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Abstract

Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and

presents significant health concerns. The mechanisms of neurodegeneration following bTBI

remain elusive and current therapies are largely ineffective. It is important to better charac-

terize blast-evoked cellular changes and underlying mechanisms in order to develop more

effective therapies. In the present study, our group utilized rat organotypic hippocampal

slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either

138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-

driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury,

we have characterized the astrocytic response to a blast overpressure. Immunostaining

against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing

and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap

of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantifica-

tion of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis

1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-

blast, compared to sham control OHCs. However only a small number of GFAP-expressing

astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the

primary type of cell death in the acute phase following blast exposure. Moreover, western

blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion addi-

tionally indicated membrane disruption as a potential mechanism of acute astrocytic death.

Furthermore, although blast exposure did not evoke significant changes in glutamate trans-

porter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of

glutamate uptake following injury. Our data illustrate the profound effect of blast overpres-

sure on astrocytes in OHCs at 2 h following injury and suggest increased calpain activity

and membrane disruption as potential underlying mechanisms.
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Introduction

The rate of blast-induced traumatic brain injury (bTBI) has escalated among active duty mili-

tary personnel and veterans involved in recent military campaigns [1–4]. Symptoms of bTBI

manifest on a scale of mild to severe and often involve physical, cognitive, emotional, and

social deficits [5–10]. Moreover, a soldier’s reluctance to seek treatment [11], compounded

with a potential misdiagnosis of post-traumatic stress disorder (PTSD) [3, 5] can impede

recovery. Current treatment strategies are mainly focused on rehabilitation, mental health ser-

vices, and symptom amelioration [12]. However, there is no available therapy that can stop or

reverse the neurodegenerative cascade that follows primary cell death caused by blast exposure.

Moreover, mechanisms underlying early and delayed cell death following bTBI remain elusive.

Preclinical and clinical data suggest different underlying mechanisms and injury manifesta-

tions between blunt TBI and bTBI [13–16]. For these reasons, answering fundamental ques-

tions regarding bTBI neuropathology is prerequisite for the development of more effective

therapy protocols. Specifically, it is necessary to assess early cellular and molecular changes fol-

lowing bTBI to establish potential therapeutic strategies to prevent or ameliorate the spread of

neurodegeneration.

Direct effects of blast exposure on brain tissue remain controversial. It has been proposed

that blast overpressure indirectly causes brain injury either via skull deformation, head acceler-

ation, ischemia, or thoracic mechanisms [17–23]. However, research from our group, in addi-

tion to the results of other experts in the field, suggests that a blast shock wave can transverse

the cranium intact and generate tissue stress and strain leading to neuronal damage [24–29].

Correspondingly, data from in vitro bTBI models [30–33], including our recent findings [34],

imply that blast overpressure can directly damage neurons and glial cells. In previous rat bTBI

studies conducted by our [16, 28] and other groups [19, 35, 36], exposure to the peak overpres-

sure magnitudes in the range of 100 to 450 kPa resulted in neurodegenerative changes and

behavioral impairments. Likewise, exposure of OHCs to the blast overpressures of about 150

(low) and 280 kPa (high) in our previous [34] and present in vitro studies evoked significant

and progressive cell death, confirming validity of our test conditions.

Neurodegenerative disorders are traditionally investigated with a neuron-centric approach,

but it is becoming increasingly recognized that glial cells, including astrocytes, are implicated

in neurodegenerative disorders and brain injury [37–41]. Under normal physiological condi-

tions, astrocytes play a pivotal role in maintenance of brain homeostasis through control over

cerebral blood flow and metabolism, ionic spatial buffering, regulation of water, control of bio-

synthesis and turnover of amino acid neurotransmitters, and providing energy and nutrient

support for neurons [42–47]. Astrocytes also have the ability to control synaptogenesis, inte-

grate neuronal inputs, release a variety of transmitters, and modulate synaptic activity [48–54].

However, astrocytes are affected in many neurodegenerative disorders [55–59], and their

altered function contributes to further spread of neurodegenerative changes [60–62]. Although

the exact role of astrocytes in neurodegeneration is unknown, it is believed that different

mechanisms such as change in glutamate uptake and release, activation of astrocytes, and their

death may contribute to neuronal loss [37, 38, 58, 63, 64]. Changes in astrocytic functions and

the above mechanisms have also been associated with TBI [40, 41, 65]. Though largely depen-

dent on severity and mechanical properties of the injury, reactive astrogliosis has been

observed following both blunt and bTBI [35, 40, 66–69]. Spectrum of morphological, molecu-

lar and functional changes that astrocytes undergo in reactive astrogliosis, also known as astro-

cytosis, include upregulation of glial fibrillary acidic protein (GFAP) and other intermediate

filaments, hypertrophy of cell body and processes, and in more severe cases proliferation and

scar formation [70]. Additionally, several animal [71–75] and human [76] non-blast TBI

Acute astrocytic death in OHCs exposed to blast overpressure

PLOS ONE | DOI:10.1371/journal.pone.0173167 March 6, 2017 2 / 25



studies have indicated death of astrocytes by the decrease in the total number of cells labeled

with the astrocytic marker GFAP, or by co-staining with GFAP and markers of apoptotic cell

death including terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and

activated caspase 3. In human postmortem material obtained from cases with severe and com-

plicated TBI, astrocytes that underwent an continuum of oncosis, apoptosis and necrosis were

detected based on morphological changes such as swollen nucleoplasm, cytoplasm, and cell

organelles, chromatin condensation and marginalization, formation of apoptotic bodies, and

plasma membrane fragmentation [77]. Two recent studies also reported presence of dead,

TUNEL and GFAP co-labeled astrocytes in rat and monkey bTBI models [67, 78]. However,

the exact role of astrocytic activation and death in the etiology of bTBI is unclear and the acute

response of astrocytes to a blast overpressure is not well characterized. Therefore, our present

study focuses on understanding how astrocyte morphology and viability are affected by a blast

overpressure at an early time point following injury and to elucidate mechanisms underlying

blast-evoked astrocytic death.

