ln:lu

EIF2B5 pe:li:ov:ln:bo:ad TAOK2 li:pe:bo:ad:lu TSC22D4 pe:li:ov:bo:ad:lu SERPINI2 ln:ov:bo:ad:lu

SON li:pe:ov:ln:ad:lu PPCDC li:ov:pe:ad:lu TRPC4AP pe:ov:ln:bo:ad:lu CD151 pe:li:ln:ov:ad

FLRT1 li:ov:pe:ln:bo:lu TMOD2 pe:ov:bo:ad:lu ZNF35 pe:li:ov:ln:bo:ad ARFRP1 pe:li:ov:ad:lu

SP110 pe:li:ln:bo:ad:lu XRCC1 pe:li:ov:ln:ad CX3CL1 li:pe:ov:ln:bo:ad AMELX li:ln:ov:bo:lu

TREH li:pe:ln:ov:bo:ad CDS2 li:ov:pe:ln:bo VGF ov:pe:li:ln:ad:lu HIST1H3E li:pe:ov:bo:ad

SMO pe:li:ov:bo:ad:lu PRRX2 pe:li:ov:bo:ad CDKL2 pe:ov:ln:bo:ad:lu GIMAP6 pe:ov:ln:bo:ad

TIAM1 li:pe:ov:bo:ad:lu TRIOBP li:pe:ov:bo:lu CYP46A1 li:pe:ov:ln:bo:ad MTF2 pe:ov:li:bo:ad

ZKSCAN1 li:ov:ln:bo:ad:lu DAK li:pe:ov:bo:ad CD160 li:ov:ln:pe:ad XPO6 li:pe:ov:ln:bo

ARL4D pe:li:ov:ln:bo:ad PBXIP1 li:pe:ov:ad:lu CHFR pe:li:ov:bo:ad CDK2 pe:li:ov:ad:lu

RIN1 pe:li:ov:ln:ad:lu RNF10 li:pe:ov:bo:ad TAF12 li:ov:bo:ad:lu TACR3 pe:ov:bo:ad:lu

SALL1 pe:li:ov:ad:lu RPL10A li:pe:bo:ad:lu ZNF667 li:pe:ov:ln:ad ANKRD7 li:pe:ln:bo:ad

SLC9A3 li:pe:bo:ad:lu PRDM14 pe:ov:li:ad:lu SNCAIP li:pe:ov:bo:lu BPI pe:ov:li:bo:ad

SOCS3 pe:ov:bo:ad:lu RAP1A li:pe:ov:bo:ad MAS1 li:pe:ov:ln:bo DOLK pe:li:ov:ad:lu

G6PD li:pe:bo:ad:lu RHOF pe:li:ov:ad:lu RFK li:pe:ov:ln:ad ARL14 li:ln:ov:ad:lu

P2RX1 pe:li:ov:ad:lu PLXNB1 pe:li:ov:ad:lu GFOD1 li:pe:ov:bo:ad NEIL3 li:pe:ln:ad:lu

CD84 pe:ln:bo:ad:lu VEGFC li:ov:pe:bo:ad PRKD2 pe:ln:bo:ad:lu TSGA10 li:pe:ov:bo:lu

SHANK1 pe:li:ov:ad:lu TNS1 ov:pe:ln:ad:lu ZFP36L1 li:ov:bo:ad:lu PITPNA li:ov:ln:bo:lu

TNKS pe:li:ov:bo:ad CUL1 li:pe:ov:ad:lu AGL pe:li:ov:ln:lu PLS1 ov:pe:li:bo:ad

POLR3E li:pe:ov:ad:lu CFTR pe:ov:li:ad:lu ZFYVE16 li:pe:ln:ad:lu CD9 li:pe:ln:ov:ad

PPP1R10 pe:ov:bo:ad:lu ZFP64 pe:li:ov:ad:lu TBC1D22A ov:ln:bo:ad:lu HIF1A pe:li:ov:bo:ad

PIGA li:pe:ov:bo:ad SLC35A3 pe:ov:li:ln:bo TMEM147 li:pe:ov:ln:lu XBP1 pe:ov:ln:bo:ad

