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Summary

We offer a natural and extensible measure-theoretic treatment of missingness at random. Within 

the standard missing-data framework, we give a novel characterization of the observed data as 

a stopping-set sigma algebra. We demonstrate that the usual missingness-at-random conditions 

are equivalent to requiring particular stochastic processes to be adapted to a set-indexed 

filtration. These measurability conditions ensure the usual factorization of likelihood ratios. We 

illustrate how the theory can be extended easily to incorporate explanatory variables, to describe 

longitudinal data in continuous time, and to admit more general coarsening of observations.

Some key words

Missingness at random; Sigma algebra; Stochastic process

1 Introduction

Missing at random (Rubin, 1976) is a central concept in missing-data research. Nevertheless, 

recent papers (Seaman et al., 2013; Mealli & Rubin, 2015; Doretti et al., 2017) have argued 

that it remains poorly understood and often inaccurately articulated. The most common 

formulation (Little & Rubin, 2002, p. 12) is superficially intuitive, but misleading in its 

detail; accurate formulations exist (Robins & Gill, 1997; Lu & Copas, 2004), but typically 

hold little heuristic appeal.

For models under which data are missing at random, the likelihood is a product of two 

terms, a marginal likelihood and a conditional likelihood representing the missingness 

mechanism. By appealing to the theory of incompletely observed stochastic processes and 

characterizing these multiplicative components of the likelihood, we give a revealing proof 

of the likelihood factorization that depends only on simple measurability conditions. These 

conditions lead to a new, general definition of missingness at random that we find to be both 

rigorous and intuitive.

We represent data and all conditioning statements in terms of sigma algebras, principally 

to avoid any confusion over what information is being conditioned upon. As a byproduct, 
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we obtain a single framework for discrete, continuous and more general random variables, 

whether partially observed in discrete time, in continuous time or under general forms of 

coarsening.

We tread this path with some trepidation. Rubin described his own initial measure-theoretic 

treatment of missing data as ‘window dressing’, and then-Biometrika-editor David Cox’s 

advice was to ‘eliminate all that measure theory noise’ (Lin et al., 2014). We hope our 

perspective avoids these pitfalls and exposes a signal that could be overlooked following 

such noise reduction.

2 Notation

Our starting point is a measurable space (Ω,ℱ) on which we define probability measures and 

random variables. We take a pure likelihood perspective (Royall, 1997) and compare just 

two candidate data-generating models. We aim to assess the evidence, as quantified by their 

likelihood ratio, in favour of a measure P relative to another measure Q. Since likelihood 

functions are just pairwise comparisons to an arbitrary reference measure, this simplification 

is not restrictive.

Following Pollard (2002, pp. 7–11), we adopt de Finetti notation: we allow the set A to 

also denote the indicator random variable 1 A , and reuse the symbol P to mean also its 

corresponding expectation operator EP , so that in particular P(A) = P(1 A ) = EP (1 A ) = ∫ 
1 A dP. One way of understanding this broader use of the symbol P is that we are extending 

its domain from indicator functions to more general random variables. In any event, the main 

consequence for this paper is that whenever we want to refer to EP we can simply write P.

The sigma algebra ℱ is a set of events that represents complete information about the entire 

stochastic system. In the present context, ℱ tells us the values of variables that may be 

observed or missing, and whether they are in fact missing. We avoid the term complete data, 

because its typical usage does not encompass indicators of missingness status, which in our 

view are certainly data. All available information we simply call data and represent by the 

sigma algebra . The data sigma algebra  refers to as-yet-unrealized random variables, and 

contains all events whose logical status is known once the data are revealed. Until § 3 we 

remain nebulous about the precise definition of  but, given our missing-data setting,  will 

be a strict subset of ℱ. We write σ(X) to denote the sigma algebra generated by a random 

variable X ; X is measurable with respect to the sigma algebra  if and only if σ(X) ⊆ .

We will assume whenever needed that probability measures are absolutely continuous with 

respect to one another. Then the customary measure-theoretic definition of the likelihood 

ratio comparing P and Q is the Radon–Nikodym derivative dP/dQ (Andersen et al., 1996, 

p. 97). Though somewhat formal in appearance, this object is simply a random variable that 

describes at each point in the sample space Ω the corresponding likelihood ratio of P relative 

to Q.

In general, the random variable dP/dQ will not be -measurable. This is because P and 

Q measure the size of each set in ℱ and, since ℱ ⊃ , the likelihood comparison dP/dQ 
may depend on events whose logical status cannot be determined solely from the data . In 
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contrast, the likelihood ratio based on the data alone may be represented by its -measurable 

restriction

dP
dQ D

= Q dP
dQ D . (1)

This equality provides some intuition about the meaning of the left-hand side: the 

conditional expectation, given  and with respect to Q, of the likelihood ratio dP/dQ. 

Loosely, this yields local averages of the random variable dP/dQ over each region of the 

sample space within which the data are constant.As noted by Chang & Pollard (1997, p. 

299), this notation is more economical than standard representations such as ∫ f dy mis 

because no y mis need be introduced. Since (1) is data-measurable, it can be used for 

likelihood comparisons while satisfying standard chain rule relationships between likelihood 

ratios.