Our previous studies in in vitro bTBI model were mainly focused on characterizing the neu-

ronal and glial response to blast exposure at 72 hours (h) post-injury [34]. At this time point,

we demonstrated significant neuronal loss and robust activation of astrocytes and microglial

cells in OHCs exposed to blast overpressure [34]. While only a small number of dead glial cells

were present at 72 h post-injury, dead microglial cells were observed at 4 and 24 h post injury

[34]. The aim of the current study was to characterize the acute astrocytic response to a blast

overpressure exposure using the same in vitro bTBI model. As done previously in studies uti-

lizing OHCs [79–81], we have visualized astrocytes using immunostaning against GFAP that is

expressed in the large portion of heterogeneous population of astrocytes [70, 82]. Additionally,

co-labeling of GFAP with propidium iodide (PI) or Annexin V was used to assess necrotic or

apoptotic astrocytic death, respectively. To further study mechanisms that lead to the early

blast-evoked astrocytic death, immunohistochemical staining, western blot, and a dextran per-

meability assay were conducted. Contrary to our previous data collected in in vitro bTBI

model at 72 h post-injury, present study demonstrated significant number of dead, necrotic

astrocytes at 2 h post-injury, suggesting different response of astrocytes at the acute and the

later phase of bTBI. An understanding of different temporal effects of blast exposure on astro-

cytes is of the particular interest in illuminating mechanisms that lead to the spread of neuro-

degeneration and development of more effective therapies for bTBI.

Methods

Animals

Time-pregnant, Sprague Dawley (SD) rats (Charles River Laboratories, Wilmington, MA,

USA) were housed in individual cages, with standard colony conditions, until parturition.

Food and water were available ad libitum. Hippocampal tissue used to prepare OHCs was

obtained from postnatal rats (P7-P10; n = 59). All laboratory animal procedures were com-

pleted in congruence with the National Institutes of Health (NIH) Guide for the Care and Use

of Laboratory Animals and approved by the Zablocki Veterans Affairs Subcommittee for Ani-

mal Studies (Protocol number: 3171–01).

Preparation of OHCs

OHCs were prepared under aseptic conditions using a modified procedure from Stoppini and

colleagues [34, 83]. Postnatal rats were euthanized via decapitation and the brains were

removed via a longitudinal cut along the midline of the skull. The hippocampi were isolated in

cold dissecting medium (pH 7.2) which was composed of 50% Minimum Essential Medium
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(MEM), 50% calcium and magnesium free Hanks Balanced Salt Solution (HBSS), 20 mM

HEPES (N-2- hydroxyethylpiperazine-N’-2-ethanesulfonic acid), 7.5 g/l D-glucose, and 1%

Penicillin/Streptomycin (all obtained from ThermoFisher Scientific, Grand Island, NY, USA)

[34, 84]. Using a McIlwain tissue chopper (Ted Pella, Inc., Redding, CA, USA) hippocampi

were cut transversely into 400 μm-thick sections. Hippocampal sections were separated under

a dissecting microscope with sterile spatulas and inspected for intact morphology. Only intact

sections were transferred to 0.4 μm porous MilliCell cell culture inserts (EMD Millipore, Bil-

lerica, MA, USA) and grown in 6-well plates containing 1 ml of serum-based media consisting

of 50% MEM- Hanks medium, 25% HBSS, 25% horse serum, 50 mM HEPES, 2 mM L-gluta-

mine, 5 mg/ml D glucose, and 1% antibiotic/antimycotic (all obtained from ThermoFisher Sci-

entific except horse serum which was obtained from Atlanta Biologicals, Flowery Branch, GA,

USA) [34, 85–87]. OHCs were maintained at 37˚C with 5% CO2 for the duration of the

studies.

One day following dissection, the culture media was replaced with fresh serum-based

media. From 4 to 7 days in vitro (DIV), the serum-based media was gradually changed to

serum-free media consisting of 50% MEM- Hanks, 25% HBSS, 25% Neurobasal-A medium,

17 mM HEPES, 2 mM L-Glutamine, 2% B-27, 5 mg/ml D-glucose, and 1% antibiotic/antimy-

cotic (all obtained from ThermoFisher Scientific). Starting from the 7th DIV until the end of

experiment, OHCs were maintained in the serum-free media [34, 86, 88] in order to decrease

glial activation, proliferation and scar formation [79, 89]. As described below, PI uptake mea-

surements were also performed in serum-free media as DNase I present in the serum can

degrade the DNA of dead cells and lead to an inaccurate estimate of the number of dead cells

[90].

