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Phytoestrogens can alleviate some pathological processes related to nonalcoholic fatty liver disease (NAFLD). However, there are
limited and contradictory studies on the relationships between phytoestrogens (especially single phytoestrogen) and NAFLD./e
purpose of this study was to explore the relationships between urinary phytoestrogen concentrations and NAFLD in American
adults. /is cross-sectional study used the data of the National Health and Nutrition Examination Survey from 1999 to 2010, and
2294 adults were finally enrolled in this study./e concentrations of phytoestrogens were measured in urine samples, and urinary
phytoestrogens were divided into tertiles according to the concentration distributions. /e diagnosis of NAFLD was determined
by the United States fatty liver index. /e main analysis used a multivariate logistic regression model. /e fully adjusted models
included gender, age, race, education, marriage, poverty, body mass index, waist circumference, smoking, diabetes, hypertension,
total cholesterol, high-density lipoprotein cholesterol, triglycerides, and other five phytoestrogens. In the fully adjusted model, the
urinary enterolactone (ENL) concentration was negatively correlated with NAFLD (OR of Tertile 3 : 0.48, 95% CI 0.25–0.94).
When stratified by age and gender, the urinary ENL concentration was negatively correlated with NAFLD in males aged 40–59
years (OR of Tertile 3 : 0.08, 95% CI 0.01–0.82), while the urinary equol concentration was positively correlated with NAFLD in
such population (OR of Tertile 3 : 4.27, 95% CI 1.02–17.85). In addition, a negative correlation between enterodiol (END)
concentration and NAFLD was observed in males aged 60 years or over (OR of Tertile 2 : 0.18, 95% CI 0.05–0.69). Collectively, in
middle-aged males, urinary ENL may be associated with a lower risk of NAFLD, while urinary equol may be related to a higher
risk. In addition, urinary END has a possible relationship with a reduced risk of NAFLD in elder males. Definitely, clinical
randomized controlled trials are needed to further verify the conclusions.

1. Introduction

/e incidence of nonalcoholic fatty liver disease (NAFLD)
has been increasing year by year, and it has gradually become
the leading cause of chronic liver disease worldwide [1, 2].
NAFLD can progress to nonalcoholic steatohepatitis, liver
cirrhosis, and even hepatocellular carcinoma [3–6]. In ad-
dition, this disease is closely related to diabetes, cardio-
vascular disease, and chronic kidney disease and thus
increases the risk of these diseases [7–12]. NAFLD is now
considered to be a multisystem disease, which not only
damages the liver itself but also affects multiple extrahepatic
organs [8, 12]. Given its harmfulness, the need to prevent
and treat NAFLD is apparent.

Phytoestrogens are a group of compounds produced by
plants, which can mimic or interact with estrogens [13].
Because of their structural similarity to estrogens, they have
estrogen/antiestrogen and antioxidant activities [14–16].
Phytoestrogens ingested by the human body mainly include
two categories: isoflavones (mainly from soybean) and
lignans (mainly from oilseeds, whole wheat, seeds, and nuts)
[15, 16]. Isoflavones determined in the National Health and
Nutrition Examination Survey (NHANES) are daidzein,
O-desmethylangolensin (O-DMA), equol, and genistein.
Daidzein can be metabolized into O-DMA and equol via the
action of intestinal bacteria [17, 18]./e lignans measured in
NHANES are enterodiol (END) and enterolactone (ENL)
which are the metabolites of END [19, 20].
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Studies have found that phytoestrogens have protec-
tive effects on many pathological processes related to
NAFLD, such as regulating hepatic lipogenesis, improving
insulin resistance, and promoting lipolysis [21, 22]. Al-
though many animal experiments showed that isoflavones
could reduce hepatic steatosis [23–26], there is a lack of
relevant human research. Dietary isoflavone intake was
negatively correlated with NAFLD in an observational
study [27], and isoflavone supplementation improved
insulin resistance in patients with NAFLD in a clinical
trial [28]. /e relationship between lignans and NAFLD
has not been reported in human participants so far; only a
few animal experiments have evaluated the association
between lignans and hepatic steatosis, and there is no
unified conclusion at present [29–34]. Furthermore, as-
sessment of dietary phytoestrogens is difficult to cover all
food sources and the metabolic transformation of phy-
toestrogens in the human intestine was not under con-
sideration in the assessment, thus failing to accurately
reflect real individual exposure. Hence, a measurement of
urine concentrations of phytoestrogens will be required to
reflect the real exposure. /e purpose of this study is to
explore the relationships between urinary phytoestrogen
concentrations and NAFLD in American adults through
NHANES, a large population cross-sectional survey, and
further investigate the relationships in different genders
and ages.

2. Materials and Methods

2.1. Study Samples. /e subjects and data of this study were
all enrolled and collected from NHANES, an ongoing cross-
sectional, multistage, stratified probability sampling survey
[35]. /e survey is conducted by National Center for Health
Statistics (NCHS), with NCHS Research Ethics Review
Board approval and informed consent provided by all
participants. We combined six-cycle data (NHANES
1999–2000, 2001–2002, 2003–2004, 2005–2006, 2007–2008,
and 2009–2010) to create the samples for this study because
urinary phytoestrogen concentrations were measured only
in 1999–2010.

A total of 62160 subjects were included in the eval-
uation, and 32464 of them aged 20 years and over were
selected. /en, 28906 participants who met the following
criteria were further excluded [1]: (1) excessive alcohol
drinking (>21 standard drinks per week for males and >14
standard drinks per week for females) (n � 845); (2)
positive serology for hepatitis B or C virus (n � 619); (3)
taking medications that can affect hepatic steatosis
(n � 964); (4) taking gonadal hormone (n � 186); (5) self-
reported cancer (n � 2628); (6) pregnant women
(n � 1246); (7) missing information required for the
definitions of NAFLD (n � 15285); and (8) missing data
regarding phytoestrogens (n � 7133). After exclusion,
3558 participants were left, and we defined NAFLD by the
United States fatty liver index (USFLI, see below for
details). Ultimately, 1066 participants were considered to
have NAFLD, and 1228 participants were divided into the
non-NAFLD group (Figure 1).

