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Abstract

Ribosomal protein genes encode products that are essential for cellular protein biosynthesis and are major
components of ribosomes. Canonically, they are involved in the complex system of ribosome biogenesis
pivotal to the catalysis of protein translation. Amid this tightly organised process, some ribosomal proteins
have unique spatial and temporal physiological activity giving rise to their extra-ribosomal functions. Many of
these extra-ribosomal roles pertain to cellular growth and differentiation, thus implicating the involvement of
some ribosomal proteins in organogenesis. Consequently, dysregulated functions of these ribosomal proteins
could be linked to oncogenesis or neoplastic transformation of human cells. Their suspected roles in
carcinogenesis have been reported but not specifically explained for malignancy of the nasopharynx. This is
despite the fact that literature since one and half decade ago have documented the association of ribosomal
proteins to nasopharyngeal cancer. In this review, we explain the association and contribution of dysregulated
expression among a subset of ribosomal proteins to nasopharyngeal oncogenesis. The relationship of these
ribosomal proteins with the cancer are explained. We provide information to indicate that the dysfunctional
extra-ribosomal activities of specific ribosomal proteins are tightly involved with the molecular pathogenesis
of nasopharyngeal cancer albeit mechanisms yet to be precisely defined. The complete knowledge of this will
impact future applications in the effective management of nasopharyngeal cancer.
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Background

Eukaryotic ribosomal proteins (RPs) comprises 79 differ-
ent known types that are broadly divided into two
groups, the small (40S) and large (60S) ribosomal sub-
units. Since 2014, a revised naming system for RPs was
published [1] and this is used in this review. In this im-
proved alphanumeric nomenclature system, the prefixes
eS, and uS connote eukaryotic and universal ribosomal
proteins of the small subunit respectively. The prefixes
eL, and uL connote eukaryotic and universal ribosomal
proteins of the large subunit respectively.

Interestingly, albeit within an integrated system of
transcriptional and translational regulation, some extent
of uniqueness occurs among RPs in the defined physio-
logical regulation of specific genes [2]. This gave rise
to the cogent suspicion that RPs have physiological
significance extraneous to ribosome biogenesis and
protein biosynthesis. Indeed, as early as the mid-90s,
evidence emerged to explain the extra-ribosomal func-
tions of RPs that include DNA replication, transcrip-
tion, DNA repair, DNA splicing and modification, and
apoptosis [3]. Since then, there has been a steady
increase in reports or findings documenting these ex-
traneous functions of RPs [4—6] as listed in Table 1.
The tight relationship of ribosomal proteins with cell
development and differentiation through their extra-
ribosomal functions also means that any altercation of
their structures and/or expression can result in mal-
development and malignancy. The physiological connec-
tion between RPs and cancers has also been extensively
reviewed and explained [5, 6], including their interaction
with the p53-MDM2 complex in events of carcinogenesis
[7]. The focus of this review is confined to the relation-
ships of RPs with nasopharyngeal carcinoma (NPC).
This cancer begins as a malignant tumour at the epithe-
lial lining of the nasopharynx, more precisely at the
Fossa of Rosenmuller — a depression next to and above
the opening of the Eustachian tube [8, 9]. A compre-
hensive review on NPC-associated RPs (NRPs) and
their significance in the NPC oncogenesis is timely to
facilitate further endeavours on exploring NRPs as
targets for diagnosis and prognostic biomarkers, and
targeted drug therapy.

As such, this review covers what has been known thus
far from the link between RPs and NPC, and what has
been proposed regarding the molecular pathogenesis
mediated by NPC-associated RPs (NRPs) in NPC situ-
ation. Literature reviewed here encompasses findings on
cancer-associated RPs, current knowledge on NPC and
NRPs, and information on the plausible biological roles
of NRPs in the context of NPC carcinogenesis. Issues
under discussion include the complex relationship be-
tween NRPs and NPC that highlights the complexities
on the former’s roles and mechanisms in the neoplasm
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Table 1 Known possible extra-ribosomal functions of eukaryotic
ribosomal proteins as derived from Warner and McIntosh, [4]; de
las Heras-Rubio et al,, [5]; Xu et al,, [6]