3 Monotone missing data

3.1 Data

Throughout this paper, we employ the machinery and methods of stochastic processes. For 

general missing data, the theory of stochastic processes indexed by sets will be required 

(Molchanov, 2006); however, we begin with the gentler case of monotone missingness, 

where it suffices to use standard theory for stochastic processes in discrete time. Unlike 

some other approaches, the stochastic process perspective permits ideas to be extended 

from the monotone case to the general setting by making essentially trivial semantic 

modifications.

Following Rubin (1976), we let Y = (Y 1, …, Yn ) be random variables defined on (Ω,ℱ), 

the ranges of which may be any measurable spaces. It is helpful to think of Y as a stochastic 

process Y = (Ym ) indexed by discrete times m = 1, …, n. We observe Y 1, …, YM , where 

the integer-valued random variable M is also defined on (Ω,ℱ) and satisfies 0 ⩽ M ⩽ n. We 

do not observe Y M+1, …, Yn : observation of the stochastic process Y ceases at the random 

time M.

A filtration is a nested family of sigma algebras that captures the idea of information 

increase over time. When we say that a process (Ym ) is adapted to a filtration ( m ), 
we mean that for each m the random variable Ym is measurable with respect to the sigma 

algebra m ; adaptedness is just a sequence of measurability conditions. We define m = 

σ(Yl : l ⩽ m); the resulting ( m ) is called the natural filtration generated by Y, and by 

construction Y is adapted to ( m ).

The random variable M records the time at which observation of Y ceases, and is said 

to be a stopping time if at each point in time an observer knows whether observation of 

Y has already ceased. More specifically, M is a stopping time with respect to a filtration 

(ℳm ) if the event {M ⩽ m} belongs to ℳm for all m. We can arrange for this to be the 

case by defining ℳm = σ({M ⩽ l} : l ⩽ m). For each m, the sigma algebra ℳm encodes 
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logical information about whether the stopping event has occurred and, if so, at what point it 

occurred.

Until the stopping time M, we accrue information about both Y and M. We construct a 

larger filtration (ℱm ) by setting ℱm = m ∨ ℳm ; the notation m ∨ ℳm defines ℱm as 

the smallest sigma algebra containing both m and ℳm . Informally speaking, ℱm tells us 

the values of Y 1, …, Ym and, through knowledge of the indicators {M ⩽ 1}, …, {M ⩽ 
m}, if and when we have stopped recording measurements before time m. Recall that {M 
⩽ m} denotes both the subset {ω : M(ω) ⩽ m} ⊆ Ω and the indicator random variable 

1{ω:M(ω)⩽m}.

Information increases until the random time M, at which point no further information is 

recorded. Since M is also a stopping time with respect to (ℱm ), this idea of information 

increase until a random time may be captured through the elegant definition of the stopping-

time sigma algebra ℱM = {A ∈ ℱ : A ∩ {M ⩽ m} ∈ ℱm for all m} (Pollard, 2002, pp. 

142–43). This ℱM is precisely what we mean by the data sigma algebra ; that is, we define 

 = ℱM . Despite being decorated with the letter M, we stress that the sigma algebra ℱM is 

not itself a random object, but consists of that immutable set of events whose logical statuses 

are always known when the data are revealed, regardless of the particular realized values 

taken by Y or M.

For simplicity, we shall assume that ℱ = ℱn , so that there are no measurable events beyond 

those described by Y and M. Similarly, we write  = n or ℳ = ℳn to describe complete 

information about Y or M, respectively. As a technical aside, we shall also assume that 

(Ω,ℱ) has a product structure that allows measures under which  and ℳ are independent; 

that is, for all A ∈ ℱ, there exist B ∈  and C ∈ ℳ such that A = BC. In de Finetti notation, 

the product of events BC connotes 1 B 1 C = B ∩ C. Recall that two sigma algebras  and ℳ 
are independent under P if and only if P(BC) = P(B)P(C) for all B ∈  and C ∈ ℳ.

It may be valuable at this point to consider the simplest possible example: n = 1 with a 

binary Y 1 that could possibly be missing. In this case Ω is the four-point set {00, 01, 10, 

11}, and ℱ = 2Ω is the power set of Ω. For a generic element bc ∈ Ω, Y 1(bc) = b and 

M(bc) = c. Then  0 is the trivial sigma algebra σ(Ω) = {∅, Ω}, while ℳ 0 = ℱ 0 = ℳ 1 

= ℳ = σ({00, 10}, {01, 11});  1 =  = σ({00, 01}, {10, 11}), and by assumption ℱ 1 = 

ℱ. Rather less obviously,  = ℱM = σ({00, 10}, {01}, {11}). This makes intuitive sense, 

since when M = 0 we cannot hope to distinguish between Y 1 = 0 and Y 1 = 1. We can 

check our intuition more formally by verifying that the intersection of each of the atoms {00, 

10}, {01} and {11} with {M ⩽ 0} = {00, 10} is in ℱ 0. No finer partition is possible; for 

example, the singleton set {00}, when intersected with {M ⩽ 0} = {00, 10}, is not in ℱ 0. 