2.2. Definition of Variables. We used USFLI which is a
noninvasive method to define the presence of NAFLD [36].
/e USFLI is calculated by weighting several indexes such as
race, age, gamma glutamyltransferase, waist circumference,
fasting insulin, and fasting blood glucose./eUSFLI shows a
good correlation with ultrasound-diagnosed NAFLD, which
has been validated in a previous study [36]. As results of the
study suggested, a USFLI score ≥30 was used to identify the
presence of NAFLD, and a USFLI< 10 was considered to
rule out NAFLD (Figure 2).

Participants who met one or more of the following
criteria were defined as having diabetes [37]: (1) a diagnostic
history of diabetes; (2) taking antidiabetic medications or
insulin; (3) fasting blood glucose ≥126mg/dl; and (4) he-
moglobin A1c≥ 6.5%.

Hypertension was defined as meeting one or more criteria
[38], which include the following: (1) a diagnostic history of
hypertension; (2) systolic blood pressure ≥140mmHg and/or
a diastolic blood pressure ≥90mmHg; and (3) taking med-
icine to lower blood pressure.

2.3. Measurement of Urinary Phytoestrogens. /e collection
of urine samples and the determination of phytoestrogen
concentration were carried out in mobile examination
centers. /e concentrations were determined by high-
performance liquid chromatography-tandem mass spec-
trometry in the survey 1999–2004 and by high-performance
liquid chromatography-atmospheric pressure photoioniza-
tion-tandem mass spectrometry in the survey 2005–2010
[39]. After comparing the two methods, the NHANES re-
search team demonstrated that the correlation coefficients of
the results analyzed by the two methods was very high
(r> 0.99), and the regression slopes approximately equaled
to 1, and the intercept was close to 0 [39]. /e experimental
research manual provided a more detailed analysis process
[40, 41]. According to many studies, urinary phytoestrogen
concentrations can be used as a reliable biomarker of
phytoestrogen intake [42–46]. Because the concentrations of
markers in urine is easily affected by urine volume, the
concentrations of urinary phytoestrogen were standardized
with creatinine and expressed as ng/mg creatinine [47].

2.4. Covariates. /e potential covariates included gender,
age, race, education, marriage, poverty, body mass index
(BMI), waist circumference, smoking, diabetes, hypertension,
triglycerides, total cholesterol, and high-density lipoprotein
cholesterol, which were selected to control confounding ef-
fects through the prior published studies [48–55].

2.5. Statistical Analysis. /e complex stratified sampling
design adopted by the NHANES could better reflect the
overall situation of the population, so we used stratification,
clustering, and an appropriate sample weight to carry out
this study according to the NHANES analysis guidelines
[56]. Data are expressed as the weighted mean± standard
error or weighted frequency (95% confidence intervals). /e
characteristics of the study population were compared
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between the NAFLD group and the non-NAFLD group. /e
differences of continuous variables were compared by one-
way analysis of variance or the Kruskal–Wallis test, and the
differences of classified variables by the chi-square test.
Phytoestrogens were divided into tertiles according to the
concentration distributions in the population. Multivariate
logistic regression was used to analyze the relationship
between urinary phytoestrogen concentrations and NAFLD.
Model 1 adjusted the other five phytoestrogens. To further
explore the relationship between them, model 2 increased
demographic variables (gender, age, race, education, mar-
riage, poverty) compared with model 1. Model 3 further
adjusted all potential variables (BMI, waist circumference,
smoking, diabetes, hypertension, triglycerides, total cho-
lesterol, high-density lipoprotein cholesterol) on the basis of
model 2. All tests in this study were two-sided tests, and
P< 0.05 was considered significant. All data were processed
using EmpowerStats (https://www.empowerstats.com, X&Y
Solutions, Inc., Boston, Massachusetts) and statistical
software package R (https://www.R-project.org; /e R
Foundation; version 3.6.3).

3. Results

3.1. General Patient Information. In total, 2294 participants
were included in the analysis. /e baseline characteristics of
the NAFLD group and the non-NAFLD group are shown in

Table 1. Compared to the non-NAFLD group, individuals of
the NAFLD group were more possible to be older, male,
diabetic, hypertensive, Mexican American, smoker, and had
a lower education level. /e NAFLD group also had higher
levels of BMI, waist circumference, platelet, aminotrans-
ferase, alkaline phosphatase, gamma glutamyltransferase,
fasting triglyceride, total cholesterol, high-density lipopro-
tein cholesterol, fasting glucose, hemoglobin A1c, and
fasting insulin levels. However, marital status and poverty
were not significantly different between the two groups.

3.2. Correlations between Urinary Phytoestrogen Concentra-
tions and NAFLD. Table 2 shows the correlations between
urinary phytoestrogen concentrations and NAFLD. In
model 1 adjusted for other five phytoestrogens (tertiles), the
urinary ENL concentration was negatively associated with
NAFLD (OR of Tertile 2 : 0.72, 95% CI 0.57–0.92; OR of
Tertile 3 : 0.46, 95% CI 0.33–0.65), while a positive corre-
lation of urinary equol concentration with NAFLD was
observed (OR of Tertile 2 :1.30, 95% CI 1.01–1.65). When
further considering demographic variables, we found that
the results in model 2 (further adjusted for gender, age, race,
education, marital status, and poverty) were concordant
with the results in model 1. In model 3 (further adjusted for
BMI, waist circumference, diabetes, smoking behavior,
hypertension, total cholesterol, high-density lipoprotein

e−0.8073×non-Hispanicblack+0.3458×Mexican-American+0.0093×age+0.6151×loge(GGT)+0.0249×waistcircumference+1.1792×loge(insulin)+0.8242×loge(glucose)−14.7812

1 + e−0.8073×non-Hispanicblack+0.3458×Mexican-American+0.0093×age+0.6151×loge(GGT)+0.0249×waistcircumference+1.1792×loge(insulin)+0.8242×loge(glucose)−14.7812 
*100 USFLI =

Figure 2: Calculation of the United States fatty liver index (USFLI).