Ribosomal Extra-ribosomal functions

proteins

el30, uS14, uL12,  Inhibits its own pre-mRNA splicing

usS13

ulL2, eS28 Shortens its own mRNA T/,

uL18, uL5, uL14, Sequesters M/HDM2 from ubiquitinizing E3

ulL24, eS7

uL5 Sequesters c-Myc from transactivating its targets

uL24 Promotes p53 translation

uL14 Negatively regulate Miz1 by sequestering
nucleophosmin

RACK1 Cell signalling via acting as a receptor for protein
kinase C

ul13 Inhibits mMRNA translation (GAIT complex) subset of
inflammation-related proteins

us3 Act as a DNA endonuclease (apurinic/apyrimidinic
endonuclease ll) for DNA repair; binds NFkB; and
serves as a signal mediator between neuronal
apoptosis and DNA repair

uL16 Binds c-jun

us10, eL6 Influences Pol lll transcription

el22 Binds Histone H1 (affects transcription), and forms a
RNP with Epstein-Barr-encoded small RNA (EBER-1)
in B lymphocytes

eS26 Susceptibility factor to diabetes

us10 Participates in anti-termination by RNA polymerase
Il

uL3 Induction of G1/S arrest or apoptosis by
modulating p21

uL10 DNA repair: apurinic/apyrimidinic endonuclease Il;
promotes viral infection; and functions in viral
translation

usST Negatively controls splicing of its own pre-mRNA

us15 Negatively controls splicing of its own pre-mRNA

uL30 Inhibits the translation of specific mRNAs, including
its own

el19 Regulation of the Slit-Robo signalling pathway for
axon guidance and angiogenesis

eS1 Modulation of erythropoiesis, and binds to the
Epstein Barr virus encoded protein EBNAS

P2 Iron-binding protein responsible for distributing

iron intracellularly

of the latter; and the applicability of NRPs as biomarkers
for NPC.

Ribosomal proteins and cancers

Early evidence of the association between RPs and can-
cers came from the observations of haploinsufficiency of
eS4 in Turner Syndrome [10] and eSI9 mutation in the
Diamond-Blackfan Anaemia (DBA) condition [11]. Be-
sides eS19, mutations and deregulation of several other
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RP genes have been reported to be associated with cancer
in DBA individuals [12]. In colorectal cancer, numerous
RP genes were reportedly dysregulated [13, 14] suggesting
their roles in the regulation of cell proliferation, apoptosis,
tumor suppressors, and malignant transformation/pro-
gression [15]. Besides colorectal malignancy, association of
RPs to cancers includes uLl4 in lung adenocarcinoma
[16]; eL22 in T-cell acute lymphoblastic leukemia [17];
el8, eL37, eS19, eS21, eS24, and eS27 in prostate cancer
[18-20]; uS8 in breast cancer [21], eS27 in gastric carcin-
omas [22]; eL5 and eL14 in ovarian cancer [23]; and uS8
and RACKI in liver cancer [24, 25]. Table 2 provides an
overview of RP-associated cancer-related processes based
on information from Xu et al. [6]

Nasopharyngeal carcinoma (NPC)

NPC patients present with a wide range of symptoms
and are usually confirmed upon histopathological examin-
ation of tissue biopsies [26]. The World Health Organisa-
tion (WHO) classification of NPC constitutes three major
types, that is the Type I, II, and III [27] with Type II being
the most common [28]. NPC has moderate to high preva-
lence in Southern China, Southeast Asia, Arctic and North
Africa [29-33] and particularly among the Cantonese in
China [32, 33]. Early indication of genetic susceptibility to
NPC came from the Human Leucocyte Antigen (HLA)
factor [34]. This is followed by reports of allelic loss in
chromosome 3p, 11q, and the inactivation of RASSFIA
[35—37]. Besides this, a correlation between NPC patho-
genesis and Epstein-Barr Virus (EBV) infection has been
established [38] with higher EBV positivity in Type II
compared to Type I NPC [39]. Environmental factors such
as the over-consumption of salt-preserved food [40-42],
cigarette smoking [40, 41, 43], and cumulative exposure to
formaldehyde [44] have been reportedly linked to the in-
creased risk of NPC. Almost all NPC scenarios begin with
EBV infection, but the concerted roles of genetic factors,
viral infection, and environmental triggers are necessary
for the manifestation of the disease.

