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Alzheimer’s disease (AD), the most common dementia in the elderly, is characterized by cognitive impairment and
severe autonomic symptoms such as disturbance in core body temperature (Tc), which may be predictors or early events
in AD onset. Inclusions of phosphorylated Tau (p-Tau) are a hallmark of AD and other neurodegenerative disorders called
“Tauopathies.” Animal and human studies show that anesthesia augments p-Tau levels through reduction of Tc, with
implications for AD. Additionally, hypothermia impairs memory and cognitive function. The molecular networks related
to Tc that are associated with AD remain poorly characterized. Under physiological conditions, Tau binds microtubules,
promoting their assembly and stability. The dynamically regulated Tau-microtubule interaction plays an important role in
structural remodeling of the cytoskeleton, having important functions in neuronal plasticity and memory in the
hippocampus. Hypothermia-induced increases in p-Tau levels are significant, with an 80% increase for each degree
Celsius below normothermic conditions. Although the effects of temperature on Tau phosphorylation are evident, its
effects on p-Tau degradation remain poorly understoodWe review information concerning the mechanisms of Tau
regulation of neuron plasticity via its effects on microtubule dynamics, with focus on pathways regulating the abundance
of phosphorylated Tau species. We highlight the effects of temperature on molecular mechanisms influencing the
development of Tau-related diseases. Specifically, we argue that cold might preferentially affects central nervous system
structures that are highly reliant upon plasticity, such as the hippocampus, and that the effect of cold on Tau
phosphorylationmay constitute a pathology-initiating trigger leading to neurodegeneration.

Introduction

Alzheimer’s disease (AD), the most common form of demen-
tia, is a disease associated with chronic progressive neurodegen-
eration, with short-term memory loss as one of the earliest
clinical symptoms, followed by escalating cognitive decline and
social dependence,1 and eventually ending in death.2 AD has
reached epidemic proportions, representing a major economic,
medical and social burden. It afflicts approximately 26 million
people worldwide and is expected to increase to more than a
100 million in the next 35 years. The number of AD cases rise
with advancing age and increase substantially after 65 years of
age.1,3 Four million new cases of dementia are diagnosed each
year, and approximately 70% of these cases are attributed to
AD.4 The presence of inclusions of phosphorylated Tau
(p-Tau) is one of the main hallmarks of AD and many other

neurodegenerative disorders classified as “tauopathy,” which
include Frontotemporal dementia with Parkinsonism linked to
chromosome 17 (FTDP-17), Pick’s disease, corticobasal degen-
eration and progressive supranuclear palsy; tauopathies are
reviewed in further detail by Sergeant and colleagues.5 These
inclusions are highly abundant in specific areas of AD patient
brains, and the hippocampus is one of the earliest sites affected.6

The reasons for the susceptibility of the hippocampus to the
accumulation of phosphorylated Tau as one of the first-affected
brain regions in ADs are not presently understood, and the rela-
tionship between short-term memory, plasticity and regulation
of microtubule dynamics by Tau in this region may be key to
furthering our understanding of AD and its progression.

Because the majority of AD cases (99%) are likely due to envi-
ronmental factors,7-9 AD is considered to be a multifactorial dis-
order. While the incidence of AD increases dramatically with
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age, the mechanisms underlying the link between age and the
development of AD remain unclear.9 Whittington and Col-
leagues.9 suggest body temperature as an important risk factor
which favors Tau hyperphosphorylation and aggregation. This
possibility ought not be overlooked. Interestingly, animal and
human studies link the effects of cold exposure to increases in
Tau phosphorylation, raises the possibility of an association
between age-dependent deficits in temperature homeostasis and
Tau dysregulation in AD and other dementias.9-11 Additionally,
AD patients frequently exhibit an increase in Tc amplitude and
acrophase, the cause of which remains to be conclusively deter-
mined.12-21 Pre-clinical and clinical studies have indicated that
anesthesia also induces an increase in p-Tau levels through a
reduction in Tc, with implications for AD genesis and/or pro-
gression.22-28

In this review we focus our attention on the transcriptional and
post-translational mechanisms of Tau regulation of microtubule
dynamics, and the importance of this regulation to regions of the
brain with high neuron plasticity. We highlight the effects of tem-
perature on molecular mechanisms influencing the abundance of
phosphorylated Tau in the brain, and how they might influence
the development of Tau-related diseases. Specifically, we argue that
cold may preferentially affect central nervous system structures that
are highly reliant upon plasticity, such as the hippocampus, and
that the effect of cold on Tau phosphorylation may constitute a
pathology-initiating trigger leading to neurodegeneration.