Participants of the National Health and
Nutrition Examination Survey 1999–2010

n=62160

32464 participants aged 20 years and over

study population n=3558

non-NAFLD Group, US-FLI < 10
(n=1066)

NAFLD Group, US-FLI ≥ 30
(n=1228)

Exclusion (10 ≤ US-FLI < 30)
(n=1264)

Exclusions (n=28906)
excessive alcohol drinking (n=845)
positive serology for HBV or HCV (n=619)
taking medications that can
affect hepatic steatosis (n=964) 
taking gonadal hormone (n=186) 
self-reported cancer (n=2628)
pregnant women (n=1246)
missing information required for
the definitions of NAFLD (n=15285)
missing data of phytoestrogens (n=7133)

1)
2)
3)

4)
5)
6)
7)

8)

Figure 1: Flowchart of the screening process of eligible participants from the National Health and Nutrition Examination Survey
1999–2010.
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cholesterol, fasting triglyceride), the correlation between the
urinary equol concentration and NAFLD was no longer
significant, while the concentration of urinary ENL was still
inversely correlated with NAFLD (OR of Tertile 3 : 0.48, 95%
CI 0.25–0.94).

3.3. Relations between Urinary Phytoestrogen Concentrations
and NAFLD after Stratification by Gender or Age.
Tables 3 and 4 further show the relations between urinary
phytoestrogen concentrations and NAFLD stratified by
gender and age, respectively. After adjusted for all con-
founding variables, a negative correlation of urinary ENL
concentration and NAFLD was observed in males (OR of
Tertile 2 : 0.39, 95% CI 0.17–0.86; OR of Tertile 3 : 0.43, 95%
CI 0.19–0.95). Meanwhile, the urinary ENL concentration

was inversely correlated to NAFLD in middle-aged adults
(40–59 years) (OR of Tertile 3 : 0.29, 95% CI 0.10–0.83).
While there were no significant associations between the
urinary phytoestrogen concentrations and NAFLD in fe-
males, young adults (20–39 years), and older adults (60 years
or over).

3.4. Relationships between NAFLD and the Urinary Phy-
toestrogen Concentrations after Stratification by Gender and
Age. /e relationships between NAFLD and the urinary
phytoestrogen concentrations further stratified by different
ages according to gender are shown in Table 5. In middle-
aged males (40–59 years), the concentration of urinary equol
was positively related with NAFLD in middle-aged males
(OR of Tertile 3 : 4.27, 95% CI 1.02–17.85), while an inverse

Table 1: Weighted baseline characteristics of participants in the two groups.

Variables Non-NAFLD (n� 1066) NAFLD (n� 1228) P value
Age (years) 40.2± 0.6 49.9± 0.6 <0.01
Sex (%)
Male 38.6 (35.6–41.7) 59.5(56.3–62.6) <0.01Female 61.4 (58.3–64.4) 40.5 (37.4–43.7)

Body mass index (kg/m2) 23.9± 0.1 33.7± 0.3 <0.01
Waist circumference (cm) 84.2± 0.4 111.9± 0.6 <0.01
Hypertension (%) 19.5 (16.9–22.5) 51.4 (47.7–55.0) <0.01
Diabetes (%) 2.8 (1.9–4.1) 24.7 (21.8–27.8) <0.01
Ethnicity (%)
Non-Hispanic white 70.1 (66.5–73.5) 70.5 (65.9–74.7)

<0.01
Non-Hispanic black 15.5 (13.3–17.9) 6.5 (5.1–8.2)
Mexican American 4.2 (3.2–5.5) 12.8 (10.3–15.7)
Other Hispanics 3.8 (2.6–5.6) 6.0 (4.1–8.9)
Others 6.4 (4.6–8.9) 4.2 (2.8–6.3)

Smoking (%)
Never 53.7 (49.7–57.7) 51.5 (47.0–56.0)

<0.01Current smoker 26.1 (22.6–29.9) 18.0 (15.2–21.3)
Ex-smoker 20.2 (17.2–23.6) 30.5 (27.0–34.3)

High education (%) 64.3 (60.9–67.7) 51.1 (47.6–54.7) <0.01
Marital status (%) 61.1 (57.6–64.6) 69.9 (66.3–73.2) <0.01
Poverty (%) 11.1(9.0–13.5) 12.6 (10.4–15.2) 0.32
Platelet (109/L) 257.5± 2.4 268.1± 2.3 <0.01
Albumin (g/dL) 4.3± 0.01 4.2± 0.01 <0.01
ALT (IU/L) 19.7± 0.3 32.6± 0.7 <0.01
AST (IU/L) 22.7± 0.3 27.0± 0.5 <0.01
ALP (IU/L) 61.9± 0.7 77.3± 1.1 <0.01
GGT (IU/L) 16.7± 0.4 44.2± 1.9 <0.01
Fasting triglyceride (mg/dL) 94.2± 2.3 195.2± 9.3 <0.01
Total cholesterol (mg/dL) 189.2± 1.6 203.8± 1.9 <0.01
HDL cholesterol (mg/dL) 59.8± 0.6 45.3± 0.4 <0.01
Fasting glucose (mg/dL) 92.8± 0.6 117.1± 1.4 <0.01
Hemoglobin A1c (%) 5.2± 0.02 5.9± 0.04 <0.01
Fasting insulin (pmol/L) 33.8± 0.5 130.9± 2.6 <0.01
Creatinine (mg/dL) 128.8 (122.4–135.2) 138.4 (132.6–144.2) 0.04
Daidzein (ng/mg Cr) 403.4 (290.2–516.5) 226.0 (174.3–277.7) <0.01
O-DMA (ng/mg Cr) 135.8 (91.3–180.4) 55.2 (33.9–76.6) <0.01
Equol (ng/mg Cr) 57.2 (26.1–88.4) 49.0 (13.9–84.1) 0.76
Enterodiol (ng/mg Cr) 141.0 (111.5–170.4) 172.6 (68.6–276.6) 0.56
Enterolactone (ng/mg Cr) 1049.8 (899.9–1199.8) 645.9 (506.8–785.1) <0.01
Genistein (ng/mg Cr) 166.4 (121.2–211.5) 96.3 (76.1–116.6) <0.01
Data are expressed as the weighted mean± standard error or weighted frequency (95% confidence intervals). NAFLD: nonalcoholic fatty liver disease; ALT:
alanine aminotransferase; AST: aspartate aminotransferase; ALP: alkaline phosphatase; GGT: gamma glutamyltransferase; HDL: high-density lipoprotein; O-
DMA: O-desmethylangolensin; Cr: creatinine.
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correlation was identified between the urinary ENL con-
centration and NAFLD (OR of Tertile 3 : 0.08, 95% CI
0.01–0.82). For elder males (60 years or over), the urinary
concentration of END was inversely associated to NAFLD
(OR of Tertile 2 : 0.18, 95% CI 0.05–0.69). However, there
were no significant associations between the urinary phy-
toestrogen concentrations and NAFLD in other subgroups.

