
Crowd annotations can approximate clinical autism impressions 
from short home videos with privacy protections

Peter Washingtona,*, Brianna Chrismana, Emilie Leblancb, Kaitlyn Dunlapb, Aaron Klineb, 
Cezmi Mutluc, Nate Stockhamd, Kelley Paskove, Dennis Paul Wallf

aDepartment of Bioengineering, Stanford University, United States

bDepartment of Pediatrics (Systems Medicine) Stanford University, United States

cDepartment of Electrical Engineering, Stanford University, United States

dDepartment of Neuroscience, Stanford University, United States

eDepartment of Biomedical Data Science, Stanford University, United States

fDepartment of Pediatrics (Systems Medicine) and Biomedical Data Science, Stanford University, 
United States

Abstract

Artificial Intelligence (A.I.) solutions are increasingly considered for telemedicine. For these 

methods to serve children and their families in home settings, it is crucial to ensure the privacy 

of the child and parent or caregiver. To address this challenge, we explore the potential for 

global image transformations to provide privacy while preserving the quality of behavioral 

annotations. Crowd workers have previously been shown to reliably annotate behavioral features 

in unstructured home videos, allowing machine learning classifiers to detect autism using the 

annotations as input. We evaluate this method with videos altered via pixelation, dense optical 

flow, and Gaussian blurring. On a balanced test set of 30 videos of children with autism and 

30 neurotypical controls, we find that the visual privacy alterations do not drastically alter any 

individual behavioral annotation at the item level. The AUROC on the evaluation set was 90.0% 

±7.5% for unaltered videos, 85.0% ±9.0% for pixelation, 85.0% ±9.0% for optical flow, and 

83.3% ±9.3% for blurring, demonstrating that an aggregation of small changes across behavioral 

questions can collectively result in increased misdiagnosis rates. We also compare crowd answers 

against clinicians who provided the same annotations for the same videos as crowd workers, and 

we find that clinicians have higher sensitivity in their recognition of autism-related symptoms. We 

also find that there is a linear correlation (r = 0.75, p < 0.0001) between the mean Clinical Global 

Impression (CGI) score provided by professional clinicians and the corresponding score emitted 

by a previously validated autism classifier with crowd inputs, indicating that the classifier’s output 

probability is a reliable estimate of the clinical impression of autism. A significant correlation is 
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maintained with privacy alterations, indicating that crowd annotations can approximate clinician-

provided autism impression from home videos in a privacy-preserved manner.

1. Introduction

While artificial intelligence (A.I.) approaches are needed for healthcare to achieve scale and 

consistency, current A.I.-powered solutions to diagnostics in psychiatry and the behavioral 

sciences are under-performant due to the complexity of the underling behaviors. Until A.I. 

has advanced to a point where it can seamlessly pass the Turing Test [40] and understand 

human social behavior, with all its subtleties and nuances, to a degree that surpasses an 

average human’s social acuity (i.e., to the level of a licensed clinician), it is unlikely that 

A.I. will replace any behavioral healthcare jobs. In the meantime, A.I. solutions which can 

augment the capabilities of non-expert humans may allow for scalable and accessible remote 

diagnostics while easing the burden of professional clinicians and the healthcare system to 

provide initial consultations in person.

A.I. is increasingly being considered to help healthcare solutions scale. For such solutions to 

be deployed in clinical settings, the system must garner maximal trust from all stakeholders. 

Privacy rises to the forefront of patient concern when humans are incorporated into the 

diagnostic pipeline [57]. Many parents are uncomfortable with sharing raw videos of their 

children with strangers online even if the purpose of sharing is to help the parents receive 

affordable and accessible diagnostic services [53]. To help ameliorate this uneasiness, 

privacy concerns must be directly addressed in any scalable solution where the humans 

in the loop are strangers (i.e., crowdsourced workers).