Plaques and Tangles – Cause or Consequence?

Histopathologically, AD is characterized 2 features: extracel-
lular amyloid plaques composed of amyloid b (Ab) peptide,
and intracellular neurofibrillary tangles (NFTs) of hyperphos-
phorylated Tau protein. The presence of Ab peptide in AD
brain was initially regarded as a primary cause of brain dysfunc-
tion, although subsequent studies suggest that the presence of
Ab may be a consequence of AD-initiating events, rather than
the cause of AD itself.29-31 This issue is still under investigation
and the “amyloid cascade” hypothesis that has emerged and
instructed much of the research on Alzheimer’s disease for more
over 25 years 32,33 should be carefully reevaluated in addressing
the primary cause of dementia. Several amyloid-independent
mechanisms have been proposed to lead to AD,34 and plaques
of amyloid b accumulate in aged individuals without AD
pathology. These observations suggest that Ab peptide is
unlikely to be the sole participant in the development of AD.
Accordingly, therapies targeting the accumulation of amyloid b
plaques via clearance of amyloid b have proved largely unsuc-
cessful, suggesting that Ab plaques might not be as detrimental
to neurons as once thought, but may instead represent a neuro-
protective response,30 furthering the skepticism surrounding
the attribution of AD solely to amyloid b.

The severity of dementia in AD has been found to correlate
with the number of NFTs, while there was no correlation
between AD severity and plaque burden.35 Furthermore, the
presence of mutations in Tau that give rise to FTDP-17.36

suggests that Tau dysfunction independently of amyloid b is suf-
ficient to cause neuronal dysfunction leading to dementia and
neuronal death. Further, Ab toxicity is at least partly dependent
on Tau expression,37 and Tau knockout rescues premature mor-
tality in amyloid precursor protein transgenic mice.38

The microtubule-associated protein (MAP) Tau is encoded by
the MAPT gene.39 Under physiological conditions, Tau binds to
microtubules, promotes their assembly and stability.40 (Fig. 1).
The Tau-microtubule interaction is a dynamic process that plays
an important role in the structural remodeling of the cytoskele-
ton during neuronal plasticity, with functions in neurite elonga-
tion, synaptic and spine formation and memory.

The dynamic regulation of Tau binding to microtubules is
achieved by 3 distinct mechanisms. The first is via alternative
splicing, which gives rise to 6 Tau isoforms that differ based on
the presence of either 3 (3R) or 4 (4R) C-terminal microtubule
binding domains.41-43 While only 3R Tau is expressed in fetal
brain, the relative abundance of 4R to 3R Tau in adult brains is
approximately equal, with 4R and 3R existing in an approxi-
mate ratio of one-to-one. Increases in the ratio of 4R to 3R
Tau have been described in several tauopathies.44 The 3 micro-
tubule binding domains of 3R Tau confer a relatively lower
affinity for microtubules binding, which is permissive of higher
cytoskeletal plasticity and augmented cellular transport.45 The
adult hippocampus expresses higher levels of 3R Tau than does
the cortex.46 and the expression of a neonatal Tau isoform, 0N/
3R Tau, persists during adult neurogenesis in the subgranular

