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Abstract: Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in
newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine
epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic
losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome
coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species,
which made the epidemic situation of SeCoV more complex and changeable. Recent studies have
begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes
the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection.
These complex interactions may be directly involved in viral replication or the alteration of some
signal pathways.
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1. Introduction

Coronaviruses (CoVs) are enveloped viruses with a positive-sense, single-stranded
RNA genome. Some coronaviruses can infect hosts and cause respiratory damage, such as
SARS-CoV, MERS-CoV, and SARS-CoV-2 [1]. As the COVID-19 epidemic is sweeping the
world, many studies have also focused on the interaction mechanism between SARS-CoV-2
and the host [2]. Notably, certain coronaviruses are now known to trigger antibody-
dependent enhancement (ADE) to enhance infection, such as SARS-CoV-2 and feline
coronavirus (FCoV) [3]. However, to date, there are no studies on whether swine enteric
coronavirus (SeCoV) can trigger ADE, as there are relatively few studies on SeCoV.

Coronaviruses are members of the Nidovirales order, family Coronaviridae, subfam-
ily Coronavirinae (International Committee on Taxonomy of Viruses). Coronavirinae can
be divided into four genera, Alpha-, Beta-, Gamma- and Deltacoronaviruses, according to
serological and genomic methods. Known members of the SeCoV family include porcine
epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta
coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) [4].
Among the four known SeCoVs, PDCoV belongs to Deltacoronavirus, whereas PEDV, TGEV,
and SADS-CoV belong to Alphacoronavirus (Figure 1).

Among them, TGEV has been circulating in pigs for decades since it broke out in the
1940s. As early as 1933, the state of Illinois in the United States had related records of
TGEV [5]. TGEV was first reported in the United States in 1946 and later in Europe, Asia,
Africa, and South America [6]. The infection of pigs caused by TGEV is mainly through the
mouth, nose, and mucosa of pigs. When there were virions in the external environment,
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the viruses entered the respiratory system from the nasal cavity and multiplied in large
numbers [7]. Then, TGEV invaded the intestinal epithelium in the small intestine of pigs
with blood circulation and replicated; severe villus contraction and malabsorption led to
diarrhea. The mortality rate of defenseless piglets after infection was almost 100% [8].
Clinically diseased pigs and infected pigs excrete virions from feces, vomit, and exhale gas
to transmit TGEV through the respiratory and digestive tract.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 24 
 

 

 

Figure 1. Taxonomy of SeCoVs. Schematic diagram showing the classification of coronaviruses. The 

four known SeCoVs are marked in blue in the figure. Abbreviations: BtCoV, bat coronavirus; IBV, 

infectious bronchitis virus; and PRCV, porcine respiratory coronavirus. 

Among them, TGEV has been circulating in pigs for decades since it broke out in the 

1940s. As early as 1933, the state of Illinois in the United States had related records of 

TGEV [5]. TGEV was first reported in the United States in 1946 and later in Europe, Asia, 

Africa, and South America [6]. The infection of pigs caused by TGEV is mainly through 

the mouth, nose, and mucosa of pigs. When there were virions in the external environ-

ment, the viruses entered the respiratory system from the nasal cavity and multiplied in 

large numbers [7]. Then, TGEV invaded the intestinal epithelium in the small intestine of 

pigs with blood circulation and replicated; severe villus contraction and malabsorption 

led to diarrhea. The mortality rate of defenseless piglets after infection was almost 100% 

[8]. Clinically diseased pigs and infected pigs excrete virions from feces, vomit, and exhale 

gas to transmit TGEV through the respiratory and digestive tract. 

The length of the genomic sequence of TGEV is about 28.5 kb [9]. The S protein en-

coded by its S gene, similar to other coronaviruses, determines the tissue tropism and 

virulence of TGEV. It is worth mentioning that TGEV has evolved a new type of Alpha-

coronavirus called PRCV. Compared to TGEV, 621–681 bp is shortcoming from the N-ter-

minus of the S gene of PRCV. At the same time, its histophilicity has been changed from 

intestinal to respiratory, and its virulence has been reduced [10].  