RREB1 li:pe:bo:ad:lu DERL1 li:ov:ln:bo:ad RENBP li:ln:ov:bo:ad ZDHHC14 pe:li:ov:bo:ad

TAF1 pe:ov:ln:bo:ad PCSK1 li:pe:ov:bo:ad FAM135A li:pe:ov:ln:ad GLRB li:pe:ln:ad:lu

CIRBP ov:ln:bo:ad:lu SDAD1 li:pe:ov:ln:bo SCD5 pe:li:bo:ad:lu IER3IP1 pe:ln:bo:ad:lu

PRODH2 pe:ov:ln:bo:ad RPL35 li:pe:ov:ad:lu S100A1 ov:li:ln:bo:ad TSHB li:pe:ov:ad:lu

PFDN2 pe:ov:li:ln:ad TEX2 pe:li:ov:bo:ad LEMD3 pe:ov:li:bo:ad GPR143 li:pe:ln:ov:bo

TECTA li:ov:bo:ad:lu STK3 pe:li:bo:ad:lu CCRL2 pe:li:ov:bo:ad SHC1 li:pe:ov:ln:bo

(Continued)
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human metastasis genes also display similar expression 
changes in the murine metastases.

DISCUSSION

The genetic core program of metastasis encodes four 
functional entities, which are activated over the primary 
tumor and are maintained in the target site. Firstly, the 
gene expression analysis corroborates recent findings 
that metastasis genes alter the metabolism of cancer 
cells to increase energy production [35]. This adjustment 

conveys anchorage-independent survival [36, 37], a 
feature that may still be required in the foreign micro-
environment of a metastatic target organ [38]. Secondly, 
angiogenesis and tissue remodeling is also reflected 
in the gene expression profiles. Tissue remodeling is 
consistent with our recognition that metastasis genes 
are stress response genes [7, 8]. A third component is 
involved in reducing extracellular matrix interactions and 
enhancing cell motility. This reflects the feature of cancer 
cell homing. As the number of genes down-regulated in 
metastases compared to primary tumors is substantial, 

UP DOWN

gene symbol target tissue gene symbol target tissue gene symbol target tissue gene symbol target tissue

PNOC li:pe:ov:bo:ad RCN1 li:pe:ln:bo:ad PDPN pe:ov:bo:ad:lu PAPSS2 li:ln:bo:ad:lu

USP4 pe:li:ln:bo:ad PRDM1 pe:li:ln:bo:ad GDPD3 li:pe:ov:ln:ad SLC38A4 pe:ov:bo:ad:lu

CHN2 li:pe:ln:ad:lu SFI1 li:pe:ov:ln:ad SIL1 pe:ov:ln:bo:lu ABCC2 li:pe:ov:ln:ad

SPAST pe:li:bo:ad:lu SNRK ov:li:ln:ad:lu IQSEC1 pe:ln:bo:ad:lu MYOZ2 li:pe:ln:ov:bo

TULP2 pe:ov:li:ad:lu OXCT2 li:pe:ov:bo:ad TTYH1 li:ln:bo:ad:lu BCL2A1 li:ov:pe:ln:ad

WNT1 li:ov:pe:ad:lu P4HA1 pe:li:ln:ad:lu SLC25A28 pe:ln:bo:ad:lu ASL li:pe:ov:ln:ad

MKNK2 li:pe:ov:bo:ad DGKE pe:li:ov:bo:ad FZD6 ov:li:pe:ln:ad GTF2A2 pe:ov:li:bo:ad

PLCD1 li:pe:ov:bo:ad PIGC li:pe:ov:ad:lu IFT57 li:pe:ov:bo:lu VPREB1 pe:li:ov:ad:lu

WNT11 pe:li:ov:bo:ad SIVA1 li:pe:ov:bo:lu ZNF638 li:ov:bo:ad:lu CTSA li:pe:ln:ad:lu

PGS1 pe:li:ov:bo:ad SYNE2 pe:ov:bo:ad:lu GRAP2 ov:li:ln:bo:ad XPNPEP2 li:ln:ov:bo:lu