Here, we address these issues by studying an A.I.-augmented pipeline for detecting Autism 

Spectrum Disorder, or autism, from unstructured home videos. Autism is a developmental 

delay which is currently estimated to affect 1 in 40 children [28]. While access to care 

requires a formal diagnosis, access to diagnostic services is severely limited for many 

families, thus limiting potential care. Some evidence suggests that as much as 80% of 

families in the United States lack access to care [35], and underserved populations are 

disproportionately affected [17]. A.I. powered telemedical solutions therefore have the 

possibility to help these families, many of whom may otherwise lack access to traditional 

health services.

Crowd-powered telemedical diagnostic tools can provide parents with a risk score and an 

associated probability for a diagnosis, and prior works have repeatedly demonstrated the 

success of A.I. models to successfully detect autism using solely annotations provided by 

non-clinical human workers [5–8,20,30,38,39,46,48,49,51–54,58]. This family of solutions 

utilizes a distributed crowdsourced workforce to quickly annotate behavioral features 

displayed in videos recorded during parent-administered home autism therapy sessions 

using mobile digital health therapies [21–25] and wearable augmented reality solutions [2–

4,13,14,15,27,34,41–44,55,56].

In order for such solutions to truly scale for annotation by a large crowd workforce, the 

privacy of the patients must be preserved. This is important in general for healthcare 
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applications, but it is especially critical when the patients in question are young children 

with a developmental delay and observed by a stranger in their home. Our prior work 

has shown that applying targeted privacy-preserving modifications to videos, such as pitch 

shifting and covering the child’s face with a virtual box, results in minimal degradation 

of the quality of crowdsourced annotations used for remote detection of autism-related 

behaviors [53]. However, such lightweight privacy protections may be insufficient to some 

patients, such as those who do not want the interior of their home exposed to strangers on 

the Internet.

Here, we explore the effect of standard visual privacy-preserving mechanisms on the 

annotation quality of videos of children with autism and matched neurotypical controls. 

We apply pixelation, dense optical flow, and Gaussian blurring, which are either standard 

methods for protecting the privacy of human subjects in image and video datasets [36] 

or for representing visual features for activity recognition algorithms [26]. We study the 

effect of these video transformations on annotation quality. On a balanced test set of 60 

videos of children with autism and matched neurotypical controls, we find that no visual 

privacy condition deviates from the unaltered condition by more than half of a categorical 

ordinal severity point out of 4 questions corresponding to behavior severity. We compare 

crowd responses to professional clinicians and find that the probability score emitted by 

the classifier is consistent with the clinicians’ global impression from watching the same 

video. We also find that, as expected, clinicians are more adept at identifying autism-related 

symptoms than crowd workers.

2. Methods

2.1. Balanced video dataset

We leveraged a balanced video dataset of 30 children with autism and 30 controls without 

autism. Both groups were gender and aged matched: we posted 30 videos of male children 

(13 with autism and 17 neurotypical) and 30 videos of female children (17 with autism and 

13 neurotypical). The mean age in the videos of children with autism was 3.49 years old (SD 

= 1.58 years old), and the mean age in the videos of children without autism was 3.41 years 

old (SD = 1.39 years old).

2.1.1. Logistic regression classifier for predicting autism—We utilized a 

previously validated [38,39,53] logistic regression classifier for predicting autism vs. not 

autism from the answers to the multiple-choice questions we asked crowd workers. The 

classifier [29, 31] was derived from the Autism Diagnostic Observation Schedule (ADOS) 

module 2 [32] and was trained on clinician filled scoresheets from the Boston Autism 

Consortium (AC), the Simons Simplex Collection v14 (SSC) [10], Autism Genetic Resource 

Exchange (AGRE) [11], National Database of Autism Research (NDAR) [16] and the 

Simons Variation in Individuals Project (SVIP) [37].

To generate confidence intervals, we performed 10,000 iterations of a bootstrapping 

procedure for each video. In each iteration, we sampled with replacement from the 60 videos 

used for evaluation and computed the accuracy, precision, recall/sensitivity, specificity, 
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Area Under the Receiver Operating Characteristic (AUROC), and Area Under the Precision-

Recall Curve (AUPRC) on the resulting video set.