Blast injury of OHCs with an open-ended helium-driven shock tube

OHCs were grown for 8 days in culture prior to blast exposure. As previously demonstrated by

data from our and other laboratories, this period is sufficient to allow recovery from any proce-

dure-related degeneration [34, 91, 92]. An open-ended, helium-driven shock tube, built by our

group, was used to generate overpressures of specific magnitudes and to produce injury in

OHCs as described previously [34]. Briefly, individual membrane inserts containing OHCs

were placed in 40-mm culture dishes with 800 μl of serum-free media. Culture dishes were

next covered with Parafilm and sealed within sterile plastic pouches (5.5 cm x 6.5 cm). OHCs

were placed on a rigid stand 22 cm away from the end of the shock tube and were positioned

55˚ off axis to avoid exposure to exhaust gases. OHCs were injured using a single blast over-

pressure designated as either low (138 ± 22 kPa) or high (273 ± 23 kPa), since our previous

studies demonstrated that exposure to overpressures of about 150 kPa and 280 kPa results in

significant cell death at 2 h following injury [34]. Sham control OHCs were processed identical

to blast-injured OHCs, but were not exposed to the blast overpressure.

Immunohistochemistry

At 2 h post injury, OHCs were fixed for 30 minutes (min) at room temperature (RT) with 4%

paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB) and immunohistochemistry (IHC)

was performed [34]. At the time of fixation, OHCs were about 100 μm thick as they get thinner

after a few days in culture [93–95]. Immunostaining with a polyclonal rabbit antibody against

GFAP (Dako, Carpinteria, CA, USA Cat# Z0334, RRID: AB_2314535) was conducted directly

on the insert membrane, which was cut out around the OHCs [34, 94, 96]. Additionally,

OHCs that were pretreated with either Annexin V conjugated to Alexa 488 (ThermoFisher Sci-

entific) or 10,000 kDa Dextran (Dex10) conjugated to Alexa 488 (ThermoFisher Scientific), as
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described below, were gently peeled from the membrane insert and immunostained against

GFAP (Dako) using the free-floating sections method [97]. Double labeling against GFAP

(Dako) and glial glutamate transporter 1 (GLT-1; EMD Millipore Cat# AB1783, RRID:

AB_90949) was also performed on the free-floating OHCs. Both OHCs attached to the insert

membrane and free-floating sections were immunostained using the same protocol. Briefly,

fixed OHCs were washed 3 times for 5 min in phosphate buffered saline (PBS) and incubated

for 1 h at RT in blocking solution consisting of PBS, 5% normal goat serum (NGS; Thermo-

Fisher Scientific), 5% bovine serum albumin (BSA; Sigma Aldrich, St. Louis, MO, USA) and

1% Triton-X 100 (TX-100; Sigma Aldrich). Following blocking, OHCs were incubated in

GFAP (Dako) primary antibody diluted in blocking solution at 1:500 for 48 h at 4˚C in a

humid atmosphere. For double staining, under the same conditions OHCs were simulta-

neously incubated with polyclonal rabbit antibody against GFAP (Dako; 1:500) and polyclonal

guinea pig antibody against GLT-1 (EMD Millipore; 1:1500). After washing, OHCs were incu-

bated with appropriate secondary antibodies diluted in blocking solution without TX-100 as

follows: Alexa Fluor 488 conjugated polyclonal goat anti-rabbit antibody (ThermoFisher Sci-

entific Cat# A-11034, RRID:AB_2534092; 1:500), Alexa Fluor 647 conjugated polyclonal goat

anti-rabbit antibody (ThermoFisher Scientific Cat# A-21245, RRID:AB_2535813; 1:750), and

Alexa Fluor 488 conjugated polyclonal goat anti-guinea pig antibody (ThermoFisher Scientific

Cat# A-11073, RRID:AB_2534117; 1:400). Staining specificity was confirmed by omission of

primary antibody. Sections were counterstained with the nuclear dye DAPI (4’, 6-diamindino-

2-phenylindole dihydrochloride; Sigma-Aldrich) and mounted with VECTASHIELD HardSet

mounting medium (Vector Laboratories, Burlingame, CA, USA). Immunostained OHCs were

analyzed using a Leica TCS SP8 confocal laser scanning microscope (Leica Microsystems, Buf-

falo Grove, IL, USA).

Quantification of dead astrocytes

The red fluorescent dye, PI (ThermoFisher Scientific) was used to assess cell death following

blast injury [34, 98]. PI enters only into cells with a damaged cell membrane and is considered

to be primarily a marker of necrotic cells [99]. OHCs were placed in media containing 2 μM PI

[100, 101] for 2 h prior to imaging. All sections were imaged under identical conditions at

prior to (basal) and 2 h following blast injury using a Nikon Eclipse TE2000-U upright fluores-

cent microscope (Nikon Instrument Inc., Melville, NY, USA) equipped with a digital SPOT

camera and software (Spot Imaging Solutions, Sterling Heights, MI, USA). Any OHC which

had dissection or handling related damage prior to the beginning the experiment was excluded

[84, 87, 88, 100]. Following PI imaging at 2 h post-injury, OHCs were fixed and processed for

IHC as described above.