Table 2 Plausible roles of RPs in tumorigenesis

Ribosomal proteins Cancer-related

processes
uS3, eS1, eS6, eS7, uS11, eS25, eS27, uS14, ulL3, el6, Apoptosis
uL30, ulL2, uL14, ul24

uS3, uS7, eS6, eS7, uS11, us19, eS19, eS10, eS25, eS26,  Cell cycle

eS27,eS31, ul3, ulL18, el6, ulL30, uL5, el13, ulL14, ulL24,
el 31, elL34, el37, elL41

eS6, uS4, uS15, uS11, uS8, eS24, eS27, eL6, uL2, ulLs, Cell
el15, ul22, ul24, el 29, el 31, el 34, eL42 proliferation

P1, eS1, uS11, uL18, elL22, eL41 Neoplastic

transformation

uS3, eS6, eS7, uS8, eS24, eS27, el 15 Cell migration

and invasion
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Diagnosis and treatment of NPC

NPC is one of the most misdiagnosed cancers whereby a
majority of reported cases are from advanced stages with
poor prognosis. Only 9% of cases are detected at Stage I,
while 83 and 39% at Stages II/III, and IV respectively
[45]. Conventional diagnosis is by nasopharyngeal en-
doscopy, lymph node histopathology, and immunoassay
of EBV-derived antigens [46]. Biomarkers such as
Galectin-1 [47], SRY-related HMG-box 4 (SOX4) [48],
CXC chemokine receptor type 7 (CXCR7) [49], hypoxia
up-regulated 1 (HYOU1) [50], Kelch Domain Containing
4 (KLHDC4) [51], Aldo-keto-reductase 1B10 (AKR1B10)
[52], prohibitin-1 (PHB1) [53], and Cyclooxygnenase 2
(Cox-2) [54] have also been identified. A combined ap-
proach of using the C-C motif chemokine ligand 27
(CCL27) biomarker and EBV-associated antigens can
increase detection sensitivity [55]. Treatment of NPC
depends on the location and invasiveness of the tumor,
as well as the patient’s overall health status. Early non-
metastatic stages (in situ tumors) is usually treated using
the intensity-modulated radiotherapy (IMRT) [56]. Ad-
vanced stages are often managed using radiotherapy and
chemotherapy (docetaxel, cisplatin or 5-fluorouracil)
[57]. Recently, the molecule-based targeted therapy
using Cetuximab (a chimeric monoclonal antibody that
targets and inhibits the epidermal growth factor recep-
tor, EGFR) concurrently with induction cisplatin-based
chemoradiotherapy has significantly increased the overall
survival rate of patients [58].

Ribosomal proteins and nasopharyngeal carcinoma

Initial findings of NPC-associated RP (NRP) were re-
vealed in the elevated expression of metallopanstimulin
1 (MPS-1) in head and neck malignancies [59] — an RP
encoded by the eS27 gene [60]. The transcript levels of
eS27 and eS26 have also been found to be down-
regulated in NPC tissues [61]. Hence, besides establish-
ing e€S27 as the first NRP, an additional NRP (eS26) was
identified. This baited the question on the full repertoire
of NRPs. Indeed, a study by Fang and co-workers [62]
revealed the transcripts of uS7 and uSI9 to be up-
regulated in NPC tissues. It seems that the aberrant ex-
pressions of selected RP genes are connected with NPC
tumorigenesis. The analysis of 18 RP genes of the large
ribosomal subunit component by comparing their ex-
pression pattern between NPC cell lines (derived from
keratinising-differentiated and non-keratinising-poorly
differentiated squamous cell carcinoma tumours of the
nasopharynx) and normal control uncovered three RP
genes (eL27, eL43, and eL4I) to be significantly down-
regulated in the NPC cell lines [63]. However, a subse-
quent study revealed these three RP genes to be mark-
edly over-expressed, in terms of transcript and protein
levels, in NPC cell lines compared to normal control
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[64]. These conflicting results raised more confusion
over the nature of the expression pattern of NRP genes
between different studies. Nevertheless, in a later study
involving more cell lines, four more RP genes (uS8, uS4,
eS31, and uL14) that are differentially expressed between
cancer and normal cell lines were discovered [65]. These
were down-regulated in NPC cell lines rather than up-
regulated. Finally, in a most recent study, the down-
regulation of eL14 and up-regulation of uS19 in NPC cell
lines relative to normal control were reported [66]. This
brings the repertoire of NRP genes to 12, comprising 5
and 7 members from the large and small ribosomal sub-
units respectively. Four and five RP genes are categorically
up-regulated and down-regulated respectively, while four
other RP genes are arguably inconsistent between studies.
Table 3 summarises the latest list of NRP genes.