Trivially, all intersections of the atoms {00, 10}, {01} and {11} with {M ⩽ 1} = Ω belong to 

ℱ 1 = ℱ. This simple example is revisited in the Appendix to give concrete illustrations of 

some of the abstract measure-theoretic quantities deployed later in the paper.

That it might be advantageous to represent incomplete information as a randomly stopped 

stochastic process was hinted at by Gill et al. (1997), and we too find the simple partition 

of the sample space provided by ℱM to be both instructive and illuminating as to the nature 
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of the missing-data problem. We stress again that FM is not a random object;  = ℱM is a 

fixed subsigma algebra of ℱ. The sigma algebra  is strictly smaller than ℱ; that is, there 

are events in ℱ that are not elements of . In particular, {00, 01} ∉  and so  ⊈ . 

Equivalent characterizations of the data sigma algebra are possible, such as  = σ(M, Y 1, 

…, YM ), but do not provide such immediate and straightforward conditions for assessing 

data-measurability as are available once we realize that  is a stopping-time sigma algebra.

3.2 Likelihood factorization

In this section, we describe sufficient conditions for factorization of a likelihood ratio. Gill 

et al. (1997) and Lu & Copas (2004) investigated when related conditions are also necessary, 

in the latter case within parametric families of measures. We continue with just the measures 

P and Q, but, whether comparing many models or just two, it is only when frequentist 

properties or procedures are of interest that we need concern ourselves with the actual 

data-generating mechanism. In our pure likelihood context, P and Q may be any pair of 

measures defined on (Ω,ℱ), and neither is assumed to be the true data-generating measure 

(Seaman et al., 2013). This said, the relevance of statistical calculations is clearly enhanced 

when posited models are plausible reflections of reality, so we examine the evaluation of 

model assumptions in § 5.

The best available likelihood comparison of P and Q is (dP/dQ)|  . However, it is customary 

to suppose that scientific interest in these measures focuses on their behaviour (dP/dQ)|  on 

, and that their conditional likelihood ratio given , i.e., (dP/dQ)| ℱ|  = (dP/dQ)| ℱ /(dP/

dQ)|  (Hoffman-Jørgensen, 1994, p. 130), is secondary because it describes only the 

so-called missingness mechanism. Formally, we assume that scientific interest lies in a 

parameter θ :  → Θ, where  is a set of probability measures on (Ω,ℱ), and where  is 

sufficient for θ in the sense that (dP/dQ)|  = 1 implies θ(P) = θ(Q) for any P, Q ∈ .

Because scientific interest is restricted to θ and because fully specifying the conditional 

likelihood ratio (dP/dQ)| ℱ|  can be difficult or inconvenient, we may choose instead 

to focus evidential comparisons on the marginal likelihood ratio (dP/dQ)|  . Alas, this 

marginal likelihood ratio is not data-measurable in general, basically for the same reasons 

that dP/dQ is not data-measurable: because  ⊈ . But by analogy with (1), where we 

express the likelihood ratio (dP/dQ)|  in terms of a conditional expectation of dP/dQ given 

the data, we could form a marginal, data-measurable likelihood ratio

Q dP
dQ Y|D .

A reasonable concern with such a procedure is that the value of (2) may somehow 

depend on the particular choice of missingness mechanism under P or Q, meaning that 

(2) was not a marginal likelihood ratio for θ after all. We show in Lemma 2 that within 

certain equivalence classes no such dependence exists, and hence within these equivalence 

classes (2) may justifiably be called a marginal likelihood ratio. This result is based on a 

foundational lemma strongly related to the exchange of seeing and doing in causal inference 

(Pearl, 2009), which we state first.
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Lemma 1. The likelihood ratio dP/dQ is -measurable if and only if (dP/dQ)| ℱ|  = 1.

The proof is direct: dP/dQ is -measurable if and only if dP/dQ = (dP/dQ)|  , and hence 

if and only if (dP/dQ)| ℱ|  = 1. The implication is that when dP/dQ is -measurable, 

expectations conditional on  may be taken interchangeably with respect to P or Q; that is, 

P(A | ) = Q(A | ) for all A ∈ ℱ.

Lemma 2. Write P ~ Q (mod ) if and only if (dP/dQ)| ℱ|  is -measurable. Let P, P′, 

Q and Q′be measures all belonging to the same ~-equivalence class, and suppose that (dP′/

dP)|  = (dQ′/dQ)|  = 1. Then

Q dP
dQ Y ∣ D = Q′ dP ′

dQ′ Y ∣ D = 1/P dQ
dP Y ∣ D .

To prove the first equality, we have only to exchange (dP/dQ)|  for (dP′/dQ′)|  ; then, 

because (dQ′/dQ)|  = 1, which is clearly -measurable, and because (dQ′/dQ)| ℱ|  is 

-measurable since Q ~ Q′ (mod ), it follows that dQ′/dQ is itself -measurable and 

that, by Lemma 1, expectations conditional on  can be taken interchangeably with respect 

to Q or Q′. The proof of the second equality depends critically on P ~ Q (mod ), but 

is otherwise unilluminating, so we omit it. Nevertheless, this second equality describes 

an important symmetry property exhibited by likelihood ratios, but not necessarily by 

modifications thereof like (2).