4. Discussion

To the best of our knowledge, this study based on NHANES
data is the first to evaluate the association between urinary
phytoestrogen concentrations and NAFLD. We found that
urinary ENL concentration was negatively correlated to
NAFLD. To be specific, a negative correlation between
urinary ENL concentration and NAFLD was identified in
males after stratification by gender, and in middle-aged
adults, after stratification by age. When we further stratified
the participants by different ages according to gender, the
results showed that the ENL concentration was negatively
correlated to NAFLD among middle-aged males, while the
urinary equol concentration was positively correlated to
NAFLD among middle-aged males. In addition, a negative
correlation between END concentration and NAFLD was
observed in elder males.

/ere is no epidemiological study on the relationship
between lignans and NAFLD so far. However, some animal
experiments have shown that lignans could reduce hepatic
steatosis and regulate the related pathophysiological pro-
cesses [29–31]. Studies by Fukumitsu et al. [29], Felmlee et al.

[30], and Tominaga et al. [31] suggested that lignans reduced
fatty acid synthesis by suppressing the expression of SREBP-
1c, and finally decreasing hepatic fat accumulation [30, 31].
In addition, lignans also improved insulin resistance in mice
by inducing the expression of adiponectin [29], which was
also an important pathophysiological process of hepatic
steatosis [57, 58]. A study in 2021 also showed that lignans
could reduce liver steatosis score and NAFLD activity in rats
[32]. /ese studies further support our finding that ENL was
negatively correlated with NAFLD.

However, evidence of the relationship between lignans
and NAFLD is still lacking, especially stratified by gender
and age. Some studies have evaluated the relationship be-
tween lignans and obesity with metabolic disorders [59, 60],
which are closely related to NAFLD. One study showed that
elevated ENL levels were negatively correlated with obesity
and components of the metabolic syndrome in males aged
20–60, but the relationship was not significant in elder males
[61]. /is is similar to our results observed in middle-aged
males, but the difference was that we observed a negative
correlation betweenmiddle concentration END andNAFLD
in elder males. However, due to the lack of prior research
studies, further comparisons were failed to be achieved.

A cross-sectional study which enrolled 115 postmeno-
pausal women showed that women with high lignans intake
had better metabolic status, including higher insulin sen-
sitivity and lower obesity indexes [62]. However, the sample
size of this study is too small and the selected population is
relatively limited, so the conclusion needs to be confirmed in
further researches. No significant relationships between

Table 2: Weighted ORs (95% CI) of NAFLD according to urinary phytoestrogen concentrations (tertiles).

Phytoestrogens (ng/mg Cr) Model 1 Model 2 Model 3
Daidzein
Tertile 1 (<24.92) 1.00 1.00 1.00
Tertile 2 (24.92 to <112.00) 0.95 (0.69–1.31) 1.00 (0.71–1.40) 0.76 (0.37–1.55)
Tertile 3 (≥112.00) 1.14 (0.72–1.80) 1.20 ( 0.74–1.96) 0.63 (0.22–1.77)

O-DMA
Tertile 1 (<1.08) 1.00 1.00 1.00
Tertile 2 (1.08 to <10.59) 0.83 (0.64–1.08) 0.90 (0.66–1.21) 1.11 (0.61–2.02)
Tertile 3 (≥10.59) 0.73 (0.50–1.05) 0.79 (0.51–1.22) 1.21 (0.54–2.73)

Equol
Tertile 1 (<4.00) 1.00 1.00 1.00
Tertile 2 (4.00 to <10.36) 1.30 (1.01–1.65)∗ 1.36 (1.03–1.79)∗ 1.64 (0.93–2.87)
Tertile 3 (≥10.36) 1.08 (0.81–1.44) 0.97 (0.69–1.37) 1.41 (0.71–2.80)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00 1.00
Tertile 2 (23.96 to <71.97) 1.03 (0.79–1.33) 0.98 (0.73–1.30) 0.89 (0.56–1.42)
Tertile 3 (≥71.97) 0.96 (0.73–1.24) 0.97 (0.71–1.31) 1.17 (0.65–2.09)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.72 (0.57–0.92)∗ 0.57 (0.42–0.77)∗ 0.63 (0.36–1.11)
Tertile 3 (≥700.00) 0.46 (0.33–0.65)∗ 0.28 (0.19–0.41)∗ 0.48 (0.25–0.94)∗