2.1.2. Privacy conditions—We evaluated three privacy modifications applied to each 

video: pixelation (Fig. 1), dense optical flow (Fig. 2), and Gaussian blurring (Fig. 3). 

Pixelation and Gaussian blurring are common methods for protecting the privacy of human 

subjects in image and video datasets [36]. Dense optical flow is a standard method for 

representing visual features for activity recognition [26] but also obfuscates much of the 

visual features of a frame, resulting in privacy preservation. To apply pixelation, we first 

resized the input frames down to 32 × 32 pixels. We then calculated the final pixelated frame 

by resizing the smaller frame back to the original frame size using bilinear interpolation. 

To calculate dense optical flow, we applied Farnebäck’s algorithm for two-frame motion 

estimation based on polynomial expansion [9]. The image was colored through obtaining a 

2-channel array with optical flow vectors, where the direction of the vectors corresponds to 

the hue of the image and the magnitude of the vectors corresponds to the value (lightness) of 

the image. To apply Gaussian blurring, we used a blurring kernel with 1/4th the width and 

height of the input image.

We note that pixelation (Fig. 1) makes the background setting and human more discernible 

(less private) than Gaussian blurring (Fig. 3), and Gaussian blurring is more discernible (less 

private) dense optical flow (Fig. 2).

2.1.3. Privacy condition analysis—To understand the effects of the strength of the 

privacy condition on worker rating ability, we explored the effects of altering both blurring 

and pixelation intensity on crowd ratings. We did not conduct this analysis for optical flow 

since there is no clear parameterization of intensity level for this method. We used a separate 

set of 28 videos balanced by diagnosis, child age, and child gender. Crowd workers were 

randomly assigned groups. As with the main study, no crowd worker was assigned to two 

separate conditions (alteration, intensity level) of a video.

For blurring, we used a blurring kernel with 1/6th, 1/5th, 1/4th, 1/3rd, and half the width and 

height of the input video as well as a blurring kernel the size of the entire original video. 

For pixelation, we set six different intermediate frame sizes when resizing the image using 

interpolation: 96 × 96, 64 × 64, 48 × 48, 32 × 32, 16 × 16, and 8 × 8 pixels.

2.1.4. Crowd annotation—To recruit crowd workers, we posted a video rating task 

on the crowdsourcing website Microworkers.com [18]. In this video rating task, crowd 

workers were asked to answer a series of 13 multiple choice questions, with 4 answer 

choices each, about the child’s behavior exhibited in each of 8 video videos (4 featuring a 

child with autism and 4 featuring a child without autism). We used the categorical ordinal 

variables corresponding to each worker’s answers as the inputs to a pretrained binary logistic 

regression classifier for autism (see subsection Logistic regression classifier for predicting 

autism below for details about classifier training). 1,000 crowd workers completed the task 

and passed basic quality control checks for answer acceptance. Quality control measures 

included time spent on the annotation task and deviations in answers between videos [53].
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To identify workers who were invited to participate in the final study, we measured 

the classifier’s prediction on all 8 videos for all workers. We then measured the mean 

probability of the correct class (PCC) for each worker across all 8 videos, where the PCC 

is the classifier’s output probability p when the true class of a video is autism and 1-p 
otherwise. Out of the 1,000 workers evaluated, exactly 40 workers had a mean PCC at or 

above 80%. We recruited these 40 crowd workers to rate the primary video set of 60 videos 

used in this study.

Each of the 40 crowd workers were tasked with rating all 60 videos described in the 

subsection Balanced video dataset. We randomly split the 40 workers into 4 groups, and 

each group was assigned to one privacy condition per video. Therefore, no worker saw more 

than one version of each video. All workers saw exactly 15 unaltered videos, 15 videos with 

pixelation, 15 videos with dense optical flow, and 15 videos with Gaussian blurring. This 

ensured that no privacy condition was affected by any crowd worker biases.