Despite the strong association of RPs with NPC
carcinogenesis, little is known about their mechanism(s)
in the malignancy. A problem here is their inconsistent
expression patterns between different studies (Table 3).
For example, early studies on eS27 [59] revealed its up-
regulation in NPC tissues relative to normal nasopharyn-
geal tissues. A subsequent study showed that it was
down-regulated instead in NPC tissues [61]. Compound-
ing this was a later study [67] that nullified both eS27
and eS26 to be linked to NPC tumorigenesis. Similarly,
the narrative of eL27, eL41, and eL43 changes when
studied at different period despite using the same cancer
models [63, 64]. This phenomenon is difficult to eluci-
date and indicates the complex relationship between RP
genes and NPC malignancy.

The disparity in expression patterns among the differ-
ent NRP genes suggesting their unique behaviours in
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NPC. Some NRPs are up-regulated while others are
down-regulated (Table 3). There is no regular or pre-
dictable pattern. Is this irregularity due to their specia-
lised activities during organogenesis? A possible answer
to this is the fact that an intricate level of specialisation
exists among RPs in the precise regulation of specific
genes during cellular processes [2]. Since the activities of
each NRP differ from one another, their dysregulation
(albeit varied in nature) could concertedly contribute to
carcinogenesis.

Another concern in the expression pattern of NRPs is
that many of the findings are based on transcript
(mRNA) levels. There is a possibility that post-
translational control involving the rapid degradation of
surplus NRPs may balance the effects of differential
transcript levels. However, a parallel pattern between
differentially expressed mRNAs and proteins of three RP
genes has been observed in the NPC cell lines [64]. In
fact, in an in vivo study to compare mRNA and protein
levels in an ovarian cancer model, differentially
expressed mRNAs did correlate significantly with their
protein products — better than in situation involving
non-differentially expressed mRNAs [68]. Therefore,
interpreting differentially expressed transcripts of se-
lected RPs as NRPs is still relevant. Nevertheless, further
studies to compare the mRNA and protein levels of all
NRPs are needed to establish this relationship.

Putative partners of ribosomal proteins in NPC scenario

Before the discovery of NRPs, a preliminary indication
of RP-linked NPC oncogenesis came from the observa-
tion of the association between elL22 and EBV. elL22
binds to one of the EBV-encoded RNAs, EBER-1 [69]

Table 3 List of differentially expressed RP genes in the context of NPC tumourigenesis

Ribosomal subunit RP genes Expression level NPC model References

Large (60S) el14 Up-regulated (transcript) Cell lines [66]
uL14 Down-regulated (transcript) Cell lines [65]
el27? Down-regulated (transcript) Cell lines [63]
el41¢
elL43?
el27? Up-regulated (transcript and protein) Cell lines [64]
el41°
elL43?

Small (40S) uS4 Down-regulated (transcript) Cell lines [65]
us’7 Up-regulated (transcript) Tissues [62]
us8 Down-regulated (transcript) Cell lines [65]
uS19 Up-regulated (transcript) Cell lines and tissues [62, 66]
eS26 Down-regulated (transcript) Tissues [61]
eS277 Up-regulated (protein) Tissues [59]
eS27? Down-regulated (transcript) Tissues [61]
eS31 Down-regulated (transcript) Cell lines [65]

“Ribosomal protein genes that showed inconsistency in expression patterns between studies
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and EBERs have been known to enhance the prolifera-
tive capability of NPC cells [70]. Therefore, a role for
EBV in NPC oncogenesis via the agency of NRPs is
logical, specifically via the eL22-EBER-1 complex. In
Burkitt’s Lymphoma cell lines, elevated proliferation was
attributed to the sequestration of eL22 by EBER-1 and
its subsequent relocalisation from nucleoli to nucleo-
plasm [71]. Whether these events are similar in NPC
scenario remain to be explored.