Figure 1. Tau phosphorylated levels changes microtubules dynamics.
The molecule Tau, a microtubule-associated protein (MAP), is a phospho-
protein (p-Tau) and its function are directly associated with its phosphor-
ylation levels. The balance between high phosphorylated Tau (hp-Tau),
and low phosphorylated Tau (Tau) promotes changes in microtubules
dynamics leading to destabilization or stabilization, respectively. Brain of
Alzheimer’s patients has approximately 4-fold higher levels of Tau phos-
phorylation as compared to normal brain. This increase in hp-Tau may
be a result from a dysregulation of Tau kinase/phosphatase system or
from a failure in the degradation machinery.
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cell layer of the hippocampus, suggesting that microtubule
dynamics are differently regulated in regions of the brain where
regeneration and plasticity are essential to function.45,47-51 A
schematic representation of 3R/4R Tau isoform, plasticity and
pTau is shown in Figure 2. This, and the finding that the hip-
pocampus is one of the first brain areas affected by AD,6 raises
the possibility that a more-dynamic, less-avidly binding Tau
population preferentially predisposes the neurons in this region
to AD pathology.

The second mechanism of regulation of Tau function is via
post-translational modification. Tau function is regulated by
covalent modification of several modifying molecules at a multi-
tude of sites, within and outside the Tau microtubule binding
domains, suggesting a complex regimen of combinatorial control
at the single molecule and population levels.52 The degree of Tau
phosphorylation correlates negatively to its microtubule binding
affinity (Fig. 1), and represents an important mode of fine-tun-
ing microtubule stabilizing and destabilizing dynamics;53

reviewed in.54 Tau has more than 79 phosphorylation sites,2

and various kinases (e.g. GSK-3B, cdk5, MAPK/ERK, CaMKII,
JNK, c-Jun and AKT/PKB) are documented to phosphorylate
Tau in a site-specific and context-dependent manner. The
degree of Tau protein phosphorylation is further regulated by the
activity of phosphatases (e.g., PP2A, PP2B and PP1), which

reduce the cellular population of phosphorylated Tau protein
without affecting the total Tau protein population.55,56

A third mechanism of Tau regulation is the degradation of
Tau protein. In AD and other taupathies, the presence of
ubiquitin in Tau inclusions.57 suggests a defect in ubiquitin-
mediated Tau protein degradation,58 being that most polyubi-
quitinated proteins are destined for degradation by the protea-
some,59,60 and between 80% and 90% of intracellular protein
degradation is undertaken by the proteasome.61 The Tau deg-
radation machinery, or “Tau triage system,” consists of the
association of the E3 ubiquitin ligase CHIP (carboxyl termi-
nus of Hsp70-interacting protein) with heat shock proteins
(Hsp) and others chaperones that direct ubiquitinated Tau
toward the 26S proteasome.59,62 Ubiquitin-proteasome path-
ways were reviewed in detail by Ciechanover.63 The degrada-
tion of Tau by the 26S proteasome is ineffective, and results
in accumulation of ubiquitinated hyperphosphorylated Tau
protein. The co-chaperone BAG2 (Bcl2-associated athanogene
2) interferes with CHIP-Hsp interaction, inhibiting the ubiq-
uitination of Tau, and conveying Tau toward ubiquitin-inde-
pendent degradation by the 20S proteasome.64

Neuroplasticity – A Liability in the Face of Tau
Dysregulation?

The hippocampus lies under the medial temporal lobe and its
functions are associated with learning and memory.65 which
depend on structural changes such as long-term potentiation and
synaptic remodeling.66,67 Further, the hippocampus is one of 2
sites of neurogenesis within the adult brain, and hippocampal
neurogenesis within the dentate gyrus (DG) has an important
role in plasticity and memory.68,69 An age-dependent decline in
neurogenesis in this region may be related to the cognitive
impairment associated with normal aging and exacerbated in
diseases such as AD.70,71 The renewal of cells within the hippo-
campus via neurogenesis is important to the maintenance of adult
hippocampal function, such as learning and memory consolida-
tion. A decrease in the proliferative neurogenic cell population of
DG has been shown to impair hippocampus-dependent tasks.72

Conversely, stimulation of neurogenesis improves spatial mem-
ory, which is a specialized domain of hippocampus function.69