2.1.5. Clinician annotation—We recruited 19 clinicians to rate the same balanced 

video dataset and provided the same categorical ordinal video-wide annotations as the crowd 

workers. All clinicians were licensed professionals who provide diagnoses of autism as part 

of their job duties. We asked all clinicians an additional question which crowd workers were 

not asked: “Do you think the child has autism?” The answer choices were:

• No, I am confident the child does not have autism (0)

• No, but I am unsure (1)

• Yes, but I am unsure (2)

• Yes, I am confident the child has autism (3)

All 60 videos received at least 1 rating by a clinician. Some videos were rated by more than 

1 clinician, in which case we recorded the mean of the clinician answers for that video. For 

the “Do you think the child has autism?” question, we coded the responses from 0 to 3 as 

shown above.

Clinicians were also asked to provide a Clinical Global Impression (CGI) [12] rating for the 

children in the videos. The CGI scale measures the “severity of illness” between 1 (“normal, 

not at all ill”) to 7 (“among the most extremely ill patients”) and is designed to allow 

clinicians to provide a global impression without providing a formal diagnosis.

2.1.6. Item-level analysis—For each question that we asked crowd workers, we 

measured the mean absolute deviation of the mean answer for each privacy condition from 

the mean answer for the baseline condition. This difference provides a measure of the 

privacy condition’s effect on annotation quality. We hypothesized that some questions would 

be more susceptible to alteration with certain privacy conditions applied.
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3. Results

All procedures performed in studies involving human participants were approved by the 

Stanford University Institutional Review Board and are in accordance with the 1964 

Helsinki declaration and its later amendments.

3.1. Performance of clinicians and crowd workers

Out of the 30 videos of children with autism, clinicians rated 8 videos confidently (with 

a mean autism rating above 2.5 out of 3.0). By contrast, clinicians rated 18 of the videos 

of neurotypical children confidently (with a mean autism rating below 0.5 out of 3.0). All 

8 confidently rated videos were of children with autism, while 16 of the 18 neurotypical 

children were correctly identified (only 2 were actually diagnosed with autism). This 

suggests that clinicians observing remote videos of children are cautious about calling an 

autism diagnosis, but when they do guess a diagnosis, the child is very likely to actually 

have autism.

The clinician’s classifier correctly identified 28 of the 30 autism cases while only correctly 

identifying 14 of the 30 neurotypical cases. By contrast, the crowd’s classifier correctly 

identified 25 of the 30 autism cases and 27 of the 30 neurotypical cases. This suggests that 

clinicians are more sensitive to autism-related symptoms than crowd workers, thus resulting 

in a higher frequency of autism diagnoses by the binary classifiers.

There is a clear linear correlation (r = 0.75, p < 0.001) between the mean Clinical 

Global Impression (CGI) score provided by professional clinicians for each video and 

the corresponding classifier score emitted by the logistic regression classifier with crowd 

inputs (Fig. 4). This suggests that crowd responses in conjunction with machine learning 

algorithms can approximate clinician intuition, and the classifier’s output can be interpreted 

as a reliable approximation of clinical global impressions of autism (see Fig. 5).

Of the 60 unaltered videos, the mean performance metrics were 90.0% ±7.5% accuracy, 

92.9% ±8.9% precision, 86.7% ±11.8% recall (sensitivity), and 93.3% ±8.6% specificity. 

The mean AUROC was 90.0% ±7.5% and the mean AUPRC was 93.1% ±6.2%.

3.2. Effect of privacy conditions

The linear correlation between the mean Clinical Global Impression (CGI) score provided 

by professional clinicians for each video and the corresponding classifier score emitted by 

the logistic regression classifier with crowd inputs is maintained with privacy-preserving 

video modifications. The correlation is weaker for Gaussian blurring (r = 0.64, p = 0.001 

for Gaussian blurring) than for dense optical flow and pixelation (r = 0.71, p = 0.0002 for 

pixelation for both).

