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Abstract

Epilepsy surgery is effective in reducing both the number and frequency of seizures, particularly in temporal lobe epilepsy
(TLE). Nevertheless, a significant proportion of these patients continue suffering seizures after surgery. Here we used a
machine learning approach to predict the outcome of epilepsy surgery based on supervised classification data mining
taking into account not only the common clinical variables, but also pathological and neuropsychological evaluations. We
have generated models capable of predicting whether a patient with TLE secondary to hippocampal sclerosis will fully
recover from epilepsy or not. The machine learning analysis revealed that outcome could be predicted with an estimated
accuracy of almost 90% using some clinical and neuropsychological features. Importantly, not all the features were needed
to perform the prediction; some of them proved to be irrelevant to the prognosis. Personality style was found to be one of
the key features to predict the outcome. Although we examined relatively few cases, findings were verified across all data,
showing that the machine learning approach described in the present study may be a powerful method. Since
neuropsychological assessment of epileptic patients is a standard protocol in the pre-surgical evaluation, we propose to
include these specific psychological tests and machine learning tools to improve the selection of candidates for epilepsy
surgery.
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Introduction

Epilepsy surgery is effective in reducing both the number and

the frequency of seizures, particularly in patients with temporal

lobe epilepsy (TLE), a common form of intractable epilepsy [1–3].

Although epilepsy is associated with a variety of pathologies [4–5],

hippocampal sclerosis is the most frequent pathological sign

encountered in the resected temporal mesial structures of TLE

patients [5]. Nevertheless, 30% of these patients continue to suffer

seizures after surgery [6–11]. Thus, there is much interest in

identifying the underlying causes of these surgical failures.

Several studies have investigated whether the outcome of

epilepsy surgery can be predicted using clinical data, imaging

techniques (MRI, PET, SPECT), electroencephalography func-

tional tests (EEG, video-EEG), neuropsychology tests [11] or

combinations of these approaches. Interestingly, TLE patients

exhibit a variety of neuropsychological profiles that may change

after surgery [12]. Such neuropsychological assessment can

potentially identify the epileptogenic hemisphere [13], but this

predictive potential has not previously been evaluated in detail in

the case of the Rorschach test [14].

Since epilepsy is a highly complex disease that involves multiple

factors, the predictive value of single variables has limited accuracy

[15]. However, machine learning approaches can generate models

that combine specific patient information to predict the outcome

of the surgery treatment and, hence, help support clinical decision-

making. Therefore, researchers have been trying to develop

machine learning approaches as predictive tools for epilepsy. In

particular, the application of artificial neuronal networks has been

reported to reach a high accuracy (80% to 95%) in predicting the

prognosis of epileptic patients [16–17]. Nevertheless, these

artificial neuronal networks do not provide direct results on the

relevance of individual variables or the inspection of the induced

models.

This study proposes the use of a machine learning approach

based on supervised classification and feature subset selection data

mining to predict the outcome of epilepsy surgery. From a cohort

of 260 patients from the epilepsy unit of the ‘‘Hospital de la

Princesa’’ (Madrid, Spain), we selected those with, first, a well-

defined hippocampal sclerosis after surgery and, secondly, a

complete neuropsychological evaluation that included an assess-
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ment of cognitive-perceptive and emotional processes. Supervised

classification data mining approaches were then used to generate

computational models to predict whether a patient with TLE

secondary to hippocampal sclerosis would fully recover following

surgical intervention.

Data analysis revealed that the surgical outcome could be

predicted with a high degree of accuracy using specific clinical and

neuropsychological variables. In addition, certain variables were

found to be uninformative in this prediction. One key finding for

the outcome prediction was the importance of personality style, a

parameter that refers to aspects of an individual’s personality and

their emotional functioning. We propose here that clinical

evaluations for epilepsy surgery should include, in addition to

the classical analyses, these specific psychological tests and the use

of machine learning models as standard tools.