SPTLC1 pe:li:ov:bo:ad SQRDL li:pe:bo:ad:lu MRPL52 ov:li:ln:bo:ad SWAP70 li:pe:ov:bo:lu

PLA2G2A li:pe:ov:bo:ad GPX7 pe:li:ov:ad:lu EXOSC2 pe:li:bo:ad:lu TAF2 pe:ov:ln:ad:lu

SLC2A3 pe:ov:li:ln:ad VILL li:pe:ov:bo:ad ZSCAN16 li:pe:ln:ad:lu WT1 pe:ln:ov:bo:ad

SPEN pe:li:ln:ad:lu SNRPD1 li:pe:ov:ad:lu LIF li:ov:ln:bo:ad ZNF281 pe:ov:ln:bo:ad

NOX4 li:ov:ln:ad:lu TPM1 li:ov:bo:ad:lu RRH pe:li:ov:ln:bo ZYX pe:ov:bo:ad:lu

UBAP1 li:pe:ov:bo:ad OBSCN pe:ov:li:ad:lu MFAP3L pe:ov:bo:ad:lu MPP1 li:pe:ov:bo:ad

ADA li:pe:ov:bo:ad SH3TC1 ov:pe:li:bo:ad TTC22 li:pe:ln:ad:lu MRPS22 li:pe:ov:bo:ad

TLE1 pe:li:ln:ad:lu GZMH pe:ov:li:bo:ad ADAM18 li:ov:ln:bo:ad LEFTY2 pe:ov:bo:ad:lu

RARRES2 li:pe:ov:bo:ad EPN3 pe:ln:bo:ad:lu CLIP4 li:ov:pe:ad:lu CALML3 li:pe:ln:ad:lu

TBCA li:pe:ov:bo:ad ABAT pe:li:ov:ln:bo SPAG1 li:pe:ov:ln:bo ZBED2 li:pe:ov:ln:bo

FADD pe:ov:li:ln:ad LTF pe:li:ov:bo:ad RPS27L pe:ov:ln:bo:lu SSX2IP pe:ov:ln:bo:ad

CACNG3 pe:ov:ln:ad:lu THUMPD2 li:ov:ln:ad:lu NXT2 li:pe:ov:bo:lu

ABCA4 pe:li:ln:ad:lu FLNA li:pe:ov:bo:ad AUTS2 li:pe:ov:ln:ad

YAP1 li:pe:ov:bo:ad RPS6KA3 pe:li:ov:ad:lu GK pe:ov:bo:ad:lu

SLC2A11 li:ov:pe:ln:lu

 (Left panel) Genes significantly up-regulated (as described in Supplement 2) in the metastases over host tissue of at least 
5 distinct target sites (of 7 sites total). Right panel) Genes significantly down-regulated in the metastases compared to host 
tissue of at least 5 distinct target sites (of 7). Liver = li, peritoneum = pe, ovary = ov, lymph node = ln, adrenal = ad, bone = 
bo, lung = lu.
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the inactivation of metastasis suppressor genes may be as 
important for cancer dissemination as the up-regulation 
of metastasis genes [34, 39, 40]. Down-regulation was 
previously observed for bone marrow micro-metastases 
of breast cancers [41]. Fourthly, we found in a prior study 
that anchorage-independence is associated with genetic 
reprogramming for the homeostasis of inorganic ions 
[42]. This phenomenon seems to play a continued and 
substantial role in the destination sites of dissemination. 
Inorganic molecules, including copper and potassium, 
have been associated with tumor progression and 
angiogenesis [43-45]. The molecular connections, patho-
physiologic effects and therapeutic targeting potential of 
the metastasis-associated modifications in ionic balance 
remain to be fully elucidated.

In various target organs, the four core modules are 
activated through overlapping, but topologically distinct 
genetically encoded programs. Beside the four required 
functional entities, adjustments to the particular host tissue 
micro-environment, which has been colonized, are also 

important for the outgrowth of clinically relevant cancer 
metastases. These adaptations reflect the site-specific 
component of the genetic metastasis signature. The gene 
expression profile of metastasis is characterized by a core 
program component that increases motility/metabolism/
vascularization/ionic balance plus a specific program 
component that adjusts to the target site.