The importance of regulation of Tau phosphorylation to AD
becomes clear when considering that brain from AD patients has
approximately 4-fold higher levels of Tau phosphorylation than
normal.73 As discussed, the high levels of phosphorylated Tau
protein detected in AD may result from a dysregulation of Tau
kinase and/or phosphatase activity, or from a failure to regulate
levels of phosphorylated Tau via degradation.74 The contribution
of lower-affinity 3R Tau species to increased microtubule
dynamics in the hippocampus, coupled to the accumulation of
microtubule-destabilizing phosphorylation of Tau suggests a
mechanism to explain the unique susceptibility of the hippocam-
pus in the early stages of AD (Fig. 2). Thus, the innate plasticity
of hippocampal neurons may represent a vulnerability in the con-
text of the challenge posed by accumulation of phosphorylated

Figure 2. The plasticity of neurons is regulated by Tau-microtubule bind-
ing affinity. More-plastic neurons have a greater proportion of 3R Tau in
relation to 4R, with an extreme being highly-plastic developing and
immature neurons—embryonic neural precursors express only 3R Tau
while mature neurons have an approximately equal proportion of 3R
and 4R Tau. A further axis of Tau-microtubule binding affinity is Tau pro-
tein phosphorylation, with Tau phosphorylation correlating negatively to
microtubule binding affinity. The abundance of phosphorylated Tau is
dynamically regulated by a balance between Tau kinase and phospha-
tase activity, but also by direct degradation of phosphorylated Tau pro-
tein via BAG2. A failure in BAG2 is permissive of the accumulation of
phosphorylated and hyperphosphorylated Tau species which, when
combined with a higher proportion of 3R Tau isoforms, as is the case in
more-plastic brain regions like the hippocampus, results in a collapse of
dynamic microtubule regulation and a loss of neuron functionality.
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Tau, enabling a catastrophic loss of neuron function that spreads
to other affected brain regions.

In addition to the hippocampus, the subventricular zone
(SVZ) is home to a large population of mitotically dividing neu-
ral precursors. Dynamic regulation of the microtubule cytoskele-
ton is important to the migration and differentiation of neural
precursors, and not surprisingly the SVZ expresses high amounts
of 3R Tau isoforms.45 Levels of Tau phosphorylation also
increase in the SVZ with age, and are higher in the SVZ than in
other regions of the brain.75 The SVZ of AD patients also has
significantly less proliferating precursor cells than normal,76

which further exacerbates age-dependent cognitive decline due to
a failure of homeostatic regeneration by differentiating neuro-
blasts in target brain regions. In addition to the reduced SVZ
neurogenic potential that accompanies normal aging, a dysregu-
lation of Tau phosphorylation within SVZ precursor neurons
may dramatically affect the capacity of the 3R Tau-enriched neu-
ral precursor population to successfully migrate and differentiate,
and thus further contribute to AD pathology(Fig. 2).

Temperature, Tau and Alzheimer’s Disease

Recently, a metabolic hypothesis of Tauopathy etiology has
emerged to explain the close link between associated risk factors
and diseases. Whittington and colleagues suggest 5 risk factors:
aging, hypothermia, diabetes mellitus, starvation and anesthe-
sia—each of which encourage the accumulation of hyperphos-
phorylated Tau.9 Several studies have shown that the Tc of
healthy humans over 60 years of age is lower than in young adult.
The average Tc of individuals above the age of 60 is approxi-
mately 0.4�C lower compared to healthy adults (20-60 year
old).77-80 Interestingly, older healthy humans have a greater risk
of hypothermia when exposed to environmental cold, as the inci-
dence of morbidity is higher among the aged than in younger
adults exposed to extended periods of cold.78-80 These changes
may be due to an age-related reduction of peripheral vasocon-
striction and reduced metabolic heat production, along with
other factors.81

Beyond the cognitive impairment in AD, patients also suffer
from non-cognitive behavioral symptoms, which include auto-
nomic dysfunction, agitation, hyperactivity, anxiety, weight loss,
depression and disturbed circadian rhythms and sleep.82-85 AD
patients also exhibit an increase in Tc amplitude and acrophase,
the causes of which remain poorly understood.12-21 Interestingly,
using 3xTgAD mice, a transgenic model for AD, Knight and col-
leagues demonstrate age-dependent changes in Tc,86 reflecting
the increased Tc observed in AD patients.15 These thermoregula-
tory dysfunctions in 3xTgAD mice were shown to be one of the
earliest changes that appeared, even before significant AD-related
neuropathology, strongly indicating that these symptoms might
be a predictor or even an early event in AD onset, rather than
merely a consequence of the disease.