With pixelation, the mean performance metrics were 85.0% ±9.2% accuracy, 88.9% ±12.1% 

precision, 80.0% ±14.4% recall (sensitivity), and 90.0% ±10.9% specificity. The mean 

AUROC was 85.0% ±9.0% and the mean AUPRC was 89.4% ±7.9%.

Washington et al. Page 6

Intell Based Med. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



With dense optical flow, the mean performance metrics were 85.0% ±9.2% accuracy, 81.8% 

±13.1% precision, 90.0% ±10.9% recall (sensitivity), and 80.0% ±14.4% specificity. The 

mean AUROC was 85.0% ±9.0% and the mean AUPRC was 88.4% ±7.9%.

With Gaussian blurring, the mean performance metrics were 83.3% ±9.2% accuracy, 83.3% 

±13.7% precision, 83.3% ±13.7% recall (sensitivity), and 83.3% ±13.7% specificity. The 

mean AUROC was 83.3% ±9.3% and the mean AUPRC was 87.5% ±8.5%.

3.3. Effect of blurring and pixelation intensity

Interestingly, we did not observe a dramatic difference between the privacy alteration 

intensities depicted in Figs. 1 and 3. Table 1 shows the mean performance metrics on a 

separate testing set with blurring intensities created using blurring kernel sizes of 1/6th, 

1/5th, 1/4th, 1/3rd, and ½ the size of the original image as well as a blurring kernel the entire 

size of the image. Table 2 shows the performance on a third disjoint testing with pixelation 

intensities created using an intermediate frame size of 96 × 96, 64 × 64, 48 × 48, 32 × 

32, 16 × 16, and 8 × 8. These results indicate that the most dramatic privacy-preserving 

alternations can be applied with minimal to no degradation of performance across the 

behavioral questions we asked crowd workers.

3.4. Item-level analysis

Table 3 displays the mean absolute deviation of the mean answer for each privacy condition 

from the mean answer for the baseline condition. This difference provides a measure of the 

privacy condition’s effect on annotation.

We found that pixelation resulted in smaller deviations from the unmodified video condition 

compared to dense optical flow and Gaussian blurring. In all but one behavioral annotation 

(sharing excitement), the mean deviation for pixelation was less than the other two privacy 

conditions. Dense optical flow, which provides maximal privacy, did not have a discernible 

difference from Gaussian blurring (private but less so), providing support for the use of 

dense optical flow in translational settings.

The annotation with the lowest deviation across all conditions was for displaying aggressive 

behavior. This result matches intuition, as no aggressive behavior was displayed in any of 

the videos we presented.

None of the 9 behaviors used for the classifiers contained a mean deviation above 0.5; 

the mean deviation is less than one half of the distance between one categorical ordinal 

variable representing symptom severity and the variable indicating one severity level higher 

(all questions contained 4 multiple choice options). We note that while these deviations 

are consistently small, the aggregation of these deviations results in higher rates of 

misclassification (see Results: Effect of privacy conditions).

4. Discussion and conclusion

We explored the potential for global image transformations to provide privacy for video 

subjects while preserving behavioral annotation quality. While no individual question was 
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drastically degraded when privacy alterations were applied, some behavioral annotations 

were degraded more than others. Pixelation consistently resulted in less drastic degradations 

than blurring and optical flow. We also found that the classifier’s predictions from the 

crowd’s annotation of the unaltered videos were strongly correlated with clinician global 

impressions. A slightly weaker correlation persisted even after all privacy modifications we 

tested, providing evidence that the classifier’s output can be considered as an estimation of 

clinical global autism impression scores even when annotations are provided for a privacy-

preserved video.