Materials and Methods

Patients
Patients were pre-surgically evaluated according to the protocol

used at the ‘‘Hospital de la Princesa’’ (Madrid, Spain), as described

elsewhere [8]. In all cases, written informed consent was obtained

from all participants in accordance with the Helsinki Declaration

[18]. The study and all protocols received institutional ethics

approval by the ethical committee at the ‘‘Hospital de la

Princesa’’.

Human postoperative brain tissue was obtained from 23

patients suffering intractable TLE. The resection of the neocortex

and the amygdalo-hippocampal area, tailored according to the

electrocorticography findings, was performed as described previ-

ously [19]. Immediately after removal, biopsy samples were fixed

in cold 4% paraformaldehyde and small blocks

(,15610610 mm) were obtained that covered the entire

rostrocaudal extent of the hippocampal formation. These blocks

were immersed in a solution of 4% paraformaldehyde in 0.1 M

phosphate buffer (pH 7.4) for 24–36 h. at 4uC. Serial coronal

vibratome sections (50 mm) were then obtained from these blocks.

Histological analysis was performed in all cases (for details, see

Text S1).

From the cohort of 260 epileptic patients from this hospital, we

selected patients with unilateral TLE and showing well-defined

hippocampal sclerosis (n = 39; confirmed by histopathological

analysis after surgery). From this subgroup, only subjects fulfilling

the following inclusion criteria were included (n = 23): older than

16 years old on the date of surgery; well-defined lateralization by

video electroencephalography; unilateral hippocampal sclerosis

suggested by MRI; over 2 years of postoperative follow up; and a

complete neuropsychological evaluation (that included an assess-

ment of cognitive-perceptive and emotional processes).

In the present study, the clinical feature ‘‘Side’’ refers to the side

associated with seizure onset as determined by video-EEG studies.

These patients all suffered from partial complex and secondarily

generalized seizures (age range, 17–54 years; average, 34.3 years;

age of onset range, 0.7–20 years; average, 9.63 years; duration

range, 4–40 years; average, 24.96 years; Table 1).

Neuropsychological Testing
Pre-surgical evaluation of patients was conducted in order to

examine the relationship between cognitive impairment and

neurological damage. Intelligence was assessed using the Wechsler

Adult Intelligence Scale-Third Edition (WAIS-III) [20], which

provides a verbal intelligence quotient (VIQ), a performance

intelligence quotient (PIQ), and a full scale intelligence quotient

(FSIQ). In the present study, intelligence quotients (IQ) were

categorized into seven groups, depending on the values obtained

for each index (in parenthesis): Very Low (0–69), Low (70–79),

Normal-Low (80–89), Normal (90–109), Normal-High (110–119),

High (120–129) and Very High ($130). Patients were classified

according to their index values (Table 2).

To examine possible dysfunction in the hippocampus and

neocortex, individuals were assessed using the Wechsler Memory

Scale (WMS) [21]. Specifically, we performed logical and visual

memory measurements for both immediate (immediate logical

memory, MlogI; immediate visual memory, MvisI) and delayed

recalls (delayed logical memory, MlogII; delayed visual memory,

MvisII). In all cases, the patients were classified into five groups

(Table 2) based on the WMS index (indicated in parenthesis): Low

(50–65), Normal-Low (66–80), Normal (81–115), Normal-High

(116–130) and High ($131).

The Rorschach test was used to evaluate the cognitive-

perceptive and emotional processes that occur during the

individual response, with no interference of language understand-

ing or cultural variables [14]. The Rorschach test was applied

following the comprehensive system [14,22–23]. Rorschach

evaluation requires specific training and clinical experience and

is not always included in the neuropsychological battery. In the

present study, Rorschach test was applied by Dr. Jesús de Felipe-

Oroquieta, who is a specialist in clinical psychology, neuropsy-

chology and in Rorschach Test.