Genistein
Tertile 1 (<12.00) 1.00 1.00 1.00
Tertile 2 (12.00 to <46.42) 0.93 (0.68–1.28) 0.86 (0.61–1.21) 1.19 (0.62–2.26)
Tertile 3 (≥46.42) 0.83 (0.59–1.18) 0.80 (0.56–1.15) 0.97 (0.41–2.24)

OR: odds ratio; CI: confidence interval; Cr: creatinine; O-DMA: O-desmethylangolensin. Model 1: adjusted for other five phytoestrogens. Model 2: ad-
ditionally adjusted for gender, age, race, education, marriage, and poverty compared with model 1. Model 3: further adjusted for body mass index, waist
circumference, smoking, diabetes, hypertension, triglycerides, total cholesterol, and high-density lipoprotein cholesterol on the basis of model 2. ∗P< 0.05.
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lignans and NAFLD in females were observed in our study.
/e possible reason is that estrogen plays a critical role in
inhibiting female hepatic lipid deposition [63–65], and
lignans have both estrogen and antiestrogen effects in vivo
[66], which means the role of lignans in female liver steatosis
is unclear.

Some studies have shown that isoflavone additives and
genistein can reduce liver steatosis and delay the progress of
NAFLD [22–28]. A randomized controlled trial in 2018
revealed that insulin resistance and inflammatory status
were improved after taking genistein supplementation in
patients with NAFLD [28], but the included subjects were

Table 3: Weighted ORs (95% CI) of NAFLD according to urinary phytoestrogen concentrations (tertiles) stratified by gender.

Phytoestrogens (ng/mg Cr) Model 1 Model 2 Model 3
Males
Daidzein
Tertile 1 (<24.92) 1.00 1.00 1.00
Tertile 2 (24.92 to <112.00) 0.98 (0.64–1.49) 0.91 (0.58–1.44) 0.54 (0.20–1.51)
Tertile 3 (≥112.00) 0.99 (0.51–1.92) 0.85 (0.40–1.80) 1.05 (0.25–4.44)

O-DMA
Tertile 1 (<1.08) 1.00 1.00 1.00
Tertile 2 (1.08 to <10.59) 0.94 (0.64–1.36) 1.08 (0.72–1.64) 1.40 (0.55–3.55)
Tertile 3 (≥10.59) 0.87 (0.55–1.39) 1.05 (0.60–1.86) 0.93 (0.27–3.19)

Equol
Tertile 1 (<4.00) 1.00 1.00 1.00
Tertile 2 (4.00 to <10.36) 1.55 (1.13–2.12)∗ 1.72 (1.18–2.49)∗ 2.17 (0.90–5.24)
Tertile 3 (≥10.36) 0.90 (0.60–1.37) 0.78 (0.48–1.28) 1.60 (0.55–4.63)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00 1.00
Tertile 2 (23.96 to <71.97) 1.24 (0.80–1.92) 0.98 (0.63–1.55) 1.12 (0.52–2.38)
Tertile 3 (≥71.97) 1.21 (0.81–1.82) 0.99 (0.64–1.53) 1.05 (0.52–2.12)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.63 (0.44–0.90)∗ 0.44 (0.29–0.66)∗ 0.39 (0.17–0.86)∗
Tertile 3 (≥700.00) 0.46 (0.30–0.71)∗ 0.25 (0.15–0.41)∗ 0.43 (0.19–0.95)∗

Genistein
Tertile 1 (<12.00) 1.00 1.00 1.00
Tertile 2 (12.00 to <46.42) 0.84 (0.52–1.35) 0.81 (0.48–1.35) 1.47 (0.63–3.44)
Tertile 3 (≥46.42) 0.93 (0.53–1.66) 0.90 (0.48–1.68) 1.26 (0.42–3.82)

Females
Daidzein
Tertile 1 (<24.92) 1.00 1.00 1.00
Tertile 2 (24.92 to <112.00) 0.95 (0.60–1.50) 1.14 (0.68–1.89) 1.31 (0.43–4.00)
Tertile 3 (≥112.00) 1.36 (0.67–2.79) 1.75 (0.81–3.79) 0.62 (0.15–2.53)

O-DMA
Tertile 1 (<1.08) 1.00 1.00 1.00
Tertile 2 (1.08 to <10.59) 0.75 (0.51–1.09) 0.75 (0.50–1.14) 0.77 (0.38–1.59)
Tertile 3 (≥10.59) 0.63 (0.36–1.11) 0.64 (0.34–1.19) 0.90 (0.35–2.32)

Equol
Tertile 1 (<4.00) 1.00 1.00 1.00
Tertile 2 (4.00 to <10.36) 1.17 (0.82–1.66) 1.07 (0.72–1.59) 1.05 (0.54–2.01)
Tertile 3 (≥10.36) 1.34 (0.94–1.93) 1.13 (0.71–1.78) 1.20 (0.60–2.39)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00 1.00
Tertile 2 (23.96 to <71.97) 0.92 (0.63–1.33) 0.90 (0.58–1.41) 0.75 (0.35–1.59)
Tertile 3 (≥71.97) 0.89 (0.63–1.26) 0.88 (0.58–1.33) 0.99 (0.40–2.47)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.79 (0.54–1.15) 0.73 (0.48–1.10) 0.99 (0.46–2.12)
Tertile 3 (≥700.00) 0.46 (0.28–0.76)∗ 0.31 (0.17–0.54)∗ 0.54 (0.20–1.47)

Genistein
Tertile 1 (<12.00) 1.00 1.00 1.00
Tertile 2 (12.00 to <46.42) 1.06 (0.70–1.59) 0.89 (0.57–1.39) 1.03 (0.40–2.68)
Tertile 3 (≥46.42) 0.83 (0.51–1.35) 0.69 (0.40–1.19) 0.75 (0.24–2.37)

OR: odds ratio; CI: confidence interval; Cr: creatinine; O-DMA: O-desmethylangolensin.Model 1 adjusted for other five phytoestrogens. Model 2 additionally
adjusted for age, race, education, marriage, and poverty compared with model 1. Model 3 further adjusted for bodymass index, waist circumference, smoking,
diabetes, hypertension, triglycerides, total cholesterol, and high-density lipoprotein cholesterol on the basis of model 2. ∗P< 0.05.
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Table 4: Weighted ORs (95% CI) of NAFLD according to urinary phytoestrogen concentrations (tertiles) stratified by age.