Within an equivalence class, Lemma 2 says that for any P and P′ that agree on , it does 

not matter whether we use P or P′ in the numerator of the marginal likelihood ratio (2) 

and, so long as Q and Q′ agree on , we may use either Q or Q′ in the denominator; 

the value of (2) is unchanged. Consequently, within an equivalence class, calling (2) a 

marginal likelihood ratio appears justifiable. Conversely, if P ≁ Q (mod ), then (2) is not a 

marginal likelihood ratio: even the basic symmetry property of Lemma 2 fails to hold. So the 

restriction of likelihood comparisons to measures in the same equivalence class is important. 

Anticipating slightly, one equivalence class will be the set of measures under which data are 

missing at random.

Another reason that (2) may justifiably be called a marginal likelihood ratio is that within an 

equivalence class the usual likelihood ratio (dP/dQ)|  includes (2) as a multiplicative factor. 

This fact is so important that we state it as a lemma.

Lemma 3. If P ~ Q (mod ), then

dP
dQ D = Q dP

dQ Y ∣ D × dP
dQ ℱ ∣ Y .

The result follows directly from the fact that P ~ Q (mod ) if and only if (dP/dQ)| ℱ|  is 

-measurable, and the latter can therefore be brought outside the conditional expectation.

Lemmas 2 and 3 show that, given a pair of measures defined only on the restricted 

space (Ω, ), the marginal likelihood ratio (2) is a multiplicative factor in the likelihood 
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ratio formed by extending these measures to the whole of (Ω,ℱ) and restricting to . 

Moreover, the marginal likelihood ratio (2) is invariant with respect to the particular way 

these extensions are constructed, always provided that such extended measures belong to the 

same ~-equivalence class. The downside to this attractive invariance is that we must choose 

an equivalence class within which to work. Moreover, because the equivalence classes are 

defined by a data-measurability condition, there can be no evidence in the data to support 

one choice over another (see Molenberghs et al., 2008). This choice must be made based 

on convenience, on meta-data considerations or, most usually, on a combination of both. We 

discuss convenience first, before moving on to meta-data considerations later in the paper.

It is fairly clear that computing the marginal likelihood ratio (2) would be reasonably 

straight-forward if in fact  and ℳ were independent under P and Q, and this may be one 

reason to prefer equivalence classes in which such measures appear. In fact, the next lemma 

shows that all independence measures belong to the same equivalence class, within which 

the marginal likelihood ratio for θ has a very simple form.

Lemma 4. Suppose that  and ℳ are independent under P and Q. Then P ~ Q (mod ) and

Q dP
dQ Y ∣ D = dP

dQ D ∣ ℳ .

To prove this, we use the fact that independence of  and ℳ under P and Q means that 

dP/dQ = (dP/dQ)|  × (dP/dQ)| ℳ , and hence that (dP/dQ)| ℱ|  = (dP/dQ)| ℳ , which 

is certainly -measurable. Conversely, (dP/dQ)|  = (dP/dQ)| ℱ|ℳ under independence, so 

Q{(dP/dQ)|  | } = Q{(dP/dQ)| ℱ | }/(dP/dQ)| ℳ , as required.

The equivalence class in which the independence measures lie is precisely the class of 

measures satisfying the condition Rubin (1976) calls missingness at random. Lemma 2 tells 

us that within this class, the marginal likelihood ratio depends only on the behaviour of P 
and Q on , so using measures under which  and ℳ are independent may be a convenient 

way to compute it. Lemma 3 shows that the marginal likelihood ratio for θ is a factor in the 

full likelihood, and Lemma 4 gives us the form of the marginal likelihood ratio directly. We 

put all these pieces together in the following central result.

Theorem 1. Let P, P′, Q and Q′ be measures such that (dP/dP′)|  = (dQ/dQ′)|  = 1. 

Suppose that  and ℳ are independent under P′ and Q′, and further assume that both P ~ P′ 
(mod ) and Q ~ Q′ (mod ). Then

dP
dQ D = dP ′

dQ′ D ∣ ℳ × dP
dQ ℱ ∣ Y .

Independence measures P′ and Q′ exist because of the product structure on (Ω,ℱ). The 

proof depends on Lemma 4, from which we deduce that P′ ~ Q′ (mod ), and therefore 

also P ~ Q (mod ) by transitivity. Since P ~ Q (mod ), Lemma 3 provides a factorization 

of the full likelihood ratio, and Lemma 4 gives us the simpler form of the first term, as 

required.
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Reducing likelihood factorizations to questions of data-measurability is a very general idea, 

and in particular none of the current section depends in any way on monotonicity of 

missing data. Indeed, our general approach applies equally well in any setting where the 

structure of the observed data is not fixed in advance. Unobserved quantities need not be 

thought of as data, but could simply be latent variables, for example random effects. This 

is the perspective taken by Farewell et al. (2017). An appealing advantage of the theory 

developed in the present paper is that it can more easily be extended to cases where the 

range of M is uncountable (Commenges & Gegout-Petit, 2015, p. 14), and we explore some 

of these possibilities in § 5. Gill et al. (1997) provided an exactly analogous likelihood 

decomposition in the setting of coarsened data, and they too highlighted the simplification 

arising from the working assumption of independence, which Jacobsen & Keiding (1995) 

call a reference model.