Cancer dissemination is associated with alterations 
in gene expression within the cancer cells. The metastasis 
gene deregulation is not specific for any primary tumor. 
This has been known for individual metastasis genes, such 
as osteopontin, which is associated with the progression 
of about 30 different cancers [46, 47]. We now expand 
this paradigm to entire gene expression profiles, as we 
have found common signatures for metastases that are 
not active in the original type of cancer (see Table 2) and 
signatures that are shared in metastases to the same organ 
(see Table 1).

Gene expression analysis cannot discern whether 
the RNA profile of a metastasizing cancer cell is altered 

Figure 3: Comparison of the gene expression levels of primary colon cancers to colon cancer metastases in livers. (A) 
Gene expression profiles among 47 diverse cancers. In the heat map of GSE2109, the colorectal cancers cluster, metastases by various 
primary tumors to the same organ also appear to share gene expression signatures. (B, C) The gene list is organized from high to low 
expression in the primary tumor according to GSE2109. The gene expression signatures of the metastases (C) are clearly distinct from the 
primary tumor (B). (D) Some up-regulated genes in the metastases (ASGR2, CRP, FGA, FGG, FGB, CYP2C9, ACSM2, ALB) are also 
high in healthy liver tissue. They may have been contributed by the host. However, the major expression profile in the liver (insert shows 
highly expressed genes in increasing order) is clearly distinct from the metastases, supporting the notion of a cancer-specific signature.
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Table 2: Up- and down-regulated common genes in metastases compared to source tumor

UP DOWN

gene symbol cancer source gene symbol cancer source gene symbol cancer source

MAGEA12 ov:br:pr:ki: EIF3A ov:br:ki: FCGRT ov:br:pr:ki:

TRPC7 ov:br:pr:ki: TAX1BP3 ov:br:ki: ERCC5 br:pr:ki:

BBOX1 br:pr:ki: EYA3 br:pr:ki: EPN2 br:pr:ki:

IPO9 br:pr:ki: CTSE br:pr:ki: C6orf15 br:pr:ki:

TM6SF1 br:pr:ki: MMP26 br:pr:ki: NAALADL1 br:pr:ki:

HP1BP3 ov:br:ki: LIG1 ov:br:ki: SAMM50 br:pr:ki:

SUV420H1 br:st:ki: TRIM28 br:pr:ki: YIPF2 co:br:pr:

ZNF667 br:pr:ki: CPS1 br:pr:ki: CCDC85B br:pr:ki:

CEP164 br:pr:ki: ABCA2 ov:br:ki: EGR4 br:pr:ki:

MAP2K4 br:pr:ki: SEMA4A br:pr:ki: FBXO34 br:pr:ki:

POP4 br:pr:ki: CNNM2 br:pr:ki: CALCR br:pr:ki:

SCGB1D2 br:pr:ki: TLR2 ov:br:ki: CAV2 br:pr:ki:

FARS2 ov:br:pr: BRWD1 br:pr:ki: KRT35 br:pr:ki:

DNAH7 ov:br:pr: HPN br:pr:ki: S100A7 ov:pr:ki:

ZDHHC7 br:pr:ki: RAC1 br:pr:ki: TLE4 br:pr:ki:

TAP2 ov:br:pr: DNAJB1 ov:br:pr: LMO1 br:pr:ki:

GBE1 br:pr:ki: EFHD1 br:pr:ki: F9 br:pr:ki:

ZFP36L1 br:pr:ki: DHX40 ov:pr:ki: POGK br:pr:ki:

FOXI1 br:pr:ki: RAB26 br:pr:ki: TRPV2 br:pr:ki:

ARMCX1 br:pr:ki: ZNF639 br:pr:ki: MLLT3 br:pr:ki:

C15orf39 br:pr:ki: MYT1 br:pr:ki: ZBTB6 br:pr:ki:

DDX17 br:pr:ki: VAPA ov:br:ki: PTBP1 br:pr:ki:

DCHS1 br:pr:ki: VPS39 ov:br:ki: MCCC2 br:pr:ki:

POLD1 br:pr:ki: SMPDL3A br:pr:ki: UBASH3A br:pr:ki:

C1QA br:pr:ki: CRISP2 ov:br:pr: CD163 br:pr:ki:

NARS2 ov:br:ki: LRRC47 br:pr:ki: GRIK1 br:pr:ki:

TNPO2 br:pr:ki: NFIB br:pr:ki: SEC24C br:pr:ki:

ATXN2L br:pr:ki: NCR1 br:pr:ki: CCL8 br:pr:ki:

LYPLA1 ov:st:ki: CPNE3 br:pr:ki: ULBP2 br:pr:ki:

HRH4 br:pr:ki: HECTD3 ov:br:ki: RPL18 br:pr:ki:

NEIL3 br:pr:ki: BRSK2 ov:br:pr: COL17A1 br:pr:ki:

DHDDS ov:br:ki: SSTR1 br:pr:ki: AOAH br:pr:st:

GLP1R ov:pr:ki: COX11 br:pr:ki: ATP1B3 br:pr:ki:

(Continued)
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at the onset of dissemination, and thus is the determinant 
of organ preference, or is shaped in the metastatic 
micro-environment, and thus is a consequence of 
having arrived at a specific target organ (the question 
is under active discussion [48-50]). Frequently, studies 
into cancer aggressiveness have focused on biomarkers 
in the primary tumors. The over-expression of specific 
genes has been associated with risk for progression in 
numerous types of cancer. Remarkably, our analysis 
finds several genes with such attributions, including 
metalloproteinases (specifically MMP1), chemokines, 
and POSTN to be suppressed in disseminated growths. 

This suggests that some of the gene products for tumor 
progression are only required for the early stages of 
cancer spread, not for the outgrowth of distant metastases 
after the transformed cells have reached their target 
organs. The disappointing clinical trial results with MMP 
inhibitors may well indicate that the drugs were given 
too late in disease progression [51].

The meta-analysis approach to the evaluation of 
actual patient data escapes the compromises associated 
with small local cohorts in original studies or with in 
vivo experimental models for cancer, but it is limited 
by the correlative nature of the results obtained. The 

UP DOWN

gene symbol cancer source gene symbol cancer source gene symbol cancer source

MVP br:pr:ki: CXCL6 br:pr:ki: HAPLN1 br:pr:ki:

SCLY br:pr:ki: LTA br:pr:ki: MLC1 br:pr:ki:

MAPK6 br:pr:ki: CASK br:pr:ki: ELOVL5 br:pr:ki:

C1QB br:pr:ki: HIPK1 ov:br:pr: PARP16 br:pr:ki:

ZNF34 br:pr:ki: FIGF br:pr:ki:

SLC39A2 br:pr:ki: B3GALT2 br:pr:ki:

ZFAND3 br:pr:ki: PDCD1 br:pr:ki:

SNX24 ov:pr:ki: RGS17 br:pr:ki:

TDO2 br:pr:ki: TCN2 br:pr:ki:

ADCY7 ov:br:ki: RBM28 br:pr:ki:

LPO br:pr:ki: ARHGAP11A br:pr:st:

CCDC64 br:pr:ki: TGM2 br:pr:ki:

KRT1 br:pr:ki: SEMA3E br:pr:ki:

SDAD1 br:pr:ki: TNFSF10 br:pr:ki:

MSMB br:pr:ki: CASD1 br:pr:ki:

GDAP1L1 br:pr:ki: SF3A2 br:pr:ki:

SULT1C2 br:pr:ki: TPM1 br:pr:ki:

KCND3 br:pr:ki: SLC18A2 br:pr:st:

ENO2 br:pr:ki: CACNG3 br:pr:ki:

BMP2 ov:br:ki: MICB br:pr:ki:

ZBTB24 ov:br:pr: DNAJB9 br:pr:ki:

FHOD3 br:pr:ki: WDHD1 br:pr:ki:

DMXL2 ov:br:ki: PSMB1 br:pr:ki:

EID1 br:pr:ki: CAPN7 br:pr:ki:

(Left panel) Genes significantly upregulated (as described in Supplement 3) in the metastases over primary tumors of at 
least 3 distinct types of cancer. Right panel) Genes significantly downregulated in the metastases over primary tumors of at 
least 3 distinct types of cancer. Ovary = ov, breast = br, prostate = pr, kidney = ki, stomach = st, colon = co.
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robustness of the findings is also dependent on quality 
and quantity of the input data sets, which vary with 
source and target sites. Derived from increasingly 
available computing power and cross-platform 
normalization algorithms, the ability to assemble 
multi-gene lists for distinguishing metastases from 
their primary growths and mapping them to their target 
organs has identified gene regulation pathways, some 
of which have thus far escaped laboratory research. 
Such pathways may be detectable only in their 
actual molecular pathophysiology context, but not in 
experimental research models that selectively target 
individual genes. While requiring confirmation through 
additional research approaches, the investigation of 
8723 genes in 653 gene expression profiles (close to 
5.7 million data points) has generated novel insights. 
Confirmation has been obtained in a murine model of 
metastasis.

The treatment of metastatic cancer has historically 
been guided by the originating primary tumor, such 
that liver metastases from colorectal cancer have 
received chemotherapy regimens deemed appropriate 
for primary colorectal cancer whereas liver metastases 
from pancreatic cancers have been treated with the drug 
combinations found suitable for cancers originating in 
the pancreas. Because the gene expression signatures of 
cancer metastases change substantially from their primary 
tumors and because metastases from various anatomical 
sites of origin to the same target organ converge in their 
gene expression patterns, a more promising strategy could 
be to focus the choice of combination chemotherapy on 
the target organ for metastases. This would imply that it 
may be more efficacious to treat all liver metastases with 
similar drug regimens that target the genetic core program 
of metastasis or the site-specific genetic program of liver 
metastasis, regardless of their organ of origin.

Figure 4: Murine metastases. B16-F10 cells were injected intravenously and disseminated colonies were retrieved after two weeks 
for cell sorting and ensuing RNA extraction. Site- and tissue-specific gene expression was assessed by RNAseq. (A) Heat map of gene 
expression comparing host tissue to metastases to primary (undisseminated) tumor. (B) Network map (generated with Cytoscape 3.5.1) 
indicating the relationships among differentially expressed genes in metastases, cognate host tissue and cutaneous melanoma. The corners 
contain the comparisons of host versus metastases (top left), primary tumor versus metastases (bottom left), metastases versus host (lower 
right), and metastases versus primary tumor (top right). Connectivity related to metabolism (top right) is shown with dark or light green 
edges, vascularization (bottom) has red edges, and cell motility/cell adhesion (lower left) are connected via lilac edges.
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MATERIALS AND METHODS

Meta-analysis

Source data

We investigated the gene expression arrays from a 
search for solid tumor metastases, comprising a total of 
653 metastases and their controls. All array data and their 
annotations were downloaded from NCBI’s GEO database 
[52]. Of these 653 mined experiments, 449 had been performed 
using the Affymetrix platform, and the remaining 204 had 
utilized the Agilent platform. These samples belong to 8 “same 
target site” groups and 6 “same source site” groups, where 
the former refer to specimens derived from different primary 
tumor sites but metastasized to the same target locations, while 
the latter refer to specimens with the same primary tumor 
locations and metastases into various target organs. The “same 
target site” group includes 294 samples. The “same source 
site” group includes 551 samples. 192 samples are shared 
between the “same target site” and the “same source site” 
groups (Supplement 1). The target site “chestwall” was not 
sufficiently defined for matching host tissue to be identified, 
so it was included only in the “same source site” analysis. The 
meta-analysis was conducted by AccuraScience.