GFAP immunostained OHCs were used to acquire three non-overlapping images

(290.63 μm by 290.63 μm) of the cornu Ammonis 1 (CA1) region by a Leica TCS SP8 confo-

cal laser scanning microscope, and only a small fraction of CA1 region was not analyzed [34,

80]. Two observers blinded to the experimental groups counted in each image the total num-

ber of dead astrocytes that were co-labeled for GFAP and PI. Counts obtained from the two

observers were averaged and expressed as the total number of dead astrocytes per counting

region [34]. The concordance correlation coefficient (CCC) was used to evaluate agreement

among two observers.

Apoptosis assay

Annexin V binds with high affinity to membrane phospholipid phosphatidylserine (PS),

which is transposed to the external side of the plasma membrane during early apoptosis [99,
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102]. Accordingly, in our study Annexin V was used to assess the presence of apoptotic cells in

OHCs in the acute phase of blast injury. Immediately following blast exposure, Annexin V

conjugated to Alexa Fluor 488 (ThermoFisher Scientific Dead Cell Apoptosis Kit; 15 μl/ml)

was added to the culture medium of control and OHCs exposed to blast overpressure. Simulta-

neously, OHCs were treated with PI (EMD Millipore; 2 μM). Following a 2 h incubation with

Annexin V and PI, OHCs were fixed for 30 min at RT with 4% PFA in 0.1 M PB and immu-

nostained against GFAP as described above.

Calpeptin treatment of OHCs

The calpain inhibitor calpeptin (Santa Cruz, Dallas, Texas, USA; 10 μM) [103] was added to

the OHCs’ serum-free medium followed immediately by a sham- or blast-injury. After the

injury, samples were transferred to fresh serum-free medium containing the same concentra-

tion of calpeptin and PI (EMD Millipore; 2 μM). PI stained OHCs were imaged at 2 h post-

injury and subsequently harvested for GFAP western blot analysis as described below.

Gel electrophoresis, western blot, and densitometry

For western blot analysis, 10 OHCs from two different inserts of the same experimental

group were pooled to represent one sample [104]. Tissue was lysed in 300 μl lysis buffer con-

sisting of 50 mM Tris-HCl, 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA),

0.1% sodium dodecyl sulfate (SDS), 1% Triton X-100, and 1% mammalian protease and

phosphatase inhibitor cocktail [105] (All obtained from ThermoFisher Scientific, except for

SDS which was obtained from Bio-Rad, Hercules, CA, USA, and Triton X-100 which was

obtained from Sigma-Aldrich). Slice homogenates were prepared using a manual homoge-

nizer (ThermoFisher Scientific), incubated on ice for 30 min, and were further centrifuged

at 13,000 RPM for 20 min at 4˚C. The supernatant was collected and stored at -80˚C until

use.

The protein concentration was determined by colorimetric detection with a bicinchoninic

acid (BCA) assay (ThermoFisher Scientific) according to the manufacturer’s protocol. Briefly,

10 μl of protein sample, or BSA standard, was loaded into a microplate. 200 μl of working solu-

tion was added to each sample and the microplate was incubated for 30 min at 37˚C. The

absorbance was measured at 562 nm using a microplate reader (PowerWave XS, BioTek

Instruments Inc., Winooski, VT).

For gel electrophoresis, samples were heated with laemmli Sample Buffer (Bio-Rad) and

100 mM of dithiothreitol (DTT; MidSci, Saint Louis, MO, USA) at 95˚C for 5 min. 15 μg/μl

of sample protein was loaded onto a 10% Mini-PROTEAN TGX Stain-Free Precast Gel

(Bio-Rad) and run under reducing conditions. The gel was blotted onto a polyvinylidene

fluoride (PVDF) Immobilon 1 FL membrane (EMD Millipore) via wet transfer. Following a

brief wash in tris-buffered saline (TBS; pH 7.5), the membrane was blocked with 5% BSA in

TBS supplemented with 0.05% Tween 20 (TTBS). Further, the membrane was probed with

primary antibodies against GFAP (Dako; 1:10,000), calpain (Santa Cruz Cat# sc-373966,

RRID: AB_10917913); 1:1,000) or GLT-1 (EMD Millipore; 1:20,000) at 4˚C overnight. Fol-

lowing a brief wash, membranes were incubated with goat anti-rabbit (ThermoFisher Scien-

tific Cat# 31460, RRID: AB_228341; 1:10,000), goat anti mouse (ThermoFisher Scientific

Cat# 31430, RRID: AB_228307; 1:10,000) or goat anti-guinea pig (ThermoFisher Scientific

Cat# A18769, RRID: AB_2535546; 1:50,000) poly-horse radish peroxidase (HRP) conju-

gated secondary antibody diluted in blocking solution, respectively. A monoclonal antibody

against mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Advanced Immuno-

chemical, Long Beach, CA USA Cat# 6C5; 1:50,000) was used as a loading control with a
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secondary goat anti-mouse (ThermoFisher Scientific; 1:50,000) HRP conjugated antibody.

The membrane was then incubated with SuperSignal West Femto (ThermoFisher Scientific)

for 5 min at RT and the signal was detected using a Carestream ECL 4000MM Pro imaging

scanner (Carestream Inc., Rochester, NY, USA). Bands were scanned into digital images

and analyzed by densitometry using Carestream Molecular Imaging Software Standard Edi-

tion v. 5.3.4.17821. Target band density was normalized to the appropriate loading control

[106].