Hypothermia induces an increase in p-Tau levels (Fig. 3).
For each degree Celsius below normothermic conditions, an
80% increase in Tau phosphorylation is observed.87

Interestingly, cold-induced Tau phosphorylation also occurs in
hibernating.88 and non-hibernating animals.9 The effect of cold
on the p-Tau fraction was observed using in vivo and in vitro
models with different thermic conditions varying from between
3�C – 10�C below 37�C, which is considered the normother-
mic condition for most homeothermic animals.26,89-92 (Fig. 3).
This suggests a link between age-dependent deficits in tempera-
ture homeostasis and Tau dysregulation in AD and other
dementias.9-11 If the p-Tau/temperature described above is lin-
ear, a relative drop of 0.4 degree Celsius in body temperature in
an aged healthy human relative to younger adults might repre-
sent an approximate 30% increase in p-Tau in aged brain com-
pared to young adult brain. This possibility ought not be
overlooked, as it may render the aged brain more vulnerable to
neurodegenerative disorders, and in particular those related to
Tau dysfunction. It is also tempting to speculate that the ele-
vated Tc observed in AD patients.12-21 may represent a com-
pensatory mechanism to counteract the increase in p-Tau levels
and prevent impaired cognition. Interestingly, it has been
shown that rats with intracerebroventricular Ab peptide infu-
sion select higher ambient temperature during night time and
an attenuated acquired heat tolerance compared to control ani-
mals after long-term heat exposure.93 Because there is evidence
that Ab is a consequence of AD, rather than the cause of the
disease itself (see “Plaques and Tangles – Cause or Consequence?”

Figure 3. Regulation of Tau phosphorylation levels by temperature and
differentiation. Cold induces a decrease in BAG2 expression in undiffer-
entiated cells, while the opposite is true in differentiated cells. Interest-
ingly, while the decrease in BAG2 in undifferentiated cells results in an
increase in levels of p-Tau (+p-Tau to +++pTau), the increase in BAG2 in
differentiated cells has no change on p-Tau levels (++p-Tau to ++pTau).
On cold condition, differentiation leads to a decrease in phosphorylated
Tau (+++p-Tau to ++p-Tau), coincident with an increase in Tau phospha-
tase activity (very low to low) and a decrease in Tau kinase activity (mod-
erate to low). Cold-induced inhibition of kinase and phosphatase activity
results in a higher kinase-to-phosphatase activity in undifferentiated cells
to differentiated cells. Cold treated undifferentiated cells have an
increase in Tau phosphorylation due to a higher kinase activity and due
to inhibition of BAG2 expression. In differentiated cells cold-attenuated
kinase/phosphatase activity has no effect of p-Tau levels, while BAG2,
while present, may be dependent on other temperature sensitive
kinases.
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above), we believe that together these data corroborate the above
hypothesis of hyperthermia being a protective body response dur-
ing AD pathogenesis. In light of these, the notion that lowered
body temperature may prolong life span, as well discussed by
Flouris and Piantoni,94 might be cautiously used, as it might not
be completely true for taupathologies related disorders. A better
understanding of temperature regulation in physiologic and path-
ologic conditions during aging needs further investigation.