PEDV was first isolated and identified in Europe about 40 years ago and has been 

prevalent in Eurasia since the 1990s [11,12]. It broke out in China around 2010 and became 

a significant swine viral disease [13–15]. The clinical symptoms and pathological changes 

caused by PEDV infection are almost the same as those of TGEV, which leads to host 

vomiting, malabsorption, diarrhea, and other symptoms [16,17]. However, the difference 

is that TGEV causes disease in pigs of all ages, while unweaned piglets aged 4–5 days 

during the PEDV subtype I epidemic in 1972 (Oldham 1972) were less affected. After the 

continuous evolution and variation of PEDV subtype I, PEDV subtype II occurred in 1976, 

leading to varying degrees of diarrhea in pigs of all ages. The severity and mortality of 

Figure 1. Taxonomy of SeCoVs. Schematic diagram showing the classification of coronaviruses. The
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infectious bronchitis virus; and PRCV, porcine respiratory coronavirus.

The length of the genomic sequence of TGEV is about 28.5 kb [9]. The S protein encoded
by its S gene, similar to other coronaviruses, determines the tissue tropism and virulence
of TGEV. It is worth mentioning that TGEV has evolved a new type of Alphacoronavirus
called PRCV. Compared to TGEV, 621–681 bp is shortcoming from the N-terminus of the
S gene of PRCV. At the same time, its histophilicity has been changed from intestinal to
respiratory, and its virulence has been reduced [10].

PEDV was first isolated and identified in Europe about 40 years ago and has been
prevalent in Eurasia since the 1990s [11,12]. It broke out in China around 2010 and became
a significant swine viral disease [13–15]. The clinical symptoms and pathological changes
caused by PEDV infection are almost the same as those of TGEV, which leads to host
vomiting, malabsorption, diarrhea, and other symptoms [16,17]. However, the difference
is that TGEV causes disease in pigs of all ages, while unweaned piglets aged 4–5 days
during the PEDV subtype I epidemic in 1972 (Oldham 1972) were less affected. After
the continuous evolution and variation of PEDV subtype I, PEDV subtype II occurred
in 1976, leading to varying degrees of diarrhea in pigs of all ages. The severity and
mortality of infected pigs may be inversely proportional to the age of pigs. The incidence of
piglets infected with PEDV is close to 100%, while the incidence of sows may be different.
Compared to weaned piglets, PEDV causes more severe diseases in suckling piglets, but the
reason is not apparent. Slow intestinal cell regeneration may be essential in suckling piglets.
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Similar to other coronaviruses, the genome size of PEDV is about 28 kb. Com-
pared to HCoV-229E (GenBank: KU291448), HcoV-NL63 (GenBank: LC687394), and
TGEV, the CV777 strain (GenBank: AF353511) of PEDV subtype I and bat coronavirus Bt-
CoV/512/2005 (GenBank: DQ648858) share common evolutionary precursors in phylogeny
and the genome structure [18]. The RdRp gene of coronavirus UNICAMP_bat_BR_14 (Gen-
Bank: KM514667) from bats is closely related to PEDV [19]; there may be a cross-species
transmission of coronavirus between bats and pigs. On the other hand, PEDV can replicate
in the primary target cells of natural hosts and effectively infect human, monkey, and
bat cells [20]. Therefore, it is speculated that PEDV may be transmitted by bat coron-
avirus, which initially causes diarrhea in fattening pigs and adult pigs and is then acquired
by piglets.