Assessment of altered membrane integrity following bTBI

Cell membrane disruption following blast exposure was evaluated using Alexa 488-conjugated

Dex10, which is excluded from cells with an intact cell membrane [107, 108]. OHCs were incu-

bated with Alexa 488-conjugated Dex10 (ThermoFisher Scientific; 0.02 mg/ml) from 2 h

before injury until 2 h post-injury. Immediately following injury, PI (EMD Millipore; 2 μM)

was also added to the OHCs’ culture medium. Following imaging of PI staining at 2 h post-

injury, OHCs were fixed and immunostained against GFAP as described above. To assess

involvement of cell membrane perturbation in astrocytic cell death, co-labeling of GFAP, PI,

and Dex10 was evaluated in mounted OHCs under TCS SP8 confocal laser scanning micro-

scope (Leica Microsystems).

Data collection and statistical analysis

Quantification of dead astrocytes for each experimental group was performed on 5 OHCs

obtained from at least 3 different animals. Three images in the CA1 region per section were

acquired and were subsequently used for quantification of GFAP and PI co-labeled cells. Data

are presented as the total number of dead astrocytes per counting area in the CA1 ± standard

error of mean (SEM).

Western blot analysis for each protein was repeated on samples from at least 3 different

experiments, with each sample consisting of 10 OHCs. Quantification of GLT-1- and GFAP-

immuoreactive bands was performed using computer-assisted densitometry scanning. Data

collected from 3 different samples per group were averaged and presented as arbitrary densi-

tometry units of GLT-1 or GFAP relative to GAPDH loading control.

Statistical comparison among groups was done by one way analysis of variance (ANOVA)

followed by a Tukey’s post hoc test. A value of P< 0.05 was considered statistically significant.

Results

Acute astrocytic response to blast overpressure

At 2 h following OHCs’ exposure to the blast overpressure, we have detected shearing, or

tearing, of astrocytes as well as changes in their morphology, including swelling and bead-

ing, while astrocytes with mainly intact morphology were present in the sham control

OHCs (Fig 1A–1C). In both the low- and the high-blast groups, we have observed clasmato-

dendrosis, which is defined by the beading and dissolution of astrocytic processes (Fig 1E

and 1F). In OHCs exposed to a blast overpressure, clasmatodendrosis was present through-

out the tissue (Fig 1E and 1F), whereas it was almost absent in the sham control group (Fig

1D). Moreover, at 2 h post-injury, we have observed in both the low- and high-blast groups

a significant increase in the number of dead astrocytes, identified by co-labeling with the

astrocytic marker GFAP and the cell death marker PI (Fig 1E amd 1F). Assessment of the

number of dead astrocytes per counting region in the CA1(Fig 1G and 1H) had high
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interobserver agreement with the CCC of 0.9595. Quantitative data revealed a statistically

significant increase in the number of dead astrocytes in the low- and high-blast compared to

sham controls (P < 0.05) (Fig 1H). There was no statistically significant difference between

the low- and high-blast groups; however there was a trend towards increased death of astro-

cytes in the high-blast group.

Fig 1. Acute morphological changes and demise of astrocytes following blast exposure. Representative

confocal images acquired in the CA1 hippocampal region from sham controls (A, D), low-blast (B, E), and high-blast

(C, F) OHCs that were fixed at 2 h following injury and stained with an anti-GFAP antibody (green), PI (red), and DAPI

(blue). Shearing of the astrocytes (thin arrows) was detected in OHCs exposed to blast overpressure (B, C) while it

was absent in the sham controls (A). Clasmatodendrosis (arrowheads) was also observed in the low- (E) and high-

blast (F) groups, but it was very infrequent in the sham control group (D). At the same time point, only a few dead

astrocytes were present in sham control OHCs (D) while significant number of dead astrocytes (thick arrows) was

revealed in the low- (E) and high-blast (F) groups. (G) Schematic diagram of OHC, indicating approximate locations in

the CA1 region (boxes) where images for quantification of dead astrocytes were taken. (H) Number of dead

astrocytes per counting area in the CA1 hippocampal region at 2 h following injury was significantly higher in both the

low- (*; P< 0.05; n = 5) and high-blast groups (*; P < 0.05; n = 5) compared to the sham control group (n = 5). Scale

bars (A-C) 50 μm (D-F) 20 μm.

doi:10.1371/journal.pone.0173167.g001
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Infrequent astrocytic apoptosis in the early phase of blast injury

Staining with Alexa 488 conjugated Annexin V identified a small number of apoptotic cells in

OHCs at 2 h following sham-, low-, and high-blast injury (Fig 2). In addition, almost none of

the apoptotic, Annexin V positive cells were co-labeled with astrocytic marker GFAP (Fig 2).

Calpain mediated GFAP degradation in response to blast overpressure

Results from western blot analysis of both low- and high-blast groups at 2 h following injury

revealed the presence of the full length astrocytic protein GFAP (50 kDa) and a range of GFAP

break down products (GFAP-BDPs) down to 38 kDa (Fig 3A). At the same time point, only

the full length GFAP (50 kDa) was observed in sham control OHCs (Fig 3A). Prevalently,

expression of the calpain mediated 38 kDa GFAP-BDP [109] was increased in both the low-

Fig 2. Limited early apoptotic death of astrocytes following blast exposure. At 2 h following injury, Annexin V conjugated to Alexa 488 (green; A, E, I)

was used to identify apoptotic cells in sham control (A-D), low-blast (E-H), and high-blast (I-L) groups. Samples were additionally labeled with the cell

death marker PI (red; B, F, J), an antibody against GFAP (gray; C, G, K), and DAPI (blue). Overlay of Annexin V, PI, GFAP, and DAPI staining (D, H, L).