So far we have shown that a working independence conditional likelihood ratio is the unique 

marginal likelihood ratio for the parameter of interest θ within a particular equivalence 

class, and that this in turn is a multiplicative factor in the full likelihood ratio. It remains 

to demonstrate that missingness at random fully characterizes this equivalence class, and to 

explore the suitability of this class for use in substantive problems of statistical inference.

3.3 Measurability

The factorization of Theorem 1 holds whenever the conditional likelihood ratios (dP/

dP′)| ℱ|  and (dQ/dQ′)| ℱ|  are -measurable; we now discuss how to determine whether 

they are. We assume throughout this section that P, P′, Q and Q′ satisfy the conditions 

of Theorem 1; that is, P and P′ agree on , Q and Q′ agree on , and  and ℳ 
are independent under P′ and Q′. We focus on the relationship between P and P′, 

with analogous considerations needed for Q and Q′. It seems likely that the conditional 

likelihood ratio (dP/dP′)| ℱ|  should be expressible in terms of conditional densities of M 
given  under P and P′, and this we now assert to be the case. The proof of Lemma 5 is not 

especially illuminating, so we defer it to the Appendix.

Lemma 5. Let P and P′ be measures on (Ω,ℱ). Define the stochastic processes (pm ) and 
( pm′  ) by pm = P(M = m | ) and pm′ = P ′(M = m ∣ Y) . Then dP /dP ′ ℱ ∣ Y = pM /pM′  , the 

ratio of these stochastic processes evaluated at the random stopping time M.

We deduce that P ~ P′ (mod ) if both pM and pM′  are -measurable. We see immediately 

that the latter is always -measurable: because  and ℳ are independent under P′, 

pm′ = P ′(M = m ∣ Y) = P ′(M = m) , and hence the process ( pm′  ) is in fact a deterministic 

sequence. The value of pM′  then depends only on M, which is certainly -measurable.

Data-measurability of pM is more subtle and not guaranteed. Our next result introduces 

our definition of missingness at random, and proves that this condition on a measure P 
establishes that the corresponding pM is data-measurable.

Lemma 6. Suppose that P(M = m | ) = P(M = m | Ym ) for every m. Then (pm ) is adapted 
to (ℱm ), and pM is ℱM -measurable.
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The proof is not difficult. For all m, the condition P(M = m | ) = P(M = m | m ) ensures 

that P(M = m | ) is m -measurable, i.e., (pm ) is adapted to ( m ). Since Ym ⊆ ℱm , the 

stochastic process (pm ) must also be adapted to (ℱm ). Because M is an (ℱm )-stopping 

time, standard stochastic process results allow us to conclude that pM is ℱM -measurable, as 

required.

We make several comments. First, the condition of Lemma 6 is equivalent to the rigorous, 

everywhere version of missingness at random (Seaman et al., 2013), but is simpler to state: 

by conditioning on sigma algebras m , we equate random variables, not a large set of 

conditional probabilities. Second, it applies equally well to a random variable Y taking 

values in uncountable spaces; neither discretization (Seaman et al., 2013) nor conditioning 

on a set of measure zero is required. Third, there is a striking visual similarity of the 

condition P(M = m | ) = P(M = m | m ) for all m to the ubiquitous, informal missing-at-

random definition P(M | Y) = P(M | Y obs) (Little & Rubin, 2002, p. 12). Interpreted literally, 

though, the two definitions have rather different meanings: our definition of missing at 

random refers to a sequence of fixed values m, and not to the random variables M and Y obs. 

The measure-theoretic perspective encourages us to distinguish sharply between the random 

variable M and a generic realized value m, while the Y obs notation blurs this distinction. In 

our view, this blurring, and the apparent collapse of multiple conditions into one that results 

from it, leads to much of the confusion surrounding the Y obs and Y mis notation (Seaman et 

al., 2013). This is another reason we think it is helpful to instead understand missingness at 

random as an adaptedness condition.

We have shown that if P(M = m | ) = P(M = m | m ) for every m, then pM and 

(dP/dP′)| ℱ|  are -measurable, and hence P belongs to the same ~-equivalence class as 

the independence measures. If the same is true for the measure Q, then the conditions of 

Theorem 1 are met, and the likelihood factorization follows. We now proceed to extend this 

result to nonmonotone missing data and, ultimately, to more general forms of missingness.