Deltacoronavirus (DCoV) is a new coronavirus genus identified by The International
Committee on Taxonomy of Viruses (ICTV) 2011. DCoV was first detected in Chinese
ferret badgers and Asian leopard cats in 2007 [21,22]. Porcine coronavirus was a newly
discovered porcine coronavirus in 2012. It has been confirmed that PDCoV has strong
pathogenicity and causes watery diarrhea and vomiting in sows and piglets. The mortality
rate of suckling piglets after infection reached 30% to 40% [23]. The clinical symptoms
caused by PDCoV infection were similar to those of PEDV and TGEV, so PDCoV was not
paid attention to when it first appeared, and its harm to newborn piglets was ignored [24].
In February 2014, the Department of Agriculture of Ohio examined the fecal or intestinal
samples of 42 diarrhea sows and piglets from 5 farms in the state. The detection rate of
PDCoV was as high as 92.9% [25]. Since then, PDCoV infection has broken out widely in
the United States, and PDCoV has also appeared in Canada, South Korea, Thailand, and
other places [26–28]. Among the four known genera of Coronaviridae, human infections
reported to date are limited to Alphacoronavirus and Betacoronavirus [29–31]. However,
recent research identified PDCoV strains in plasma samples of three Haitian children with
acute undifferentiated fever in 2021, suggesting that evolutionary changes and adaptation
may lead to cross-species transmission of coronavirus [32].

Similar to PEDV and TGEV, SADS-CoV belongs to Alphacoronavirus. It was an impor-
tant pathogen that caused the infection and death of newborn piglets found in Guangdong
Province, China, in January 2017. Similar to PDCoV, SADS-CoV is a new type of SeCoV
that has only been discovered recently. SADS-CoV causes vomiting, watery diarrhea,
dehydration, and death in newborn piglets under 5 days old, with a mortality rate of up to
90%. The mortality of piglets over 8 days old decreased significantly after infection, and the
sows showed only mild diarrhea [33]. A retrospective survey of SADS-CoV in 45 pig farms
in Guangdong Province was conducted based on 236 diarrhea samples. The results showed
that SADS-CoV first appeared in Guangdong Province in August 2016 [34]. SADS-CoV
is closely related to bat coronavirus. The sequence of SADS-CoV genome detected from
intestinal samples of diarrhea piglets from pig farms in Guangdong Province is more than
90% similar to bat coronavirus HKU2-CoV (GenBank: NC_009988.1) [33]. HKU2-CoV was
isolated from bats in 2016, speculating that SADS-CoV was transmitted from bats to piglets
across species. To date, the virus has not been reported in other countries (Table 1).

Table 1. Information on SeCoVs.

TGEV, PRCV PEDV SADS-CoV PDCoV

Genus Alphacoronavirus Deltacoronavirus

Genome
5′UTR-ORF1a/
1b-S-ORF3a/

3b-E-M-N-NS7-3′UTR

5′UTR-ORF1a/
1b-S-ORF3-E-M-N-3′UTR

5′UTR-ORF1a/
1b-S-ORF3-E-M-N-NS7a/

7b-3′UTR

5′UTR-ORF1a/1b-S-E-M-
NS6-N-NS7-3′UTR

First discovered 1933 (TGEV)
1984 (PRCV) 1978 2017 2009
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Table 1. Cont.

TGEV, PRCV PEDV SADS-CoV PDCoV

First reported
U.S.A., 1946

(TGEV)
Belgium, 1984 (PRCV)

UK, 1971 Guangdong, China, 2017 USA, 2014

Disease distribution America, Europe,
Asia, Africa America, Europe, Asia China USA, China, Thailand

Clinical symptoms Diarrhoea, dehydration, weight loss, death
Dyspnea, tachypnea, sneezing, coughing, fever (PRCV)

Mortality
Approaching 100% in

piglets less than
2 weeks old

About 50–90% in
suckling piglets

Up to 90% for
piglets ≤ 5 days of age

and up to 5% for
pigs over 8 days old

Up to 40% in
neonatal piglets

Morbidity Less than 3% 80–100% About 10% 20–30%

Receptor and cofactors pAPN; TfR1, EGFR Receptor is unknown; SA,
EGFR, Neu5Ac Unknown Receptor is unknown; SA