Annexin V positive cells (arrow) were infrequent in all three experimental groups. Almost none of the observed Annexin V positive cells were co-labeled

with GFAP. Scale bars 20 μm.

doi:10.1371/journal.pone.0173167.g002
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Fig 3. Calpain-mediated degradation of GFAP at 2 h following blast injury. Proteins were isolated from

sham control (Sham), low-blast (L-Blast), and high-blast (H-Blast) OHCs at 2 h post-injury and analyzed via

western blot for expression of GFAP (A, B) or calpain (C). (A) The 38 kDa calpain associated GFAP-BDP was

present in blast-injured OHCs, but not in corresponding sham control OHCs. (B) Following inhibition of calpain

via calpeptin treatment, this GFAP-BDP at 38 kDa was not observed. (C) Calpain expression in OHCs

exposed to blast overpressure compared to sham controls was not changed at this time point. (D)

Acute astrocytic death in OHCs exposed to blast overpressure
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and high- blast overpressure exposure groups (Fig 3A). Moreover, treatment with the calpain

inhibitor calpeptin prevented the generation of the 38 kDa GFAP-BDP in OHCs at 2 h follow-

ing blast injury (Fig 3B). However, western blot analyses revealed similar expression levels of

calpain in all experimental groups (Fig 3C). In addition, densitometry analysis demonstrated

that expression levels of full length GFAP were not significantly different among experimental

groups with or withouth calpeptin treatment (Fig 3D).

Acute astrocytic membrane disruption following blast exposure

The effect of a blast overpressure on membrane permeability was studied in OHCs at 2 h fol-

lowing injury using a Dex10 conjugated to Alexa 488 infusion tracer [107, 108]. Additionaly,

Dex10 treated OHCs were co-labeled with the cell death marker PI and the astrocytic marker

GFAP (Fig 4). We have observed an increase in the number of dextran positive cells at 2 h fol-

lowing injury in the low- and high-blast groups compared to the sham controls (Fig 4). More-

over, a fraction of Dex10 positive cells co-expressed PI and GFAP at 2 h following blast injury

(Fig 4).

Acute demise of GLT-1-expressing astrocytes

Double labeling for GFAP and GLT-1 demonstrated significant loss of GLT-1 expressing

astrocytes (Fig 5A–1C), implying decreased glutamate uptake following bTBI. However, west-

ern blot assay for GLT-1 expression levels (Fig 5D) followed by densitometry analyses (Fig

5E), did not demonstrate significant differences between sham control, low-, and high-blast

OHCs at 2 h post-injury.

Discussion

Given the recent rise in the incidence of bTBI [1–4], it is paramount to elucidate mechanisms

underlying blast-evoked cell death and develop effective neuroprotective interventions. This

Densitometry analysis of GFAP 50 kDa/GAPDH ratio for 3 independent experiments revealed no significant

(ns) differences among control and blast-exposed OHCs without or with calpeptin treatment.

doi:10.1371/journal.pone.0173167.g003

Fig 4. Increased astrocytic membrane permeability at 2 h post injury. Dex10 (green) and PI (red) labeled sham control (A), low-blast (B), or high-

blast (C) OHCs were fixed 2 h following injury and further stained with an anti-GFAP antibody (gray). Dead astrocytes with increased membrane

permeability, identified by overlap of GFAP, PI, and Dex10 staining (arrows), were only present in the low-blast (B) and high-blast (C) OHCs but not in

the sham controls (A). Scale bars 20 μm.

doi:10.1371/journal.pone.0173167.g004

Acute astrocytic death in OHCs exposed to blast overpressure

PLOS ONE | DOI:10.1371/journal.pone.0173167 March 6, 2017 11 / 25



study determined acute effects of blast exposure on astrocytes and depicted mechanisms of

blast-evoked astrocytic death in an in vitro bTBI model. We demonstrated that blast exposure

has a profound effect on astrocytes acutely following injury in both the low- and high-blast

groups compared to sham controls. Our main findings included a statistically significant

increase in necrotic astrocytic death in both low- and high-blast groups compared to sham

controls. Additionally, our data suggest calpain mediated GFAP breakdown and increased

plasmalemmal permeability as mechanisms of blast-evoked astrocytic death, and further

implies glutamate dysregulation following bTBI.

We previously validated an OHC-based in vitro bTBI model as a tool to study cellular and

molecular changes following blast exposure [34]. Advantages of OHCs cultures include preser-

vation of 3D tissue-specific cytoarchitecture, neuronal-glial interactions, as well as interre-

gional neuronal connectivity of an in vivo hippocampus [83, 93, 110]. One potential limitation

is that OHCs are typically prepared from postnatal donors, as these cultures survive better [93,

95, 111]. However, OHCs prepared from neonatal donors gain more mature phenotype over

the first few weeks of culture [95, 112, 113] and display similar gene regulation, protein expres-

sion, and synaptic activity of the adult hippocampus [111, 114, 115]. We cannot exclude that

due to the absence of active circulatory system, bones of the scull, inputs from extra hippocam-

pal brain regions, and systemic response in our in vitro bTBI model, cellular response and it’s

temporal profile could be somewhat different compared to in vivo situation. However, previ-

ous studies demonstrated that primary and secondary cell death, as well as temporal course of

damage and changes in cell death genes in OHCs exposed to mechanical or ischemic injury