Informatics reconciliation among array 
platforms and versions

The entire set of array data was derived from 5 
different versions of Affymetrix arrays and 1 version of 
Agilent arrays. Because this study focused on coding RNA 
and aimed at covering all GEO sets identified in the search, 
all platforms were included. The source heterogeneity 
posed two primary challenges for an integrated analysis 
of array data across different platforms and their multiple 
versions. The first challenge was an informatics task 
involving the integration and reconciliation of annotation 
data from the diverse array platforms and versions. This 
was handled with a Perl program (Supplement 1). The 
second challenge was to identify a proper method for 
removing the batch effect, and to perform proper cross-
platform normalization of these array data from various 
origins. YuGene [53] uses a cumulative proportion 
transform. Let Pi denote the expression of a gene, and P(i) 
denote the expression of the same gene, but in descending 
order. The YuGene transformed value for the gene is
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For most data sets, this process achieved excellent 
normalization (see Supplement 1).

Principal component analysis

Principal component analysis (PCA) allows all 
samples to be examined on a low-dimensional space, 
representing the first few principal components. It 
also offers an effective way to evaluate and compare 
normalization methods. PCA was carried out using 
the function pca() in the R (version 3.2.1) package 
FactoMineR (version 1.31.4) [54], using all genes shared 
among all array platforms/versions. Configuration: 
scale.unit = TRUE, ncp = 5, ind.sup = NULL, quanti.
sup = NULL, quali.sup = NULL, row.w = NULL, col.w 
= NULL, graph = TRUE, axes = c(1,2). PCA was done 
separately for the gene expression profiles in the “same 
target site” groups and the “same source site” groups, 
following YuGene-based normalization. The results 
allowed for a few clearly distinguishable clusters to be 
identified.

Differential expression analysis

Differential expression analysis of the array data 
was accomplished using the limma R package [55]. For 
each of the “same source site” groups, comparison was 
made between the primary tumor growth (representing the 
source site), and all metastases (regardless of their target 
sites) lumped together. For each of the “same target site” 
samples, comparison was made between the healthy host 
organ (the target site) and tissue-specific metastases to 
that site from all source tumors lumped together. Multiple 
stringency cut-offs (FDR < 0.05, FDR < 0.2 and P value 
< 0.05) were used to select significantly up- and down-
regulated genes.

A second approach conducted pair-wise differential 
expression analysis between each of the metastatic 
sites and the primary source tumor, or between the 
healthy target site and each of the metastases from 
various primary tumors to that site. Following a non-
stringent cut-off, the obtained gene lists were included 
in the pathway enrichment analyses. This procedure of 
pairwise evaluation resulted in identical gene lists and 
GO category lists to the lumped analysis, differing only 
in stringency (the number of members on the lists). 
Whether the source sites were lumped or compared 
pairwise to the metastatic target sites, the smaller of the 
resulting gene lists/GO categories was always contained 
in the larger list (with 0-7% of the entries in the shorter 
list diverging from the longer list, not shown). Hence, we 
performed the study with lumping together metastases 
in “same target site” or primary tumors in “same source 
site” investigations.
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Pathway enrichment analysis

Differentially expressed genes were used as input 
for the pathway enrichment analysis, which identifies 
biological pathways (denoted as Gene Ontology terms or 
GO categories) that are associated with the up-regulated 
or the down-regulated genes. The function enrichDAVID() 
in the R (version 3.2.1) package clusterProfiler (version 
3.0.1) [56] was utilized. Because the maximal number 
of genes that clusterProfiler can accept as input is 2000, 
when the number of up- and down-regulated genes was 
greater only 2000 genes were randomly selected. An FDR 
cut-off of 0.05 was used in selecting significant pathways. 
Enriched categories (GO terms) were evaluated with the 
understanding that these results are highly susceptible to 
many factors. The P-value of a GO term was produced 
using Fisher’s exact test (a hypergeometric distribution-
based test), which is very sensitive to the numbers of 
genes in the up- or down-regulated gene list.