Only certain variables of the Rorschach test were analyzed,

according to the psychopathology of the epileptic patients, namely:

the schizophrenia index (Sczi), social ability index (Cdi) and

depression index (Depi). To evaluate problem resolution and

decision making in which emotionality and ideation are involved,

the personality style of all patients was assessed. The personality

style (P. Style), or erlebnistypus (EB), is a relevant variable in the

Rorschach test, which quantifies the cognitive-perceptive respons-

es of the subject [14]. The responses to perception of movement of

introversive subjects are two points higher than their responses to

weighted color, while extratensive subjects are those whose

responses to color are greater than their responses to movement.

Finally, ambitents are individuals for whom the difference between

the two variables is less than two points. Thus, patients were

classified as introversive (EB1), extratensive (EB2) or ambitent

(EB3). The Rorschach protocols followed were those included in

the RorschachH Interpretation Assistance Program (RIAP5: John

E. Exner Jr., Irving B. Weiner, and Par Staff; Psychological

Assessment Resources Inc. Lutz, FL, USA). In order to group

patients, the Sczi, Cdi and Depi indices were evaluated and

classified as positive or negative (Table 2).

Supervised Classification Data Mining
The data was analyzed using supervised classification tech-

niques. This design treats the feature defining the problem

differently (as either full recovery from epilepsy or not). This

variable is usually termed the class variable. Patient outcome was

evaluated after surgery using the Engel’s scale [24]: Class I, seizure

free (n = 14); Class II, rare disabling seizures (almost seizure free;

n = 2); Class III, worthwhile improvement (n = 3). Classes II and

III reflect improvement in the disease but not complete recovery.

For this reason, both categories were grouped together. Thus, the

supervised class variable describes seizure free patients (n = 14) and

those exhibiting an improvement only (n = 5). Finally, the missing

values mentioned in Table 2 were entered using the mode of the

variable with missing values conditioned to the class variable.

Three different classification paradigms were used in the

experiment: naı̈ve Bayes, logistic regression with ridge estimators

and k-nearest neighbor (k-NN). To assess the classification
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performance of each paradigm, we used a leave-one-out cross-

validation (LOOCV) scheme. This validation scheme estimates

the accuracy of a given classification model by inducing the same

number of classifiers as comprises the dataset. Each intermediate

model is built using all instances but one, and tested on the

excluded instance. The accuracy estimation of the final model is

obtained as the average accuracy of all intermediate classifiers. In

addition to the estimated classification accuracy, the area under

the receiving operating characteristic (ROC) curve or area under

the curve (AUC) [25] was also calculated. These two measure-

ments are classically used to compare classification models (for

further details see Text S2).

Feature Subset Selection
To determine the best subset of features for classification and

analyze the relevance of each feature, we developed a robust

feature subset selection procedure to remove irrelevant and/or

redundant features that hindered the classification procedure.

Given the limited number of samples in the dataset, we

approached the selection process by producing similar datasets

of equivalent sizes but with slight differences. A total of 1,000

intermediate datasets were produced by random stratified

resampling with replacement of the original dataset. For each

dataset, a subset of features was selected using a race search

algorithm [26].

Race search, or racing, applies paired and unpaired t-tests to the

cross-validation accuracies of competing subsets of features. When

a significant difference exists between the means of the errors of

two competing subsets, the poorer of the two can be eliminated

from the race. The racing search was configured as a backward

elimination, whereby the initial subset included all the original

features and individual deletions were performed until no

improvement was detected. For consistency in all experiments, a

LOOCV scheme was used again. Once all the selections had been

performed, the frequencies of each feature were computed as the

number of times it was included in the model. In total, three

frequency rankings were used, one for each classification

paradigm. To determine which features to retain for each

classification paradigm in the final model, a LOOCV scheme

was applied adding features from those most often selected to those

selected least. Similar procedures have achieved remarkable results

when applied to similarly problematic datasets [27–29].