Fig 5. Blast-induced loss of GLT-1-expressing astrocytes. At 2 h following injury, sham control (A), low-blast (B), and high-blast

(C) OHCs were stained using antibodies against GLT-1 (green), GFAP (gray), PI (red), and DAPI (blue). Dead astrocytes, identified

by co-labeling of GFAP and PI (arrows) were also positive for GLT-1. (D) Representative immunoblot analyses of GLT-1 protein

expression in sham control (Sham) and OHCs exposed to blast overpressure (L-Blast and H-Blast). (E) Densitometry analysis of

GLT-1/GAPDH ratio for 3 independent experiments revealed no significant (ns) differences between sham control, low-blast, and high

blast groups. Scale bars 20 μm.

doi:10.1371/journal.pone.0173167.g005
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are similar to those observed in vivo [84, 116–118]. Despite limitations, there are clear benefits

to the OHC reductionism and they have been extensively used to model blast and non-blast

TBI [32, 33, 84, 85, 118–120].

To generate in vitro bTBI model, as in our previous studies [34], culture dishes with OHCs

were placed outside of the shock tube and positioned 55˚ off axis to avoid effects of exhaust

gases resulting in complex shock waves [121, 122]. OHCs were exposed to blast overpressures

of approximately 150 and 280 kPa, that in our previous in vitro study evoked significant cell

death [34]. Experimental designs similar to ours were implemented in several recent in vitro
[32, 33, 119, 120, 123, 124] and in vivo bTBI studies [19, 122, 125, 126]. Notably, our shock

tube model for rats [16, 28, 127] is quite similar to the model presented in this study, including

design, peak overpressure and positive duration. Using the present design, it should be noted

that this loading condition can be a combination of primary (shock wave overpressure) and

possible tertiary loading due to acoustic impedance mismatch between the different materials

(e.g., air, well, medium) that may have resulted in inertial loading that may have led to

mechanical deformation (i.e., strain) of the tissue sample [34].

In the present study we analyzed cellular changes in OHCs at 2 h following blast exposure,

as under the same conditions we previously observed dramatic increase in cell death from 0 to

2 h post-injury [34]. At 2 h post-injury, in addition to dead astrocytes we also observed dead

neurons and microglial cells (data not shown). However, we focused our analyses on the vigor-

ous early astrocytic response to blast overpressure that was not previously reported. In our ear-

lier studies we demonstrated robust activation of astrocytes at 72 h post injury, however at that

time point we detected only a small number of dead astrocytes [34]. Though, corresponding to

our current results, we observed dead microglial cells at 4 and 24 h post-injury [34]. Collec-

tively, results from our present and previous studies show acute astrocytic demise followed by

robust activation at 72 h post-injury. Similar to our data, astrocytic damage and PI uptake was

observed in the stretch-injury model only immediately following injury, but not at the 24 and

48 h post-injury [128, 129]. Correspondingly, results collected from human blunt TBI cases

implied that number of astrocytes initially decreases within the first 24 h post-injury and then

again increases at the later time points, indicating formation of reactive gliosis [76]. However,

significant changes in viability of astrocytes were not observed in astrocyte monocultures

exposed to the blast overpressure [130, 131]. Assessments were conducted only at later time

points post-injury, which could explain why initial astrocytic susceptibility was not observed.

Moreover, blast shock wave may not have the same biological effects in astrocyte monocultures

as in OHCs that more closely resemble in vivo situation [83, 93, 110]. In agreement with our

data, death of astrocytes [67, 78] and their activation [35, 66, 67, 125, 132, 133] were detected

in animal studies following shock wave exposure. On the contrary, several in vivo bTBI studies

did not observe increased GFAP expression [134–136], which could be due to the different

experimental conditions and assessment timing.

In this study we observed significant co-labeling of GFAP-expressing astrocytes with the

cell death marker PI, which identified necrosis as the primary mechanism of astrocytic death

in OHCs at 2 h following blast exposure. Additionally, we studied presence of apoptotic astro-

cytes in the acute phase of bTBI using co-labeling with Annexin V and GFAP. Fluorescently

labeled Annexin V was previously used in OHCs and different in vivo models of brain injury

[137–139] to detect apoptotic cells even within several hours following injury [140–142]. The

limited detection of Annexin V positive cells at 2 h following blast exposure, rules out apopto-

sis as a significant contributing factor to astrocytic death acutely following blast exposure. It

was previously shown that both necrotic and apoptotic cell death are implicated in bTBI [133,

143–145]. Studies in monkey [67] and rat [78] bTBI models detected apoptotic astrocytes at 1

month and 1 day post-injury, respectively. However, those studies did not assess astrocytic

Acute astrocytic death in OHCs exposed to blast overpressure
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apoptotic death at more acute time points as we did. Therefore, our data together with results

collected in in vivo bTBI models [67, 78] imply that apoptosis may play a significant role in

astrocytic death at later time points.