In the case of protein partners of NRPs, a prospective
scenario is the RP-MDM2-p53 pathway. The tumour
suppressor, p53 plays a pivotal function in cellular stabil-
ity in response to nucleolar stress and is negatively regu-
lated by a few factors, one of which is the Mouse Double
Minute 2 homolog (MDM2) protein [72]. Incidentally,
MDM2 interact directly with several types of RP such as
ul4, ul5, ulLl4, ulLl18, ulL24, eS7, and eS25 [73-75].
Except for ulL24, these RPs bind to MDM2 to inhibit its
function of ubiquitination and degradation of p53 during
events of cellular stress. Conversely, ulL24 is a direct
translational activator of p53, and is itself negatively
regulated by MDM2 [75]. p53 is the most frequently
mutated gene in NPC [76] with specific mutation able to
confer its oncogenic potential in NPC cells [77]. It is also
linked to poor prognosis and worse survival rate of NPC
patients, while MDM2 expression correlates with distant
metastasis [78]. The connection between EBV infection
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and p53 expression in NPC oncogenesis [79, 80] may
also include the hypothetical RP-MDM2-p53 pathway.
In fact, there is now in silico evidence of plausible logical
interactions between four EBV-related proteins with a
myriad of RPs (Fig. 1) [81]. More specifically, the func-
tional interactions between the Epstein—Barr nuclear
antigen 1 (EBNA1) protein with four RPs individually
via the complexes of EBNA1-eS10, EBNA1-eS25,
EBNA1-uL10, and EBNA1l-uL1l have been predicted.
These are pertinent information not because EBNA1 is
the only EBV protein found in all EBV-related malignan-
cies [82, 83] but because it is the first time an EBV-
encoded protein is suspected to be associated with RPs.
Although the biological relevance of these hypothetical
interactions to NPC oncogenesis requires experimental
proof, the most plausible candidate is the EBNA1-eS25
complex.

EBNAI1 binds with the cellular ubiquitin-specific pro-
tease (USP7/HAUSP) [84, 85], in the same site as that
recognised and bound by p53 and MDM2 [86]. In a way,
EBNA1 competes with p53/MDM2 in binding with
USP7. The interaction between USP7 and p53/MDM2
affects the de-ubiquitination and stabilisation of p53 [87,
88]. When EBNA-1 binds to USP7 the latter is seques-
tered by the former thereby creating an environment
where p53 cannot be stabilised (Fig. 2). eS25 has also
been shown to bind to MDM2 and subsequently
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Fig. 1 Computationally predicted interactions between EBV and ribosomal proteins (taken from Sim & Talwar, [81])

< g | 4;\ -




Sim et al. Biomarker Research (2021) 9:51

Page 6 of 10

Mechanism by USP7 of
tumour suppression
upon cellular stress

Sequestration of USP7

F
.

Sequestration of eS25

MDM2-p53
negative,
regulation
pathway

|

Production of EBNA1
upon EBV infection

~

Mechanism by eS25 of
tumour suppression
upon cellular stress Soam

p53
ps3 UsP7-
‘ mediated

Fig. 2 Schematic diagram of the hypothetical elucidation on the roles of EBNAT, eS25, and USP7 in NPC oncogenesis
.