Results

Dataset Compilation
Out of the 23 subjects selected, no behavioral testing data was

available for 4 subjects. Since this implies that many variables are

lost in the dataset, these four samples were not used in the study.

Accordingly, the data mining task was performed with 19 samples.

The database comprised 19 features or variables, belonging to two

different groups: 8 clinical variables and 11 items derived from

neuropsychological tests (the number of samples per feature and

value is shown in Table 2).

Table 1. Summary of the clinical data from the epileptic patients and the surgical outcome.

Patient
Age (years),
sex, side

Age of onset,
duration (years) Seizure type Seizure frequency

Engel scale for surgical
outcome/years after surgery

H48 41, m, L 18, 23 gen weekly I/12

H57 27, m, R 13, 14 PC 3 weekly I/11

H61 17, f, R 7, 17 PC 2 weekly I/11

H67 39, m, R 1, 38 gen weekly I/11

H75 37, m, L 13, 24 PC 2 weekly II/10

H84 31, m, R 2, 29 gen 4 weekly I/10

H94 27, m, L 20, 7 gen 3–5 weekly II/9

H104 32, m, L 12, 20 PC weekly I/9

H108 50, m, L 15, 35 gen 4 weekly III/9

H109 22, f, R 4, 18 PC 0–3 weekly I/9

H115 40, f, L 1.8, 38 gen 4 weekly III/9

H123 24, f, L 7, 17 gen daily I/8

H136 20, f, R 0.7, 19 gen weekly I/8

H220 53, f, L 13, 40 PC weekly I/4

H225 49, f, R 16, 33 PC weekly I/4

H229 40, f, R 2, 38 PC weekly I/4

H230 22, f, L 18, 4 PC, gen daily III/3

H231 23, m, L 1, 22 PC, gen daily I/3

H233 35, m, L 6, 29 PC, gen weekly III/3

H236 54, f, R 16, 38 PC, gen weekly I/3

H237 41, f, L 20, 21 PC, gen 2 weekly I/3

H238 22, f, R 11, 11 PC weekly I/3

H241 43, f, L 4, 39 PC, gen Not regular I/3

f: female, gen: secondarily generalized, L: Left, m: male, PC: partial complex seizures, PS: partial simple seizures, R: right, Engel scale for surgical outcome: class I seizure-
free, class II rare seizures and class III worthwhile improvement.
doi:10.1371/journal.pone.0062819.t001
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Analysis of Pre-surgical Features
The data was analyzed using supervised classification tech-

niques. The class feature refers to the Engel’s scale value indicated

[24], grouped into two categories: seizure free (Engel grade I) or

improvement only (Engel grades II and III). The classification was

constructed using 19 variables, based on measurements taken

before surgery (Table 2).

First, we determined the frequencies of the features selected

during the search process in order to identify the variables (or

subsets of variables) most relevant to the analysis (Figure 1).

Choosing a robust and reliable set of relevant features is crucial, as

the dimensionality of the database may overfit the results. To

avoid such an effect, we performed a series of tests to analyze the

classification power of the different subsets of features. Using a top-

down scheme, we added features iteratively, one at a time,

according to the frequency ordering obtained by the relevance

analysis. Thus, the addition of features was guided by the ranking

associated with each feature (as shown in Table 3). Accordingly,

the first database projection was composed of only one feature,

which was selected most frequently during the race selection. This

process was repeated until all the features were included. The

subsets of selected features in each race were not always the same

and hence, although they are presented together for simplicity in

Figure 2, the subsets that correspond to the same number of

features (X axis) were almost always different. The naı̈ve Bayes

model tends to select subsets with fewer features than those

selected by either logistic regression or k-NN. Both logistic

regression and k-NN are more stable in their behavior, with

selection frequencies ranging from 600 and 900 for all variables.

Some divergence was observed within the selection. For instance,

PIQ was selected less than 300 times by the naı̈ve Bayes model,

but approximately 850 times by the other two classifiers.