Animal and human studies have indicated that anesthesia
induces an increase in p-Tau levels through a reduction in Tc:
intravenous (chloral hydrate and sodium pentobarbital) and
inhalation anesthetics (isoflurane) promote pronounced hyper-
phosphorylation of Tau at several epitopes which were reversed
by the restoration of Tc. This observation raises an important
clinical question regarding the impact of anesthesia on p-Tau lev-
els. Does it contribute to AD progression or genesis? Are aged
patients more vulnerable to anesthesia? Additionally, hypother-
mia also promotes memory disruption and impairment of cogni-
tive function,95 raising the possibility that hypothermia induced
by anesthesia may account, to some degree, for the progression of
impaired learning and memory and cognitive deterioration in the
elderly and AD after surgery.96 Interestingly, experiments with
isoflurane and dimethyl sulfoxide have been shown to induce
Tau hyperphosphorylation in animals that developed hypother-
mia.22,23 Additionally, reversible Tau phosphorylation in the
hippocampus is observed after one hour in animals acutely sub-
jected to cold conditions, followed by a second peak of Tau phos-
phorylation at 6 hours.91

By using anesthesia-induced hypothermia, La Freche and col-
leagues.24 showed that 1 hour of cold exposure in mice induced
an increase in p-Tau in the brain that was completely restored
after 24 hours. However, by repeating the same procedure in
subsequent months they observed that the cold effect on p-Tau
was no longer transient. After 5 months performing the same
experiment in the same animal, p-Tau was shown to be dramati-
cally increased in the hippocampus for 30 days. In other studies,
an increase in insoluble Tau and p-Tau were also found weeks to
months after isoflurane anesthesia in mouse models of AD and
Tauopathy.25,28 In humans, Tang and colleagues found increased
Tau e p-Tau in cerebrospinal fluid of patients 2 days after anes-
thesia.27 Palotas and colleagues.97 found an increase in Tau 6
months after surgical anesthesia.97 Those results suggested that
the link between cold and p-Tau fraction are not merely transi-
tory and may have serious implications for mental health. Thus,
the impact of temperature as a risk factor for AD should not be
overlooked.

As described above, accumulation of hyperphosphorylated
Tau present in Tauopathies may be due to a dysfunction of Tau-
associated kinases and/or phosphatases,98,99 or even a failure in
the Tau degradation process.74 The intracellular pathways associ-
ated with cold-induced Tau hyperphosphorylation were initially
ascribed to a dysfunction of kinase and/or phosphatase sys-
tems.9,26,89 More recent studies also describe a kinase/phospha-
tase-independent pathway.22,23,92 which raises the possibility of
a dysfunction in the proteasome degradation system under

conditions of anesthesia-induced hypothermia and an increased
p-Tau fraction. Indeed, a recent study from our group suggested
that, in addition to a dysfunction of kinase/phosphatase activity,
cold-induced Tau phosphorylation may be a consequence of a
temperature-sensitive dysregulation of Tau protein turnover.90

In this study, our hypothesis was that cold inhibits proteasomal
machinery, resulting in an accumulation of p-Tau (Fig. 3). Care-
ful analysis of these data.90 reveals interesting differences in the
ways in which Tau phosphorylation levels are regulated in a tem-
perature- and differentiation-dependent context. Firstly, cold
induces a decrease in BAG2 expression in undifferentiated cells.
BAG2 degrades p-Tau under normal temperature conditions.64

This decrease in BAG2 expression is accompanied by an increase
in p-Tau and in the ratio pTau/total Tau levels (Fig. 3). Overex-
pression of BAG2 in cold-exposed undifferentiated SH-SY5Y res-
cued the increased p-Tau levels, indicating that the increase in
p-Tau/total Tau in cold-exposed undifferentiated cells is due to
cold-induced inhibition of BAG2 expression. BAG2 is repressed
by NF-kB (Nuclear factor-kappa B) signaling in undifferentiated
SH-SY5Y cells.100 Interestingly, cold induces an increase in
BAG2 expression in differentiated cells, yet this increase is not
accompanied by a decrease in Tau phosphorylation levels sug-
gesting that BAG2 is regulated in a differentiation-dependent
context (Fig. 3). This difference in behavior between differenti-
ated and undifferentiated cells on cold exposure is telling when
considered from the perspective of developmental changes in
Tau phosphorylation and kinase and phosphatase activity.101