4 Nonmonotone missing data

We turn now to the general case, where there need be no natural ordering of the components 

of Y; the observations may be obtained simultaneously or in an arbitrary order, and any 

possible subset of the variables may be observed. Despite this generality, remarkably few 

notational changes are needed from the ordered, monotone case; we simply reinterpret what 

we have written to this point in terms of stochastic processes indexed by sets (Molchanov, 

2006, p. 334). Our subscript m becomes a set, so that if m = {1, 3, 4} then Ym = (Y 1, Y 3, 

Y 4). The most important change from the monotone case is that we now understand M as 

a random subset of {1, …, n}, representing the subset of variables that are observed. There 

is no total ordering of the subsets of {1, …, n}, but we exploit the partial ordering given 

by set inclusion and interpret l ⩽ m as l ⊆ m, which describes a lattice of subsets on which 

stochastic processes may be defined. Once again, we stop observing Y at the random set M 
on this lattice, but now there are potentially multiple routes by which we may arrive at a 

given point. Just as before, however, we observe the values of all random variables Ym for 

which m ⩽ M, i.e., for which m ⊆ M.
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We define m = σ(Yl : l ⩽ m), ℳm = σ({M ⩽ l} : l ⩽ m) and ℱm = m ∨ ℳm just as in 

the monotone case, where now (ℱm ) is a set-indexed filtration. As before,  = ℱM , now 

a stopping-set sigma algebra. The definitions of the probability measures P, P′, Q and Q′ 
are unaltered, and likelihood factorization again boils down to ℱM -measurability of pM , 
where pm = P(M = m | ), with similar considerations needed for Q.The missing-at-random 

condition is unaltered and forms the premise of our central theorem, which we now state 

formally.

Theorem 2. Let P, P′, Q and Q′ be measures such that (dP/dP′)|  = (dQ/dQ′)|  = 1. 

Suppose that  and ℳ are independent under P′ and Q′. Further, assume that P(M = m | ) 

= P(M = m | m ) and Q(M = m | ) = Q(M = m | m ) for all m. Then P ~ P′ ~ Q′ ~ Q 
(mod Y), and

dP
dQ D = dP ′

dQ′ D ∣ ℳ × dP
dQ ℱ ∣ Y .

The proof is identical to that in the monotone case: adaptedness of the processes P(M 
= m | ) and Q(M = m | ) to the set-indexed filtration (ℱm ), and the fact that M 
is an (ℱm )-stopping set ensures that P ~ P′ (mod ) and Q ~ Q′ (mod ). Even in 

this unordered setting, the stochastic process techniques provide us with a direct proof of 

data-measurability of the likelihood ratios (dP/dP′)| ℱ|  and (dQ/dQ′)| ℱ|  . The final 

likelihood factorization follows from Theorem 1, which was already of sufficient generality 

to accommodate the set-indexed case.

The likelihood factorization depends on the adaptedness of stochastic processes, so it is 

worth considering our ability to assess this collection of conditions. The lattice structure 

implicit in this formulation is reminiscent of the randomized monotone missingness 

mechanisms of Robins & Gill (1997), wherein future observation can depend on previous 

measurements within the history of a particular branch. But, as noted by Robins & Gill 

(1997), more complicated dependence structures are also possible. It may sometimes be 

appropriate to adopt the missingness-at-random assumption openly, but uncritically, and to 

use its simple ~-equivalence class to compare likelihoods or conduct inference under this 

working assumption. Alternatively, perhaps with improved intuition about what it means 

for a process to be adapted to a set-indexed filtration, the plausibility of the missingness-at-

random assumption may be directly and critically assessed even in cases of nonmonotone 

missing data. Failing this, a fastidious analyst must abandon the appealing generality of 

missing at random, and assess instead conditions that are stronger and more easily assessed, 

such as randomized monotone missingness (Robins & Gill, 1997) or stability (Farewell et 

al., 2017). In § 5 we give specific examples of such stronger conditions.

5 Extensions

5.1 Modified notation

We now offer three extensions to the classical setting of Rubin (1976), showing how 

stochastic process theory adapts naturally to situations where traditional approaches can 

be cumbersome.
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In this more general setting, we align our notation with standard choices made in the study 

of stochastic processes. Let Y = (Yt : t ∈ T) be a stochastic process indexed by a set T, 

where the latter may be uncountable, but is equipped with a partial or total ordering. We 

observe Yt for all t ⩽ τ, where the observed random variable τ takes values in T; we do 

not observe any Yt for t ⩽̸ τ. The process Y is adapted to its natural filtration ( t ), and 

again τ is a stopping time or more general stopping object with respect to the filtration ( t ) 
generated by the process ({τ ⩽ t}). We assume that ℱ =  ∨ , where  = Ｖ t t and 

similarly  = Ｖ t t . We define another filtration (ℱt ) by ℱt = t ∨ t . The observed 

data are then given by the generalized stopping-time sigma algebra  = ℱτ = {A ∈ ℱ : A ∩ 
{τ ⩽ t} ∈ ℱt for all t}.

In this more general setting, it may well be the case that P(τ = t | ) = 0 for all possible 

values of t, for example because τ might be a continuous random variable. Consequently, 

a slightly modified version of the missing-at-random condition will be required. As in the 

proof of Lemma 5, we could still define the conditional law μ of τ satisfying μ(D, ·) = P{τ 
−1(D) | } and conditional densities like pt = (dμ/dν)(t, ·) with respect to some dominating 

measure ν, but to avoid these abstractions we work instead with more familiar objects Pt = 

P(τ ⩽ t | ) that are analogous to conditional cumulative distribution functions. Like (pt : t ∈ 
T), the collection (Pt : t ∈ T) is a stochastic process on the partially ordered set T. Since (pt ) 
is adapted if and only if (Pt ) is adapted, it then suffices to define missingness at random in 

general as follows.