Nevertheless, three features were consistently selected by the three

classifiers with high frequency, namely Side, PIQ and P. Style

(Table 3).

For each of the projected datasets, the performance of the

associated classifier was estimated using an LOOCV scheme to

determine the classification power of the different feature subsets.

When naı̈ve Bayes and logistic regression were used with three

features, 89.47% accuracy was achieved in both cases with AUC

values of 0.9285 and 0.9428, respectively, and an identical F-

measure value of 0.9333 was obtained (Figure 2). The subset of

three features was the same in both cases and comprised Side, P.

Style and PIQ (Table 3). The best accuracy using the k-NN

approach (again 89.47%, AUC value = 0.8071 and F-mea-

sure = 0.9035) was achieved using four features, namely Side, P.

Style, VIQ and Frequency of seizures.

As the three models used achieved the same level of estimated

accuracy (89.47%), there was no need to choose between them.

Moreover, the improvement with respect to the analyses including

all the variables was significant; the inclusion of all 19 variables

(Figure 2 and Table S3) resulted in accuracies of 68.42%, 63.15%

and 68.42%, for the naı̈ve Bayes, logistic regression and k-NN,

respectively (with AUC values ranging between 0.5642 and

0.6571, and F-measures between 0.7404 and 0.8125: Figure 2).

Hypothesis Test on the Pre-surgical Data
As a complementary measure, we performed a classical

Wilcoxon signed-rank hypothesis test on the values obtained for

all features in the classification. This test is a non-parametric

statistical hypothesis test, in which the null hypothesis (H0) states

that two samples come from a distribution with the same median.

In our case, the two samples are the sets of each feature values

grouped using the Engel output. Considering again the class

variable (Engel) as the grouping variable, the features for which the

null hypothesis (H0) is rejected will constitute the relevant features

for the classification. Three features presented significant values

Table 2. Set of predictive variables and their associated values. Cardinalities of each value are shown between brackets. Missing
values are also indicated.

Clinical features: Gender: Male (10), Female (9)

Side: Left (10), Right (9)

Surgery age: 17- 32 (10), 33- 54 (9)

Onset age: 0- 1 (4), 2- 10 (7), 11- 20 (8)

Elapsed time: 7- 13 (3), 14- 19 (4), 20- 39 (12)

Type of seizure (SeizureType): Generalized (8), Partial Complex (7) or Both (4)

Frequency of seizures (SeizureFreq): Daily (2), Weekly (8), 2-Weekly (2), 3-Weekly (3), 4-Weekly (3), Other (1)

Febrile seizures (Febrile): Negative (10), Positive (9)

Neuropsychological features: VIQ: Low (1), Normal-Low (4), Normal (8), Normal-High (3), High (1) - missing (2)

PIQ: Low (1), Normal-Low (1), Normal (11), Normal-High (3), High (1) - missing (2)

FSIQ: Low (0), Normal-Low (4), Normal (9), Normal-High (3), High (1) - missing (2)

MlogI: Low (2), Normal-Low (5), Normal (11), Normal-High (0), High (0) - missing (1)

MlogII: Low (2), Normal-Low (3), Normal (13), Normal-High (0), High (0) - missing (1)

MvisI: Low (0), Normal-Low (2), Normal (13), Normal-High (1), High (2) - missing (1)

MvisII: Low (0), Normal-Low (6), Normal (9), Normal-High (1), High (2) - missing (1)

Schizophrenia index: Negative (9), Positive (3) - missing (7)

Coping deficit index: Negative (5), Positive (7) - missing (7)

Depression index: Negative (4), Positive (8) - missing (7)

P. Style: EB1 (3), EB2 (6), EB3 (3) - missing (7)

doi:10.1371/journal.pone.0062819.t002

ML Approach to Predict TLE Outcome Surgery

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e62819



with a 95% confidence level: Side, PIQ and P. Style (Table 4),

confirming their importance. Values of these features –stratified by

class– are as follows: Seizure free (50% Left and 100% Right Side;

73.7% Normal, 100% Normal-High, 100% High PIQ; 100%

EB1, 84.6% EB2 P. Style), and, Only improvement (50% Left

Side; 100% Low, 100% Normal-Low, 26.3% Normal PIQ; 15.4%

EB2, 100% EB3 P. Style). The combination of their values using

both the naı̈ve Bayes and the logistic regression reached maximum

accuracy, further supporting our findings.