There are several limitations to the present study. While the configuration of questions 

we asked workers and clinicians resulted in worse performance by the classifier using the 

clinicians’ annotations, this could have been due to over-sensitivity of the classifier rather 

than anything the clinicians did incorrectly. We therefore do not make any claims about the 

performance of clinicians as compared to crowd workers. An interesting limitation is that 

the definition of autism tends to shift over time with evolving DSM criteria and clinical 

practices [1, 33]. Because clinicians were providing annotations several years after the 

videos of children were recorded, it is possible that the children who did not qualify for a 

diagnosis at the time the videos were recorded would qualify for a diagnosis by the time the 

clinicians reviewed the videos.

There are several interesting avenues of future work. The annotations provided by crowd 

workers can potentially be used to train computer vision classifiers detecting behaviors 

relevant to autism detection such as emotion evocation [15,19,45,50], hand or head 

stimming [47], and abnormal eye contact. While humans are worse at detecting certain 

behavioral patterns from videos when privacy mechanisms are applied, it is possible that 

convolutional neural networks can more easily detect these features by learning subtle and 

nonlinear feature maps beyond human comprehension. Alternative privacy-preserving video 

alteration methods using deep learning could also be explored, such as generative adversarial 

networks (GANs). GANs can create privacy-preserved versions of the input video. Similarly, 

variational autoencoders can learn privacy-based features in the latent space. As machine 

learning algorithms continue to improve and relevant databases become more plentiful, 

the possibility of removing humans from the remote detection pipeline seems increasingly 

possible.

Future work should ensure that all methods work for all stakeholders. Such methods should 

therefore be evaluated across races, ethnicities, and other sensitive attributes to ensure fair 

and unbiased A.I. While some machine learning methods may help account for biased 

datasets, no technique matches the benefit of using balanced data. Fair and balanced 

healthcare A.I. initiatives must explicitly recruit participants in equal numbers across all 

demographics served to enable equitable services.
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Fig. 1. 
Six intensities of pixelation used in the study. The bottom left image (highlighted in green) 

depicts the intensity level used for the primary portion of the study. The other intensities 

are used for a secondary analysis comparing the effect of pixelation intensity on annotation 

quality.
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Fig. 2. 
Dense optical flow was evaluated as a drastic privacy alteration as depicted here. Original 

frame is on the left.
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Fig. 3. 
Six intensities of Gaussian blurring used in the study. The most bottom left image 

(highlighted in green) depicts the intensity level which was used for the primary portion 

of the study. The other intensities are used for a secondary analysis comparing the effect of 

blurring intensity on annotation quality.
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Fig. 4. 
There is a clear linear correlation (r = 0.75, p < 0.001) between the mean Clinical 

Global Impression (CGI) score provided by professional clinicians for each video and the 

corresponding classifier score emitted by the logistic regression classifier with crowd inputs.
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Fig. 5. 
The linear correlation between the mean Clinical Global Impression (CGI) score provided 

by professional clinicians for each video and the corresponding classifier score emitted by 

the logistic regression classifier with crowd inputs is maintained with privacy-preserving 

video modifications. The correlation is weaker for Gaussian blurring (r = 0.64, p = 0.001 for 

Gaussian blurring) than for dense optical flow and pixelation (r = 0.71, p = 0.0002 for both).
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Table 3

The mean absolute deviation for each privacy condition from the baseline condition answers for the behaviors 

used as inputs to the autism classifier. This difference provides a measure of the privacy condition’s effect on 

annotation quality.

Mean Deviation for 
Pixelation

Mean Deviation for Dense 
Optical Flow

Mean Deviation for Gaussian 
Blurring

Abnormal Speech 0.28 0.32 0.29

Echolalia 0.39 0.45 0.47

Repetitive or Odd Language 0.25 0.30 0.26

Expressive Language and Conversation 0.29 0.41 0.33

Eye Contact 0.29 0.37 0.33

Facial Expressiveness 0.25 0.32 0.29

Social Interaction Initiation 0.26 0.30 0.31

Shares Excitement 0.34 0.32 0.37

Aggressive Behavior 0.09 0.12 0.12
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