Phytoestrogens (ng/mg Cr) Model 1 Model 2 Model 3
Age (20–39 years)
Daidzein
Tertile 1 (<24.92) 1.00 1.00 1.00
Tertile 2 (24.92 to <112.00) 1.09 (0.69–1.71) 1.23 (0.72–2.08) 1.32 (0.44–4.02)
Tertile 3 (≥112.00) 1.15 (0.61–2.15) 1.43 (0.68–3.04) 2.79 (0.50–15.67)

O-DMA
Tertile 1 (<1.08) 1.00 1.00 1.00
Tertile 2 (1.08 to <10.59) 0.83 (0.50–1.38) 0.82 (0.49–1.37) 1.03 (0.35–3.08)
Tertile 3 (≥10.59) 0.89 (0.49–1.60) 0.97 (0.52–1.82) 1.90 (0.45–8.01)

Equol
Tertile 1 (<4.00) 1.00 1.00 1.00
Tertile 2 (4.00 to <10.36) 1.39 (0.91–2.12) 1.68 (1.04–2.73)∗ 1.19 (0.40–3.53)
Tertile 3 (≥10.36) 1.01 (0.62–1.62) 1.06 (0.60–1.88) 2.21 (0.56–8.77)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00 1.00
Tertile 2 (23.96 to <71.97) 0.94 (0.58–1.51) 0.87 (0.50–1.52) 1.11 (0.34–3.60)
Tertile 3 (≥71.97) 0.97 (0.58–1.65) 1.03 (0.56–1.92) 1.24 (0.26–5.86)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.62 (0.43–0.89)∗ 0.48 (0.30–0.77)∗ 0.39 (0.10–1.53)
Tertile 3 (≥700.00) 0.41 (0.24–0.71)∗ 0.29 (0.16–0.55)∗ 0.90 (0.25–3.25)

Genistein
Tertile 1 (<12.00) 1.00 1.00 1.00
Tertile 2 (12.00 to <46.42) 0.88 (0.55–1.40) 0.89 (0.52–1.52) 0.47 (0.09–2.31)
Tertile 3 (≥46.42) 0.80 (0.48–1.34) 0.85 (0.46–1.58) 0.38 (0.06–2.29)

Age (40–59 years)
Daidzein
Tertile 1 (<24.92) 1.00 1.00 1.00
Tertile 2 (24.92 to <112.00) 0.88 (0.52–1.52) 0.83 (0.43–1.62) 0.62 (0.18–2.12)
Tertile 3 (≥112.00) 1.49 (0.65–3.43) 1.30 (0.54–3.10) 0.38 (0.09–1.55)

O-DMA
Tertile 1 (<1.08) 1.00 1.00 1.00
Tertile 2 (1.08 to <10.59) 1.02 (0.61–1.69) 1.02 (0.58–1.81) 1.69 (0.51–5.54)
Tertile 3 (≥10.59) 0.56 (0.30–1.07) 0.56 (0.27–1.15) 1.16 (0.31–4.30)

Equol
Tertile 1 (<4.00) 1.00 1.00 1.00
Tertile 2 (4.00 to <10.36) 1.02 (0.66–1.58) 1.10 (0.67–1.81) 2.35 (0.94–5.88)
Tertile 3 (≥10.36) 0.98 (0.61–1.57) 0.97 (0.55–1.70) 1.79 (0.60–5.32)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00 1.00
Tertile 2 (23.96 to <71.97) 1.10 (0.68–1.78) 1.16 (0.74–1.82) 0.72 (0.37–1.38)
Tertile 3 (≥71.97) 1.03 (0.63–1.68) 1.12 (0.66–1.89) 0.94 (0.38–2.33)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.65 (0.40–1.05) 0.63 (0.35–1.13) 0.50 (0.17–1.47)
Tertile 3 (≥700.00) 0.28 (0.16–0.50)∗ 0.21 (0.12–0.39)∗ 0.29 (0.10–0.83)∗

Genistein
Tertile 1 (<12.00) 1.00 1.00 1.00
Tertile 2 (12.00 to <46.42) 0.92 (0.57–1.50) 0.79 (0.46–1.36) 1.35 (0.47–3.84)
Tertile 3 (≥46.42) 0.73 (0.38–1.37) 0.84 (0.45–1.57) 0.98 (0.35–2.74)

Age (≥60 years)
Daidzein
Tertile 1 (<24.92) 1.00 1.00 1.00
Tertile 2 (24.92 to <112.00) 0.83 (0.47–1.48) 0.85 (0.48–1.51) 0.77 (0.22–2.64)
Tertile 3 (≥112.00) 0.69 (0.28–1.71) 0.69 (0.28–1.74) 0.45 (0.08–2.52)

O-DMA
Tertile 1 (<1.08) 1.00 1.00 1.00
Tertile 2 (1.08 to <10.59) 0.60 (0.35–1.02) 0.55 (0.32–0.96) 0.45 (0.16–1.31)
Tertile 3 (≥10.59) 0.80 (0.37–1.76) 0.88 (0.39–1.98) 0.84 (0.22–3.19)

Equol
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Table 4: Continued.