Post-surgery Analysis
After surgery, the eleven psychological features were re-

evaluated in the cohort of patients, although some values were

lost due to the practical difficulties in assessing all patients. In

addition, schizophrenia was removed as a feature, as it was

irrelevant since there were no such cases. Therefore, 30 values (out

of 165) were assigned using the associated conditional modes

(based on the value of the Engel output) and, in total, there were

10 attributes and 15 instances: seizure-free (10) and improvement

only (5).

The effects of surgery on cognitive function were first analyzed

by comparing the psychological test results before and after

surgery. The simplest way to compare these values was to subtract

the post-surgery values from the pre-surgery values (the resulting

values are denoted with the prefix D in Table S1). When these

differences were compared using the Wilcoxon test, no significant

differences were evident for any of the psychological features

studied.

To investigate the possible link between post-surgery psycho-

logical evaluation scores and surgical outcome, we performed a

cluster analysis of all cases with respect to the post-surgery

variables. A multinomial mixture model in which the parameters

were estimated using the expectation-maximisation (EM) algo-

rithm was selected for this purpose. This algorithm provides the

probability that a given case belongs to a cluster rather than a hard

assignment to that cluster. Since the distribution of the cases in

terms of the Engel output was already known, the groups reported

by the algorithm could be validated. This validation was

satisfactory and when two groups were created, 13 out of the 15

cases were correctly clustered. Of the 13 correctly grouped cases, 8

were clustered in one group, while the remaining 5 were clustered

in a second group along with the 2 incorrectly clustered cases

(Table 5). This separation implies a significant pattern in post-

surgical psychological evaluations that may be linked to surgery.

This is more remarkable in the cases of "seizure-free" output,

which maps with the first cluster.

We compared the post-surgery values of each feature with

regard to the clustering assignments produced by the algorithm. It

should be noted that the correspondence between the EM

assignment and the real Engel outcome was not perfect (2 errors,

Table S2). This analysis revealed significant differences for three

features: postPIQ, postFIQ and postMvisII. Thus, the values of

these three variables would appear to be relevant to the grouping

differences between the cases in each cluster. Unfortunately, these

results are of limited use because the association variable in the test

is not actually adjusted to the class variable itself. We can only state

that there are significant differences in these three features

between the two clusters.

Discussion

Epileptic patients with pharmacoresistant TLE that are

candidates for surgery are evaluated using time-consuming and

expensive tests. Although epilepsy surgery is effective in reducing

both the number and frequency of seizures, a significant

proportion of these patients continue to suffer seizures after

surgical intervention. Accordingly, there is considerable interest in

identifying predictors of the surgical outcome in patients with TLE

(for recent reviews see [10–11]). However, to the best of our

knowledge, the relevance of individual clinical and psychological

features has not yet been studied in detail, nor has a Rorschach

Figure 1. Number of times that features were included in the different intermediate subsets selected by the race search feature
selection for over 1,000 dataset resamplings.
doi:10.1371/journal.pone.0062819.g001
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Figure 2. Estimated classification performance using LOOCV validation. Only features available before surgery were included in this
performance analysis. The x-axis reflects the size of the subset of features retained. A) The upper chart shows the estimated accuracy; whereas, B) the
lower chart shows the associated area under the ROC curve. Note that the features for a given point on the x-axis can differ depending on the
classifier used (see Table 3 for the respective feature subsets).
doi:10.1371/journal.pone.0062819.g002
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evaluation of individual personality been included in the standard

neuropsychological assessments used to predict surgical outcome

[30]. The complexity of the data obtained from epileptic patients

means it must be analyzed in a specific manner to identify any

relationships and patterns. Given the usefulness of data mining in

medical applications [31], we used machine learning tools to

evaluate the ability of three supervised classifiers (naı̈ve Bayes,

logistic regression and k-nearest neighbor) to predict the outcome

of epilepsy surgery.