Lemma 7. If P(τ ⩽ t | ) = P(τ ⩽ t | t ) for every t, then (Pt ) is adapted to (ℱt ), and P ~ P′ 
(mod ) for any measure P′ under which  and ℳ are independent.

5.2 Explanatory variables

We suppose there is now some fully observed covariate information  ⊆  available and 

that our interest is in the conditional likelihood ratio (dP/dQ)| |  , as might be the case in a 

regression modelling context. An immediate advantage of the use of sigma algebras is that 

we can simply absorb this covariate information into the two existing filtrations ( t ) and (

t ), and assume that for all t we have  ⊆ t and  ⊆ t . If  = {Pαβγ } is a family of 

models wherein α, β and γ respectively characterize behaviour on , regression coefficients 

and distributions of residuals, with θ(Pαβγ ) = β, then (  | ) is sufficient for θ in the sense 

that for any P, Q ∈ , (dP/dQ)| |  = 1 implies θ(P) = θ(Q).

Lemma 4 will now hold under the weaker condition that  and  are conditionally 

independent given . By incorporating X into the two existing filtrations, we arrange for 

the missing-atrandom condition to remain notationally unchanged: P(τ ⩽ t | ) = P(τ ⩽ t | 
Yt ) for all t, recalling that now  ⊆ t for all t. Like the condition employed by Sweeting 

et al. (2010), this allows dependence of the missingness mechanism on covariates and, to 

the extent permitted by data-measurabililty, on Y. This could be called covariate-dependent 

missingness at random, but, as noted by Hedeker & Gibbons (1997), versions such as this 

should be carefully distinguished from similarly named alternatives, where missingness 

depends only on covariates and not on observed responses (Little, 1995). The relevant 

likelihood factorization is
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dP
dQ D ∣ X = dP ′

dQ′ D ∣ T × dP
dQ ℱ ∣ Y,

where Q{(dP/dQ)| |  | } = (dP′/dQ′)| |  is the marginal likelihood particular to 

this equivalence class, integrating over the missing data. Since  ⊆ , this likelihood is 

also conditional on . Our insistence that  ⊆  pays dividends not only in notational 

brevity, but also in ensuring that intuitively important terms such as (dP/dQ)| |  remain 

well-defined.

The ability to include such covariate information  is hugely important in missing-data 

considerations and, more broadly, in matters of causal inference. While hardly ever a trivial 

exercise, building a set of always-available data  such that the required adaptedness 

condition may plausibly be assumed to hold is sometimes more straightforward than 

exerting external control of the processes that lead to aspects of Y going unobserved.

5.3 Longitudinal data

Consider the case where Y = (Yu ) u ⩾0 is a continuous-time stochastic process and τ 
⊆ [0, ∞) describes the finite set on which Y is observed. Such a construction describes 

unbalanced longitudinal data (Diggle et al., 2002, p. 282), where each subject gives rise to 

a random number of observations and these may be recorded at arbitrary points in time. For 

example, an individual observed at u = 0.2, u = 0.5 and u = 0.8 would have τ = {0.2, 0.5, 

0.8}. The corresponding filtration ( t : t ∈ T) is indexed by the power set T = 2[0,∞) and 

therefore not totally ordered; instead, we again have a partial ordering s ⩽ t of the sets s 
and t if and only if s ⊆ t, and thus s ⊆ t . The set T of all possible subsets of [0, ∞) is 

uncountable, so our modified version of the missing-at-random condition will be required: 

P(τ ⩽ t | ) = P(τ ⩽ t | t ) for all t ∈ T. An example set t ∈ T for which such probabilities 

might be nonzero is t = [0, 0.3] ∪ [0.4, 0.9], in which case τ = {0.2, 0.5, 0.8} ⩽ t.

To our knowledge, characterizations of missingness at random for general longitudinal data 

are rare, and it is worth considering again our ability to assess this condition. Especially 

in longitudinal settings, the causal processes that lead to τ taking on any particular value 

rarely operate by first obtaining all possible information  about Y and then deciding what 

subset of this information to reveal. Nevertheless, our formulation of missingness at random 

implicitly invites us to evaluate directly whether each P(τ ⩽ t | ) in fact depends only on 

t .

We suggest taking a dynamic approach, in which the stopping set τ is itself thought of as 

arising from a set-valued stochastic process (τu ) u⩾0, with the set τu = τ ∩ [0, u] defined 

to be the observed subset of τ up to and including time u. At each time u we observe a 

set-valued increment dτu in this process, where dτu = τu \ τ u− and τ u− = τ ∩ [0, u). When 

no observation is made at time u, the increment dτu is the empty set; when we make an 

observation at time u, the increment is the singleton set {u}.