Individual data sets

To identify metastatic signatures, we compared the 
gene expression levels in primary colon cancers with the 
gene expression levels in colon cancer metastases to the 
liver. The source data comprise a human data set from GEO 
(GSE2109). An assessment of 47 signatures, derived from 
various specimens, reflected on gene expression patterns 
among primary and metastatic sites. It also allowed the 
comparison between metastases and healthy target tissues. 
To identify the gene expression signature of metastases to 
the same organ from various primary tumors, we analyzed 
the expression profiles of liver metastases (from cancers 
of the breast, colorectum, exocrine pancreas, ovary, vulva, 
and unknown site; each corrected for contamination by the 
host tissue) for genes with the least variation in expression. 
This approach was based on the rationale that the highly 
consistently expressed genes are most likely to be functionally 
important in organ-specific metastasis, whereas large 
variations in expression levels may reflect noise generated 
by the various organs of origin of the primary tumors or by 
inter-individual differences among patients. Approaches that 
consider signal-to-noise metrics have been used successfully 
to analyze metastases of diverse origins [33].

We analyzed a human breast cancer Agilent data set 
in GEO (GSE26338-GPL1390) [57]. From 22576 genes, 
we identified 687 with location-specific expression patterns 
by using ANOVA (with equal or non-equal variance 
assumptions) with Benjamini-Hochberg FDR < 0.05, 
then combined the total of 1146 genes to seek expression 
differences above 25%. The results were clustered and divided 
into 11 k-means groups for the identification of differentially 
expressed genes. The data were treated with rows (genes, 
those with few probes averaged to one value) and columns 
aligned. This first run had grouped the columns according to 
breast tumor and then the different sites of metastasis.

Multi-pathway analysis

We have brought into production a new web 
server, http://metastatic.cchmc.org, in which we have 
gathered and combined a great deal of current reference 
knowledge and data derived from the literature 
and from published genomic data sets. The system 
includes the ability to search for metastatic cancer-
related information derived from disease descriptions 
in OMIM, UMLSKS, mouse knockout and transgenic 
allele phenotypes, gene ontology and pathway data 
sources, and gene expression, epigenetic, and chemical 
biology-based genomic data sets that relate to metastatic 
experimental models, phenotypes, or observational 
profiling studies. The tool allows for subsequent 
integration of this information and the construction of 
biological networks [58]. Using a database constructed 
from gene expression microarray data of cancer 
samples (http://gataca.cchmc.org/gataca/metastatic), 
we now analyze differential gene expression in distinct 
metastatic tumors and metastatic sites.

Murine metastasis model

The in vivo experiments were conducted under an 
IACUC-approved protocol, which followed the standards 
of the ARRIVE guidelines [59]. The B16-F10 cells were 
obtained from ATCC. Cells were kept in culture for no 
more than 4-6 weeks before replacing with a fresh batch. 
Mycoplasma tests were conducted on a regular basis 
(every 4-8 weeks). We injected C57Bl/6 TG [UBC-GFP] 
mice with 0.2 x 106 B16-F10 dsRed melanoma cells via the 
tail vein. This allowed the formation of disseminated foci 
without the presence of large primary tumors requiring 
early termination of the experiment. While pulmonary 
dissemination was predominant, metastases were found in 
multiple organ sites. Subcutaneously injected cells (rear 
flank) served as model for the primary tumor. After 14 
days, total necropsy identified metastases as black spots 
on the surface of target organs (lungs, liver, adrenals, 
kidney, ovaries, testes). The spots were excised with a 
narrow margin, single cell suspensions were generated by 
grinding between frosted glass slides, followed by passing 
through a strainer. The cells were sorted according to 
forward scatter, side scatter, red and green fluorescence in 
order to separate metastatic cells from host cells.

RNA was extracted using the Qiagen RNAeasy 
kit. An initial amplification step comprised the use of the 
Ovation RNA-Seq System v2 (NuGEN) to create double-
stranded cDNA from 0.5 ng total RNA. The concentrations 
were calculated using the Qubit dsDNA BR assay. An 
Agilent RNA Nano 6000 LabChip analyzed the size 
distribution, and the samples confirmed the expected size 
distribution traces. Nextgen sequencing was performed on 
SE100 at 20 million reads per sample, covering 36,000 
genes.

http://metastatic.cchmc.org
http://gataca.cchmc.org/gataca/metastatic
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