Analysis of the Pre-surgical Features
The first stage of our analysis involved the use of supervised

classification to select features. Since all the features were included

in the classification, this led to the generation of irrelevant and/or

redundant information and we found that using three specific

features produced the most accurate results: Side, P. Style and

PIQ. Since locating the side on which seizure activity originates is

generally accurate, particularly when determined by video

electroencephalography [8–9], this feature represents a clear

predictive variable. However, the findings also emphasize the

importance of psychological features as good predictors (P. Style

and PIQ).

Analysis of personality style revealed that while ambitent style

(EB3) was associated with a poor surgical outcome (Engel II–III),

introversive patients (EB1) had better surgical outcomes (Engel I)

and that the outcome in the majority (85%) of extroversive (EB2)

patients was good (Engel I). It is plausible that as yet unknown and

complex mechanisms in the brain may underlie the relationship

between different personality styles and the benefits that surgery

may produce. PET studies performed on TLE patients previously

evaluated with a Rorschach test have demonstrated predominant

hypometabolism in the left hemisphere of introversive patients,

Table 3. Variables ordered according to their frequency of
selection during resampling and variable subset selection
(occ: occurrence). Three different rankings are displayed - one
for each of the classifiers used during the search.

Ranking Naı̈ve Bayes
Logistic
regression k-NN

Variable occ. Variable occ. Variable occ.

1 P. Style 958 Side 896 Side 891

2 Side 899 PIQ 885 SeizureFreq 870

3 PIQ 867 P. Style 875 P. Style 857

4 SeizureFreq 678 VIQ 862 VIQ 849

5 SurgeryAge 603 Depi 804 FSIQ 829

6 Sczi 596 FSIQ 772 OnsetAge 800

7 Gender 477 SurgeryAge 769 Sczi 773

8 Depi 446 Sczi 747 PIQ 765

9 OnsetAge 436 Gender 746 Depi 755

10 MlogI 428 MvisI 746 MvisII 754

11 MlogII 398 Cdi 740 Gender 734

12 FSIQ 395 ElapsedTime 738 MlogII 732

13 ElapsedTime 368 SeizureType 734 Febrile 728

14 Cdi 299 MlogI 723 SeizureType 707

15 MvisI 296 MvisII 722 ElapsedTime 699

16 VIQ 287 OnsetAge 721 MlogI 670

17 SeizureType 270 MlogII 716 Cdi 668

18 Febrile 258 Febrile 695 MvisI 627

19 MvisII 225 SeizureFreq 668 SurgeryAge 588

doi:10.1371/journal.pone.0062819.t003

Table 4. Features and associated p-values obtained from a
Wilcoxon signed-rank test comparing the values of each
feature with the Engel output. in order of increasing p-value.

Feature p-value

P. Style 0.0134{

Side 0.0433{

PIQ 0.0492{

SeizureFreq 0.1471

FSIQ 0.2334

Surgery Age 0.2384

Sczi 0.3096

Gender 0.3684

MvisI 0.4226

Depi 0.5165

MvisII 0.6022

MlogII 0.6070

Onset Age 0.6140

SeizureType 0.6140

ElapsedTime 0.7322

VIQ 0.8168

MlogI 0.8894

Cdi 1

Febrile 1

{indicates statistical significance at a 95% confidence level. Features are listed.
doi:10.1371/journal.pone.0062819.t004

Table 5. Probabilities of belonging to cluster 0 or cluster 1 for
each case.