Deubiquitinisation
and stabilization of

——)

stabilization
of p53
Tumour
suppression and
apoptosis

Sequestration of MDM2

Evasion of -
apoptosis »

Phosphorylation
— and stabilization of
p53
eS25-
mediated
[ stabilization
Tumour of ps3
suppressionand
apoptosis

Sequestration of MDM2

inhibiting MDM2 from destabilising p53 [74]. The
sequestration of MDM2 by eS25 facilitates the activa-
tion and stabilisation of p53 (Fig. 2). eS25 and USP7
have the same effect on the MDM2-p53 pathway
with the outcome of a stabilised p53. In the EBNA1-
USP7 scenario, a direct interaction between EBNA1
and USP7 has been experimentally proven [84]. The
interaction between EBNA1 and eS25 is, however,
only computationally predicted and requires experi-
mental verification. Moreover, the direct association
between EBNA1 and the MDM2-p53 complex is yet
to be determined. It seems that the only way for
EBNAI1 to abrogate tumour suppression by p53 is via
intermediary factors. Both USP7 and eS25 fit the de-
scription of such intermediary factors. A hypothetical
elucidation of their roles in NPC oncogenesis is
illustrated in Fig. 2.

Another relevant narrative based on our computa-
tional analysis is the predicted interaction between the
EBV-encoded latent membrane protein 1, LMP1 and the
RP, uS19 (Fig. 1). LMP1 is the principal viral oncopro-
tein of EBV [89] and is expressed in many human malig-
nancies [90], including NPC [91]. The uSI9 transcript is
overexpressed in NPC tissues [62] and cell lines [66].
The speculated interplay between LMP1 and uS19 dur-
ing NPC oncogenesis can be anecdotally construed from
literature other than their overexpression in NPC tis-
sues/cells. LMP1 has been known to affect the normal

functioning of p53 via various mechanisms. These
include the inhibition of p53-mediated apoptosis
through induction of the TNFAIP3/A20 pathway [92],
phosphorylation-associated modification of p53 activity
through the activation of the MAPK/SAPK pathway
[93], overriding tumour suppressor activity of p53 by
synergising with Bcl-2 [94], and triggering expression
of MDM2 to induce p53 degradation [95]. For uS19,
its role in the activation of p53 via direct interaction
with MDM2 has been reported [7]. By directly bind-
ing to MDM2, the E3 ubiquitin ligase activity of
MDM?2 is inhibited leading to p53 stabilisation.
Combining literature knowledge of LMP1 and uS19
in this respect, we speculate that upon EBV infection
of nasopharyngeal epithelial cells, LMP1 influences a
series of molecular events that destabilises p53 in-
cluding removing the regulatory role of uS19 in the
MDM2-p53 pathway.

The latest discovery on the potential pathways me-
diated by NRP involves the eL27 protein. Initially, the
mRNA transcript of this NRP was found to be down-
regulated in NPC cell lines [61] but later discovered
its transcript and protein to be elevated [64]. Most
recently and importantly, from a deeper analysis that
included gene knockdown, protein profiling, and bio-
informatics, 15 possible interacting partners of eL27
and their plausible roles in the pathogenesis of NPC
(Fig. 3) were identified [96].
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Future outlook

The connection between RPs and NPC is an established
relationship not only because a sizable list of NRPs is
available, but also that several putative RP-mediated
pathways relevant to NPC malignancy are evident. This
account is crucial in the prudent interpretation of the
molecular basis of NPC. Biomedical applications will
benefit immensely from this. Studies on chemical and
molecular inducers/inhibitors of NRPs can be explored
as one of the treatment regimes. Also, an NRP-based
platform for molecular diagnosis and prognosis of NPC
can be developed. Despite current advances in the under-
standing of NRPs, knowledge of the complex biochemical
networks and molecular events mediated by them during
NPC malignancy is still insufficient. It is because the
expression behaviours of some NRPs are still elusive. In
addition, more studies that look into their protein (rather
than just transcript/mRNA) activity levels and functions
will be required to firmly establish the nature of their
relationship with NPC tumorigenesis. Whether NRPs can
be labelled as culprits or sentinels or both in the context
of NPC oncogenesis is unclear at the present moment.
Deriving a definitive NRP-mediated pathway underlying

the pathogenesis of NPC pathogenesis will ultimately
require more extensive and in-depth studies.

Conclusions

Expression, functional, and bioinformatics studies over
the years have cumulatively provided a considerable rep-
ertoire of NRPs and multiple proposed pathways. These
provide essential insights into the molecular narrative of
nasopharyngeal cancer that will aid future biomedical
innovation in managing this disease. Nevertheless, in
tandem with potential translational research, fundamen-
tal studies on the NRP-mediated molecular pathogenesis
of NPC remain vital.
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