Beside the acute death, we observed blast-evoked shearing and morphological changes in

astrocytes. Clasmatodendrosis, an irreversible astroglial degeneration characterized by beading

and dissolution of their processes [146], was also observed at 2 h following injury. In accor-

dance with our results, other groups demonstrated that shock waves can generate shear forces

in the brain tissue [25, 132, 147] and induce elongation and deformation of the cell organelles

[25, 145, 148]. Trauma-induced morphological changes of astrocytes, such as swelling and

ultrastructural alterations, were previously perceived in an in vitro model of fluid percussion

injury [149, 150], stretched-injured astrocytes [151], a rat bTBI model [152], and in patients

with cerebral contusions [77, 153]. Likewise, clasmatodendrosis of astrocytes was detected in

TBI patients from 1 h up to 14 days post injury [154]. Clasmatodendrosis in astrocytes was

linked with the autophagic cell death [155, 156], suggesting autophagy as an additional mecha-

nism of astrocytic death in OHCs at 2 h following blast exposure. Accordingly, an increase in

autophagy that can lead to cell death was previously observed following blunt TBI [157–160]

and bTBI [23].

Furthermore, our study revealed cleavage of GFAP by calpain as a potential mechanism of

early astrocytic death, based on the presence of calpain-mediated 38 kDa GFAP-BDP at 2 h

following injury. Moreover, when we introduced the calpain inhibitor calpeptin into the

OHCs culture medium, formation of the 38 kDa GFAP-BDP in the blast-injured groups was

prevented, while expression levels of full length GFAP remained similar. Expression levels of

calpain were similar in all experimental groups, suggesting only increase in calpain activity fol-

lowing blast exposure due to the calcium overload [161]. Previous human and animal studies

established that calpains play a key role in neuropathological changes following blunt TBI and

that application of calpain-inhibitors can have protective effects [109, 162–164]. Recent studies

in a mouse bTBI model also reported increased calpain-mediated cytoskeletal breakdown

[165, 166]. Corresponding to our data, it has been shown that beside neuronal proteins, GFAP

can be calpain substrate as well [109, 167]. In addition, it has been shown that both increased

serum levels of GFAP [168–170] and GFAP-BDPs [109, 171–173] are strong biomarkers of

brain injury.

The overlap of Dex10, GFAP, and PI staining observed in the present study in low-and

high-blast groups, indicated plasmalemmal disruption as an additional mechanism of astro-

cytic death in response to the blast overpressure at 2 h following injury. In addition, a fraction

of Dex10-labeled cells in OHCs exposed to blast overpressure did not express GFAP, implying

that blast exposure also causes rapid changes in cell membrane permeability in other cell types

in OHCs. Complex changes in cell membrane permeability that can lead to the ionic imbal-

ances and activation of several cellular pathways have been previously described in stretched-

injured astrocytes [129, 174, 175], as well as in blunt and diffuse TBI models [107, 108, 176,

177]. In addition, increased cell permeability and cytoskeletal damage has been observed fol-

lowing blast exposure in the dorsal root ganglion (DRG) [178] and SH-SY5Y human neuro-

blastoma cells [31]. Correspondingly, acute decrease in GFAP/Tau was detected in the mouse

brain after blast exposure, which most likely was result of blast-induced perturbation of neuro-

nal and astrocytic cell membranes and protein leakage across the disrupted blood-brain barrier

[179].

Based on the essential role of astrocytes in maintaining brain homeostasis, it is feasible that

the acute death of astrocytes observed in our studies could be implicated in secondary neuro-

nal loss following bTBI. A link between acute astrocytic death and delayed neuronal loss has

also been postulated in models of ischemic and blunt brain injury [59, 74]. Despite no
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apparent changes in GLT-1 protein expression, significant loss of GLT-1 expressing astrocytes

observed in our studies at 2 h following blast injury, implies a reduction of glutamate uptake

that can further cause excitotoxic neuronl and glial death [180–183]. Under normal physiolog-

ical conditions, astrocytes regulate extracellular glutamate concentration through release and

transport via glutamate transporters [37, 54, 184, 185]. Out of five sodium-dependent gluta-

mate transporters that have been cloned [185], GLT-1 is responsible for the majority of gluta-

mate uptake [186, 187] and it is mainly expressed by astrocytes [188]. However, neurons and

microglial cells also express GLT-1 [75, 188, 189] and it is feasible that blast-evoked loss of

these cells could be also implicated in the disruption of glutamate uptake. In addition, previous

studies demonstrated that both excessive glutamate release from neurons and dysfunction of

astrocytes could contribute to a prompt increase of extracellular glutamate concentration fol-

lowing TBI [182, 190, 191]. Likewise, several studies reported decrease in GLT-1 expression in

blunt TBI models [75, 192, 193] and in human TBI [76]. In our previous studies we have dem-

onstrated the spread of cell death following bTBI and that at 72 h post-injury majority of dead

cells were neurons [34]. Based on data from this study, we speculate that early demise of astro-

cytes and potential glutamate dysregulation could aggravate neuronal loss at the later time

points post-injury.

In conclusion, this study demonstrated substantial acute effects of blast overpressure on

astrocytes in OHCs. Understanding the damage incurred by astrocytes at 2 h post-injury in

this in vitro model paves a path for understanding the role of astrocytes in bTBI neuropathol-

ogy. Results presented here provide steps toward future research, which will examine whether

the acute astrocytic demise significantly contributes to the delayed neuronal loss and whether

astrocytes could be targeted to prevent spread of neurodegeneration following bTBI.
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