Autophagy Induces mitophagy Activates p53 and inhibits
mTOR pathways

Inhibits PI3K/AKT/
mTOR pathway

Activates p38MAPK
pathway

Apoptosis Extrinsic and intrinsic pathways Intrinsic pathway

Innate immunity

E and M proteins induce
IFN-α; ORF7 inhibits

innate immunity; Nsp14
activates NF-κB pathway

Activates JAK2-STAT3 and
NF-κB pathways; N and
nsp1 inhibit TBK1-IRF3
pathway; Nsp3 inhibits
RIG-I-MAVS pathway

Nsp1 inhibits JAK1-STAT1
pathway; N inhibits
TBK1-IRF3 pathway

N inhibits RIG-I-MAVS
pathway; Nsp5 activates

NF-κB pathway

Abbreviations: pAPN, porcine aminopeptidase N; TfR1, transferrin receptor 1; EGFR, epidermal growth fac-
tor receptor; SA, sialic acid; Neu5Ac, N-acetylneuraminic acid; mTOR, the mammalian target of rapamycin;
PI3K, phosphatidylinositol 3-kinase; AKT, RAC-alpha serine/threonine protein kinase; p38MAPK, p38 mitogen-
activated protein kinase; JAK, Janus kinase; STAT, signal transducers and transcript; RIG-I, retinoic acid-inducible
gene I; MAVS, mitochondrial antiviral signaling; TBK1, TANK-binding kinase 1; and IRF3, IFN regulatory factor 3.

2. SeCoV Infection and the Involvement of Host Factors
2.1. Morphology and Genomic Structure of SeCoV

Coronaviruses are spherical or oval, with a diameter of 80–120 nm [35]. Most coron-
aviruses have coronal processes formed by the trimeric spike (S) protein, and the surface
protuberances of some special coronaviruses (such as HCoV-HKU1) are composed of dimer
hemagglutinin-esterase (HE) proteins [36]. The process on the surface involves the S pro-
tein, which is a type I transmembrane protein, and the extracellular domain is larger than
the intracellular domain. The S protein mainly mediates virus invasion and determines
viral tissue or host tropism by binding to host cell receptors. The envelope is primarily
composed of the membrane (M) protein and has three transmembrane domains [37]. The
low content of the envelope (E) protein also exists in the envelope, and the E and M proteins
are mainly involved in the assembly process of the virus [38]. The nucleocapsid protein
wraps the virus genome to form a nucleoprotein complex with a helical symmetrical struc-
ture [37]. The total genome length of coronavirus reaches 27–32 kilobases, which is the
largest of all the known RNA viruses. Its genome is a single-stranded, positive-sense RNA
that is 5′-capped and 3′-polyadenylated, containing 6–10 open reading frames (ORFs). The
genomic sequence of SeCoV is 5′UTR-ORF1a-ORF1b-S-E-M-NS6-N-NS7-3′UTR (Table 1).
ORF1 (consisting of overlapping ORF1a and ORF1b) encodes viral replicase, accounting
for 2/3 of the SeCoV genome. Nsp12 with RNA-dependent RNA polymerase (RdRP)
activity mediates the replication and transcription of viral genome, resulting in genomic
RNA (gRNA) and subgenomic RNA (sgRNA) [39,40]. The short sgRNA encodes conserved
structural proteins, including S protein, E protein, M protein, and N protein, and several
auxiliary proteins [41] (Figure 2).
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and 3′ polyadenylation are 5′-C and AnAOH-3′, respectively. Following the open reading frame
ORF1ab (marked in red) are genes encoding structural and accessory proteins. Structural proteins
(S, E, M, and N) are marked in blue and accessory proteins are marked in gray.

The replication cycle is as follows: the virus first attaches to the cell surface and enters
the cell, then the viral replicase translates, then the viral genome is transcribed and repli-
cated, and the virions are assembled and released after the structural protein translation.