Phytoestrogens (ng/mg Cr) Model 1 Model 2 Model 3
Tertile 1 (<4.00) 1.00 1.00 1.00
Tertile 2 (4.00 to <10.36) 1.65 (0.91–2.99) 1.32 (0.69–2.50) 1.74 (0.66–4.62)
Tertile 3 (≥10.36) 1.05 (0.59–1.89) 0.87 (0.46–1.64) 1.29 (0.55–3.05)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00 1.00
Tertile 2 (23.96 to <71.97) 0.71 (0.38–1.32) 0.70 (0.36–1.38) 0.57 (0.24–1.35)
Tertile 3 (≥71.97) 0.51 (0.29–0.88)∗ 0.53 (0.29–0.97) 0.80 (0.32–2.01)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.81 (0.43–1.53) 0.73 (0.35–1.51) 0.92 (0.39–2.17)
Tertile 3 (≥700.00) 0.45 (0.25–0.84)∗ 0.37 (0.19–0.72)∗ 0.85 (0.29–2.52)

Genistein
Tertile 1 (<12.00) 1.00 1.00 1.00
Tertile 2 (12.00 to <46.42) 1.20 (0.63–2.27) 1.08 (0.54–2.15) 1.35 (0.39–4.61)
Tertile 3 (≥46.42) 1.08 (0.46–2.54) 0.94 (0.39–2.28) 1.41 (0.32–6.33)

OR: odds ratio; CI: confidence interval; Cr: creatinine; O-DMA: O-desmethylangolensin.Model 1 adjusted for other five phytoestrogens. Model 2 additionally
adjusted for gender, age, race, education, marriage, and poverty compared with model 1. Model 3 further adjusted for body mass index, waist circumference,
smoking, diabetes, hypertension, triglycerides, total cholesterol, and high-density lipoprotein cholesterol on the basis of model 2. ∗P< 0.05.

Table 5: Weighted ORs (95% CI) of NAFLD across urinary phytoestrogen concentrations (tertiles) stratified by different ages according to
gender.

Phytoestrogens (ng/mg Cr) Males Females
Model 3 Model 3

Age (20–39 years)
Daidzein
Tertile 1 (<24.92) 1.00 1.00
Tertile 2 (24.92 to <112.00) 0.41 (0.02–9.89) 3.47 (0.48–25.26)
Tertile 3 (≥112.00) 2.71 (0.09–82.32) 1.17 (0.08–17.35)

O-DMA
Tertile 1 (<1.08) 1.00 1.00
Tertile 2 (1.08 to <10.59) 2.18 (0.32–14.85) 0.37 (0.04–3.43)
Tertile 3 (≥10.59) 5.27 (0.32–86.63) 0.68 (0.06–7.80)

Equol
Tertile 1 (<4.00) 1.00 1.00
Tertile 2 (4.00 to <10.36) 2.48 (0.35–17.46) 0.82 (0.07–9.09)
Tertile 3 (≥10.36) 1.40 (0.20–9.89) 3.89 (0.18–83.22)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00
Tertile 2 (23.96 to <71.97) 2.59 (0.19–35.56) 0.36 (0.07–1.82)
Tertile 3 (≥71.97) 0.15 (0.02–1.41) 0.83 (0.11–6.55)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.16 (0.01–2.42) 1.02 (0.23–4.61)
Tertile 3 (≥700.00) 0.93 (0.12–7.16) 6.71 (0.38–117.84)

Genistein
Tertile 1 (<12.00) 1.00 1.00
Tertile 2 (12.00 to <46.42) 0.54 (0.10–2.78) 0.25 (0.01–4.69)
Tertile 3 (≥46.42) 0.88 (0.13–6.13) 0.11 (0.01–1.18)

Age (40–59 years)
Daidzein
Tertile 1 (<24.92) 1.00 1.00
Tertile 2 (24.92 to <112.00) 1.32 (0.21–8.24) 0.81 (0.19–3.45)
Tertile 3 (≥112.00) 0.63 (0.07–5.59) 0.45 (0.10–2.06)

O-DMA
Tertile 1 (<1.08) 1.00 1.00
Tertile 2 (1.08 to <10.59) 6.12 (0.80–46.95) 1.10 (0.27–4.54)
Tertile 3 (≥10.59) 0.46 (0.08–2.77) 0.93 (0.26–3.29)

Equol
Tertile 1 (<4.00) 1.00 1.00
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those already suffering from NAFLD, and instead of liver
steatosis, insulin resistance and inflammatory status were
selected as outcome variables. Additionally, in a 2013 trial,
exercise training with isoflavone supplements could reduce
the risk of NAFLD [67], but the subject included was only
overweight postmenopausal women lacking a broad enough
representation and the outcome was interfered by the
confounding factor of exercise training. In our study, no
significant correlation was observed between genistein,
daidzein, O-DMA, and NAFLD. /e difference in studies
may be attributed to the different study populations and
confounding factors included in the previous studies. In
addition, the differences in demographic variables such as
race, age, and personal economic conditions may also lead to
differences from previous research studies. Our results
showed that equol was positively correlated with NAFLD

only in middle-aged males, but so far, there is no study on
evaluating the relationship between equol and NAFLD di-
rectly. Equol is produced by microbe metabolism of ingested
isoflavones in the intestine, but it varies greatly among
different individuals [13, 17], which may also lead to the
difference of the results. /erefore, further research is still
needed to explore the relationship between isoflavones and
NAFLD.

ENL and equol are estrogen analogs, but they have different
affinities for different estrogen receptors (ER) [68, 69]; ENL has
a high affinity for ERα [68], while equol has a high affinity for
ERβ [69]. Different ER has different effects on human health
[70]. Specifically, ERα mainly mediates beneficial metabolic
effects of estrogens such as improving glucose tolerance and
insulin sensitivity, anti-lipogenesis, and reducing body weight
[70]. By contrast, ERβ plays an adverse role in insulin resistance

Table 5: Continued.