During differentiation, there is a broad decrease in phosphory-
lated Tau epitopes, which coincides with the expression of
higher-molecular weight 4R Tau isoforms. This interesting juxta-
position represents a trade-off in terms of regulation of Tau
regulation of microtubule plasticity, with more-plastic less-differ-
entiated cells relying more heavily on microtubule regulation via
Tau phosphorylation, while less-plastic more-differentiated cells
rely less heavily on Tau phosphorylation and more on an
increased ratio of 4R/3R Tau isoforms (Fig. 2). It is interesting
to note that this shift is accompanied by a significant increase in
Tau phosphatase activity. Thus, less mature cells have higher Tau
kinase and lower Tau phosphatase activity while mature cells
have lower Tau kinase activity and higher Tau phosphatase activ-
ity (Fig. 3). This is noteworthy because the cold-induced inhibi-
tion of kinase and phosphatase activity will still leave
undifferentiated cells with a relatively higher kinase-to-phospha-
tase activity compared to differentiated cells. Thus in cold treated
differentiated cells, a higher kinase/phosphatase activity will
result in an increase in Tau phosphorylation due to a higher over-
all kinase activity (Fig. 3). In cold treated differentiated cells the
attenuated kinase-to-phosphatase activity is further dampened by
cold-inactivation.87 It might be that the activity of BAG2 is also
dependent upon temperature sensitive kinases like p38 and
ERK1/2.102 which would render it inactive under cold condi-
tions. Thus, the regulation of levels of phosphorylated Tau in
more-plastic, less-differentiated neurons is more dependent upon
degradation by BAG2, than in more-differentiated less-plastic
neurons (Fig. 3).
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Repression of BAG2 by cold-sensitive pathways in undifferen-
tiated cells may be a causal factor in the accumulation of cyto-
toxic p-Tau protein via restriction of BAG2-mediated clearance
of cellular p-Tau. This mechanism would be especially important
in brain structures relying on high plasticity and the presence of
undifferentiated neuronal population such as hippocampus, a
highly plastic system with undifferentiated cells in comparison to
other brain areas. Although cold or anesthesia induced increase
in p-Tau through BAG2 in brain structures is not yet described,
we speculate that BAG2 levels are differently regulated in hippo-
campus as compared to other brains areas. In addition, hippo-
campus might be more vulnerable to cold exposure since a
tightly coupled system related to BAG2/Tau is functional.

Conclusion and Future Perspectives

The molecular scenario of Alzheimer’s disease genesis and
progression is being investigated for decades and is still a puzzle
to be solved. Temperature changes are being investigated as a
new risk factor for AD having strong influence on microtubule
dynamics through Tau function. Anesthesia also promotes
changes in the Tc. Tau has an important role in structural
remodeling of cytoskeleton during neuronal plasticity including
neurite elongation, synapse and spine formation and memory.
All these mechanisms play a critical role in the hippocampus, a
brain structure responsible for recent memory acquisition that is

strongly affected in AD. The high phosphorylated Tau levels in
undifferentiated cells present in hippocampus raise several impor-
tant questions regarding the accumulation of cytotoxic p-Tau
protein and AD genesis and progression. Is the hippocampus a
vulnerable brain area for the effects of cold on toxic Tau? If so, is
BAG2 involved in this vulnerability? These questions may repre-
sent an open field that needs further investigation. Because AD is
likely the result of both genetic and environmental factors, large-
scale epidemiological studies have been unable to satisfactorily
evaluate the contribution of geographical (and thus climatologi-
cal) factors, in particular cold weather averages and seasonal
extremes, on the prevalence and progression of AD while control-
ling for heritable factors, which in the case of sporadic AD
remain unknown. Thus, recent advances in the molecular regula-
tion of Tau pathology may compensate for the current lack of
epidemiological data regarding the effects of temperature, and
may eventually yield important clues to understanding the patho-
logical trigger leading to neurodegeneration.
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