2.2. Attachment and Entry

The first step in the entry of SeCoVs into the host is to bind to the receptors of
susceptible cells through the S protein. The extracellular domain of the S protein is divided
into two different functional domains: S1 and S2 [42]. The S1 region is responsible for
encoding the part in which the virus binds to the cell receptor; the S2 region contains fusion
peptides that help the virus to fuse with the cell surface. In the S1 region, two independent
folding regions are responsible for binding to the receptor cells: the N-terminal domain
(NTD) and the C-terminal domain (CTD). NTD has the activity of binding to sialic acid,
and CTD can bind to cellular protein receptors [43]. When the S1 region of S protein binds
to the receptor, the conformation of S protein changes and the deep cleavage site is exposed
to the surface. Subsequently, protease cleavage leads to the separation of S1 and S2, which
helps the fusion peptide in S2 insert into the host cell membrane and leads to membrane
fusion [44–48].

The binding of the S protein to receptor is the primary determinant of host range and
tissue tropism of CoV. In this process, the S protein of CoV interacts with the corresponding
host factors to realize the adsorption and entry of target cells. At present, four types of CoV
functional protein receptors have been identified: aminopeptidase-N (APN), carcinoem-
bryonic antigen-related cell adhesion molecule 1 (CEACAM1), angiotensin-converting
enzyme 2 (ACE2), and dipeptidyl peptidase 4 (DDP4). Some Betacoronavirus use other
kinds of functional receptors, such as CEACAM1 for mouse hepatitis virus (MHV), ACE2
for severe acute respiratory syndrome coronavirus (SARS-CoV) [49], and DDP4 for Middle
East respiratory syndrome coronavirus (MERS-CoV) [50].

Some SeCoVs use enzymes on the cell surface as receptors. For example, TGEV from
Alphacoronavirus uses pAPN as its functional receptor (Table 1). TfR1 is widely distributed
in the surface epithelial cells of anemic newborns, and the intestinal epithelial cells of
newborn piglets are the targets of TGEV. TfR1 enhances the invasion of TGEV to cells,
and the S1 region of the TGEV S protein interacts with the extracellular domain of TfR1,
so TfR1 is likely to be the second receptor of TGEV [51]. TGEV is not inactivated when
passing through stomach acid, while PRCV, a mutant of TGEV, is not acid-resistant, partly
because of whether it can bind to SA [52]. There is an SA binding site on the S protein of
TGEV, which can bind to the mucin of the brush border membrane and help the virion
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pass through the mucous layer and the cell envelope of the top membrane of the intestinal
cell, and finally reach the top membrane of the intestinal cell [53,54]. In the early stage of
TGEV infection, EGFR, as a cofactor of TGEV invasion, cooperates with pAPN to activate
PI3K/AKT and MEK/ERK1/2 signal pathways to promote the entry of TGEV into cells
through endocytosis [55].

The cellular receptors of PEDV and SADS-CoV, both Alphacoronavirus members, are
not clear. Previous studies have shown that PEDV could successfully infect through overex-
pressing pAPN in Madin-Darby canine kidney (MDCK) cells. It is preliminarily determined
that the functional receptor of PEDV is pAPN [56], Neu5Ac acts as a coreceptor [20]. In
addition, the transgenic mouse model expressing pAPN is susceptible to PEDV, which
further proves that pAPN is the receptor of PEDV [57]. However, the results of later studies
overturned this conclusion, so pAPN is not a functional receptor of PEDV. Nonetheless,
through its protease activity to promote PEDV infection [58], the fact that PEDV is infected
with APN-knockout pigs confirmed this [59–61]. PEDV infects the cell lines of pigs, mon-
keys, humans, bats, and other species, further indicating that the interaction between PEDV
and APN is not specific and suggests that PEDV can spread across species [20]. In addition
to APN, the NTD of PEDV S1 has an SA-binding activity. The combination of S1 NTD with
SA on the cell surface may enhance the infectivity of the virus [62,63]; the mechanism of
how the binding of SA and the S protein affects the entry of PEDV into cells is unclear. In
addition, EGFR plays a positive role in the entry of PEDV into cells [64].