Phytoestrogens (ng/mg Cr) Males Females
Model 3 Model 3

Tertile 2 (4.00 to <10.36) 2.66 (0.66–10.70) 2.51 (0.65–9.65)
Tertile 3 (≥10.36) 4.27 (1.02–17.85)∗ 0.91 (0.21–4.01)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00
Tertile 2 (23.96 to <71.97) 0.51 (0.14–1.88) 1.07 (0.38–3.02)
Tertile 3 (≥71.97) 0.59 (0.12–2.96) 0.80 (0.20–3.20)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.16 (0.02–1.52) 1.02 (0.22–4.67)
Tertile 3 (≥700.00) 0.08 (0.01–0.82)∗ 0.39 (0.05–2.76)

Genistein
Tertile 1 (<12.00) 1.00 1.00
Tertile 2 (12.00 to <46.42) 1.11 (0.22–5.60) 1.92 (0.47–7.83)
Tertile 3 (≥46.42) 1.82 (0.25–13.20) 0.76 (0.12–4.72)

Age (≥60 years)
Daidzein
Tertile 1 (<24.92) 1.00 1.00
Tertile 2 (24.92 to <112.00) 0.13 (0.01–1.28) 2.07 (0.28–15.51)
Tertile 3 (≥112.00) 0.32 (0.02–4.70) 0.62 (0.03–11.45)

O-DMA
Tertile 1 (<1.08) 1.00 1.00
Tertile 2 (1.08 to <10.59) 0.47 (0.13–1.67) 0.29 (0.07–1.15)
Tertile 3 (≥10.59) 2.77 (0.45–16.94) 0.35 (0.05–2.50)

Equol
Tertile 1 (<4.00) 1.00 1.00
Tertile 2 (4.00 to <10.36) 3.54 (0.76–16.39) 0.93 (0.26–3.30)
Tertile 3 (≥10.36) 0.96 (0.23–3.95) 1.16 (0.29–4.66)

Enterodiol
Tertile 1 (<23.96) 1.00 1.00
Tertile 2 (23.96 to <71.97) 0.18 (0.05–0.69)∗ 0.64 (0.13–3.23)
Tertile 3 (≥71.97) 1.10 (0.25–4.95) 0.73 (0.14–3.88)

Enterolactone
Tertile 1 (<187.38) 1.00 1.00
Tertile 2 (187.38 to <700.00) 0.67 (0.17–2.59) 0.96 (0.25–3.63)
Tertile 3 (≥700.00) 0.94 (0.14–6.30) 0.86 (0.16–4.59)

Genistein
Tertile 1 (<12.00) 1.00 1.00
Tertile 2 (12.00 to <46.42) 5.09 (0.45–57.91) 0.62 (0.07–5.44)
Tertile 3 (≥46.42) 2.18 (0.17–28.35) 0.86 (0.06–13.03)

OR: odds ratio; CI: confidence interval; Cr: creatinine; O-DMA: O-desmethylangolensin.Model 1 adjusted for other five phytoestrogens. Model 2 additionally
adjusted for age, race, education, marriage, and poverty compared with model 1. Model 3 further adjusted for bodymass index, waist circumference, smoking,
diabetes, hypertension, triglycerides, total cholesterol, and high-density lipoprotein cholesterol on the basis of model 2. ∗P< 0.05.
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and metabolic homeostasis of glucose and lipids [70]. Insulin
resistance and metabolic disorders are the important mecha-
nisms of NAFLD [71].We speculate that the mechanism of the
opposite effect of ENL and equol in NAFLDmay be due to the
activation of different ERs. However, there is still a lack of
research on the direct relationship between equol and NAFLD,
and further research studies and clinical tests are still required
to confirm our hypothesis.

Our study has several strengths. First, our research was
based on the NHANES database, which is designed by a
complex stratified probability sampling and is generally
representative in the American population. Second, our
assessments of phytoestrogen were based on the concen-
trations of phytoestrogen in urine. /e biomarkers of urine
take into account the metabolic transformation of intestinal
microbes, and therefore can reflect all food sources intake.
As a result, the urinary phytoestrogen concentration can
more accurately reflect the real and effective exposure./ird,
this was the first epidemiological study on the relationship
between single phytoestrogen and NAFLD. Only total iso-
flavones were focused on in previous studies, while indi-
vidual differences of isoflavones have been ignored.
Moreover, the relationship between lignans and NAFLD has
not been studied up to now. Fourth, we considered the
differences of age and gender for further stratified analysis.
In addition, we adjusted demographic variables such as
marital status, education level, and economic situation to
control the potential confounding bias.

However, there are also some potential limitations in the
current study. First, this is a cross-sectional study, which
makes it impossible to infer the causal relationship between
phytoestrogens and NAFLD. Second, the diagnosis of
NAFLD was defined by USFLI, which was not verified
histologically and was only calculated by a validated NAFLD
prediction model. /erefore, the accuracy of NAFLD
evaluation is relatively limited. However, on the other hand,
liver biopsy in large observational studies is expensive and
difficult to achieve. /ird, urinary phytoestrogens in
NHANES were determined using a single collection of urine.
Although urinary phytoestrogen concentrations are reliable
biomarkers of phytoestrogen intake [42–46], the single
concentration possibly cannot accurately reflect long-term
intake. However, fortunately, studies have shown that uri-
nary phytoestrogens are relatively stable and significantly
correlated with long-term dietary phytoestrogen intake
[72–74]. Fourth, due to the limitation of sample size, it is
difficult to further explore the ethnic differences in the re-
lationship between phytoestrogen and NAFLD. Although
the data of 6 cycles were included, the sample size of some
subgroups was too small to lead to bias. Finally, further
clinical controlled trials are still needed to explore the as-
sociations between phytoestrogens and NAFLD.

5. Conclusion

/e present study suggests that in middle-age American
males, the elevated urinary ENL concentration is negatively
correlated to the risk of NAFLD, while the urinary equol
concentration is positively correlated with NAFLD.

Furthermore, a negative correlation between urinary END
concentration and NAFLD was observed in elder American
males. /erefore, individualized intake of phytoestrogens is
preferred and may better treat and prevent NAFLD. More
animal experiments are needed to explore the mechanism of
the relationships between phytoestrogens and NAFLD, and
further clinical randomized controlled trials are required to
verify the current findings.
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