With this more dynamic perspective, we are in a better position to assess the plausibility 

of missingness at random. Consider, for example, a patient under a so-called doctor’s 
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care regime, which Grüger et al. (1991) define to mean that future examination times 

are determined entirely on the basis of earlier observations. Under such a regime, for an 

arbitrary set t ∈ T we can decompose P(τ ⩽ t | ) using the product integral

∏
u ∈ [0, ∞)

P dτu ⩽ t ∣ τu − ⩽ t, Y

wherein dτu , t and τ u− are all sets. Whenever u ∈ t, the integrand is unity; elsewhere 

it specifies the instantaneous probability that no observation is made at time u, given 

, and given the fact that all observation times to date lie in the set t. But we have 

asserted that under the doctor’s care scenario, future observation times are determined only 

with reference to past observations  τ u− , which must be a subset of t since we are 

conditioning on the event τ u− ⩽ t. Hence P(dτ u ⩽ t | τ u− t, ) = P(dτ u ⩽ t | τ u− ⩽ 
t, t ), and our decomposition of P(τ ⩽ t | ) multiplies back up to give P(τ ⩽ t | t ), 
as required to establish that missingness at random holds. Here P(dτ u ⩽ t | τ u− ⩽ t, ) 

is a kind of intensity process, and our doctor’s care assumption is very like independent 

censoring (Andersen et al., 1996, p. 139).

In situations where factors outside the doctor’s control may influence the number and timing 

of observations, such considerations become more delicate. For instance, if imperfectly 

measured subject-specific quantities such as a participant’s overall health may influence 

both Y and τ, the missing-at-random condition will not in general be satisfied. Farewell et 

al. (2017) make use of causal directed acyclic graphs to help determine if the likelihood 

contribution of the random observation times τ may safely be ignored.

5.4 Coarsened observations

For general coarsening of observations (Heitjan & Rubin, 1991), we shall assume as 

usual that  represents complete information about some random variable Y. As in the 

longitudinal data setting, Y need not be scalar or even finite-dimensional; however, we now 

make the associated stochastic process implicit and instead begin with a specific filtration 

( t : t ∈ T) of  that, as t ranges over T, visits some or all of the possible sub-sigma 

algebras of . This filtration supplies a partial ordering on T through the definition s ⩽ t if 
and only if s ⊆ t , and specifies the various possible levels of coarsening with which we 

may gain information about .

Heitjan & Rubin (1991, § 4.4) describes an example of coarsening, where children’s ages 

are recorded to an unknown degree of precision. Ages may be rounded to the next lowest 

month, half year or full year, so that a child with a recorded age of 6 months may in fact be 

up to 11 months old. Let Y record the age of the child in months, rounded to the next lowest 

month. There are three possible sub-sigma algebras of  = σ(Y), namely  12 = σ({Y < 

12}, {12 ⩽ Y < 24}, {24 ⩽ Y < 36}, …),  6 = σ({Y < 6}, {6 Y < 12}, {12 ⩽ Y < 18}, 

…) and  1 =  = σ({Y = 1}, {Y = 2}, {Y = 3}, …), with  12 ⊆  6 ⊆  1. Here T = 

{12, 6, 1}, so a child with a recorded age of 18 months has an associated τ = 6; while the 

age Y of the child could equal 18 exactly, all we know is that it lies in the set {18, …, 23}. 

Suppose, for argument’s sake, that ages are in fact recorded to the next lowest month until 
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one year of age, the next lowest half year until two years of age, and the next lowest full year 

thereafter. This constitutes a coarsening-at-random mechanism, because P(τ = t | ) = P(τ 
= t |  12) for all t. Formulating coarsening in terms of sigma algebras neatly captures the 

spirit of set-valued variables introduced by Heitjan & Rubin (1991).

6 Discussion

Initially, our aim in this work was to provide a rigorous reinterpretation of the usual 

missingness-at-random formulation P(M | Y) = P(M | Y obs) for those who, like ourselves, 

worry about such things. We hope that the version in Lemma 6 fits this bill. Seaman et al. 

(2013) point out that, interpreted literally, the symbol Y obs might even tell us the value of 

M, but in fact no logical information about M is contained in any m , nor indeed in 

itself: for each nonempty set A ∈ , the image M(A) of A under M is simply the set M(Ω) 

of all possible values of M.

We believe that our work may have pedagogical value. Although we have attempted to 

convey our enthusiasm for the formalism of sigma algebras, an exactly equivalent version 

P(M = m | Y) = P(M = m | Ym ) for all sets m does not rely on this concept. Those 

encountering this definition for the first time should see that there are many constituent 

subconditions, one for each possible subset m ⊆ {1, …, n}, and that the conditioning object 

Ym varies with m.

Our adaptedness requirement will seem natural to those familiar with stochastic processes, 

and provides further links between censoring and missing data (Aalen, 2007, 2012). The 

implied change of measure to a working independence setting also has a causal flavour: 

in causal inference, data-measurability is the key to identifiability of causal estimands, 

and employing stochastic bases {Ω, ℱ, (ℱt )} with causal interpretations seems to us a 

promising approach.
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