Since SADS-CoV has only been discovered in recent years, relatively few studies on
its binding receptors exist [65,66]. It has been reported that the main target of SADS-CoV
infection was the host splenic dendritic cells (DC) and did not use the known CoV receptor
to enter the cell [67].

PDCoV is currently the only SeCoV member of Deltacoronavirus, and there is no
conclusion on the results of receptor research. Recently, it has been reported that there
is a disagreement as to whether pAPN is the receptor of PDCoV invading host cells.
The exogenous expression of pAPN can successfully infect PDCoV in non-infectious cell
lines [68], reflecting the origin of PDCoV and the mechanism of its cross-species transmis-
sion. However, pAPN knockout or treatment with APN-specific antibodies and inhibitors
only reduces PDCoV infection to a certain extent, so pAPN is not a functional receptor of
PDCoV [69]. Due to the fact that PDCoV agglutinates rabbit red blood cells, neuraminidase
(NA) inhibits erythrocyte agglutination, suggesting that SA inhibited by NA may be a
cofactor of PDCoV infection [70]. SA can promote the adhesion ability of PDCoV, relating
to the intestinal tissue tropism of PDCoV. These results suggest that SA may be a cofactor
of PDCoV infection [71].

According to the current research results, there are two ways for CoVs to invade
cells; one is endocytosis. Viral S protein interacts with receptor and then virus particles
are wrapped in endosomes to enter host cells [72]. In endosomes, the viral envelope and
membrane structure of endosomes are fused in the environment of cathepsin L (CTSL) and
low pH to release the viral genome into the host cytoplasm [73]. The other is membrane
fusion, through which exogenous proteases or host proteases activate the S protein upon
the binding of the virus to the receptor, and that virus then enters the cytoplasm through
membrane fusion.

Host proteases play a crucial role in virus infection. Different viruses interact with
different proteases to enter the cell, which determines the invasion pathway of the virus.
Four proteases are involved in the process of coronavirus infection: membrane-binding
proteases (e.g., transmembrane serine protease), lysosomal proteases (e.g., CTSL), extracel-
lular proteases (e.g., trypsin), and proprotein convertases (e.g., Furin) [74]. For example,
transmembrane serine protease 2 (TMPRSS2) and mosaic long serine protease (MSPL)
cleave the S protein to promote the fusion of PEDV and cells [75]. Similar to PEDV, CTSL
and cathepsin B (CTSB), these two lysosomal proteases activate the S protein of PDCoV to
enter the cell through endocytosis [74,76]. As an extracellular protease, trypsin activates
the PDCoV S protein to induce intercellular fusion. Trypsin is needed in the culture and
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passage of SeCoV, which promotes the fusion of virus and cells and increases the yield of
virus [71,77–79] (Figure 3).
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Figure 3. Attachment and entry of SeCoV. Schematic diagram showing the attachment and entry
processes assisted by the host proteases of SeCoV. The S1 region of SeCoV’s S protein binds to specific
receptors, and the S2 region helps the virus integrate with the cell surface. The host proteases cleave
the S protein to facilitate membrane fusion and allow the virus to enter the cell.

Some host factors also limit the attachment of SeCoVs. For example, interferon-
induced transmembrane proteins (IFITMs) reveal a broad-spectrum antiviral effect [80–82].
IFITMs regulate cell membrane properties to prevent the virus from entering through
membrane fusion [83,84]. IFITMs inhibit the invasion mediated by SARS-CoV S protein,
and this process is affected by exogenous cathepsin [85]. Therefore, IFITM has a significant
antiviral effect on viruses, such as SeCoVs, which invade host cells through endocytosis
and endosomal acidification [81]. For example, IFITM1 and IFITM3 induced by interferon-λ
(IFN-λ) can inhibit the infection of porcine intestinal epithelial cells (IPECs) by PEDV [86].
In contrast, IFITM2 or IFITM3 promote HCoV-OC43 infection in host cells [87]. IFITM2
interacts with the NTD of SARS-CoV-2 S protein to promote the fusion of SARS-CoV-2 in the
early endosome, thus promoting virus infection [82]. Different IFITM family proteins show
different inhibitory abilities against different viruses [88]. IFITM1 inhibits the replication of
coronavirus more significantly than IFITM3 [85]. Recent studies identified some structural
motifs of IFITM, which determine the antagonistic or promotive activity of IFITM against
viral infections [89]. The interaction mechanism between host factors, such as IFITM and
SeCoVs, will be a new direction for future research.