Case p(c0|x) p(c1|x) Engel

1 0.08417 0.91583 s1-seizure-free{

2 0.98861 0.01139 s1-seizure-free

3 0.95076 0.04924 s1-seizure-free

4 0.06282 0.93718 s2_3-only improvement

5 0.59592 0.40408 s1-seizure-free

6 0.01103 0.98897 s2_3-only improvement

7 0.99529 0.00471 s1-seizure-free

8 0.0332 0.9668 s2_3-only improvement

9 0.5379 0.4621 s1-seizure-free

10 0.01391 0.98609 s2_3-only improvement

11 0.00381 0.99619 s1-seizure-free{

12 0.95596 0.04404 s1-seizure-free

13 0.93247 0.06753 s1-seizure-free

14 0.5171 0.4829 s1-seizure-free

15 0.00944 0.99056 s2_3-only improvement

The last column shows the actual Engel score (not used in the clustering).
{indicates cases that were incorrectly clustered on the basis of the probability
assigned by the clustering algorithm.
doi:10.1371/journal.pone.0062819.t005
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while extratensives displayed hypometabolism in the right

hemisphere [32]. However, the cortical circuits involved in

personality style and their role in seizure activity associated with

hippocampal sclerosis remain unclear.

Patients with a normal-to-high and high PIQ displayed good

surgical outcomes (Engel I), whereas seizure frequency was not

reduced significantly in patients with low or normal-to-low PIQ

scores (Engel II–III). Moreover, in the normal PIQ subgroup, a

large proportion of the patients (77%) became seizure free (Engel

I). The cognitive processes involved in the performance intelli-

gence test remain unknown, although brain imaging studies

suggest that some cortical regions are more critically involved than

others, such as the frontal lobes [33–34]. In addition, lower PIQ

may be associated with severe epilepsy, and perhaps with

widespread brain disturbances, thus, the response to treatment

would be more limited. Moreover, a positive correlation has been

reported between PIQ scores and cortical grey matter thickness in

regions of the temporal cortex [35–36]. Reduced cortical

thickness, as measured by MRI, has also been described in the

temporal, parietal, occipital and frontal lobes of TLE patients with

hippocampal sclerosis [37]. Unfortunately, no volumetric cortical

MRI studies were performed in our series of patients, precluding

any analysis of the correlation between cortical volume and PIQ

scores.

The three classification paradigms used in the present study

were equally effective as tools to select epileptic patients as surgery

candidates, with each showing the same estimated accuracy

(89.47%). This estimation could be slightly overoptimistic as a side

effect due to the use of LOOCV. However, our results revealed

that relevant features are systematically found by all the

classification models, reporting the same estimated performance.

Even when there is a regularization penalty in the case of logistic

regression, particular results are fully consistent with the rest.

Therefore, in cases where data is available for the three key

variables (Side, PIQ and P. Style) for a given population of TLE

patients, any of these three classifiers would be useful when

selecting the patients for surgery. Evaluations of similar classifiers

with the inclusion of all features penalize the outcome prediction,

most likely due to irrelevant and/or redundant information. This

fact is in agreement with the behavior of classification models,

which is not necessarily monotonic with respect to the inclusion of

additional features [38].

Lastly, we found no significant difference in the evaluation of

psychological features of our epileptic patients before and after

surgery, in line with the idea that personal psychological features

are unchanged regardless of surgical outcome.

Although relatively few cases were examined, (n = 19), our

findings were verified across all data, suggesting that the machine

learning analysis described may become a powerful tool to be

included in standard evaluations for epilepsy surgery centers. Since

there are several thousand candidates for epilepsy surgery

worldwide (with an estimated 100,000 to 200,000 potential

candidates in the United States in 2003 alone [7]), the usefulness

of our approach could be validated if implemented as a standard

test for presurgical evaluation. This external validation on larger

cohorts of patients is thus envisaged as crucial future work.
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