3. Autophagy Induced by SeCoV Infection

Macroautophagy (subsequently referred to as autophagy) is an essential process of
evolutionarily conserved turnover of intracellular substances in eukaryotes, maintaining
the self-stability of macromolecules, energy, and organelles [90,91]. Especially in cells under
stress conditions (such as hunger, growth factor deficiency, and pathogen infection), au-
tophagosomes (APs) encapsulate damaged proteins or organelles and fuse with lysosomes
to form autolysosomes (ALs) for degradation and recycling [1]. The process of autophagy is
regulated by conservative autophagy-related genes (ATGs). After autophagy, cytoplasmic
microtubule-associated protein light chain 3 (LC3-I) is lipided to the form of LC3-II; the
ratio of LC3-II/LC3-I is an indicator of autophagy activity [92] (Figure 4).
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Figure 4. Induction and modulation of host autophagy by SeCoV infection. Schematic diagram show-
ing the organism’s signaling pathways in autophagy and the regulatory mechanisms utilized during
SeCoV infection. The viral or viral components involved in the modulation of autophagy are shown
in bold blue in the figure. Abbreviations: ULK1/2, Unc-51-like autophagy-activating kinase1/2; ATG,
autophagy-related gene; PIP3, phosphatidylinositol 3,4,5-trisphosphate; TSC2, tuberous sclerosis
complex 2; p70S6K, ribosomal S6 protein kinase; p53, tumor protein 53; VPS34, vesicular protein
sorting 34; DJ-1, deglycase 1; BECN1 (beclin1), coiled-coil myosin-like Bcl2-interacting protein; and
BST2, bone marrow stromal cell antigen 2.

Previous studies have shown that autophagy gives the body innate protection against
pathogens, because the degradation process of autophagy could kill pathogens and present
them to the immune system [93–95]. Autophagy can also have a positive or negative
effect on virus replication, depending on the nature of the virus. Autophagy plays an
anti-viral role during the infection of herpesvirus HSV-1, whereas adenovirus, porcine
circovirus type 2 (PCV2), and certain other DNA viruses can use autophagy to promote
replication [96]. Similar to other RNA viruses, some coronaviruses can use autophagy to
promote their replication [97–100]. It is reported that mouse hepatitis virus (MHV) can
use autophagy to promote its replication [101], but other studies yielded the opposite
results [102].

The relationship between SeCoVs and autophagy has not been fully characterized;
the effect of autophagy on the replication of SeCoVs is also different in different cells
(Table 1). TGEV infection can induce mitochondrial autophagy (mitophagy) in IPEC cells
mediated by DJ-1 (a multifunctional redox-sensitive protein), which enhances this replica-
tion by reducing apoptosis [103]. Doxycycline (DOX) induces mitochondrial autophagy
and promotes TGEV replication in IPEC-J2 cells [104]. Autophagy is also induced by TGEV
infection in PK-15 and swine testicular cells (STs), but autophagy negatively regulates
TGEV replication [105].

PEDV infects porcine intestinal epithelial cells (IPEC-J2), African green monkey kidney
cells (Vero) and porcine kidney (PK) cells. The proteomic results of Vero cells infected by
PEDV show that the expression of microtubule-associated protein 1B (an autophagy marker
protein) is up-regulated [106]. However, the mammalian target of the rapamycin (mTOR)
pathway is down-regulated, and the expression of autophagy-associated protein 5 (ATG5)
is up-regulated [107], indicating that PEDV infection promotes autophagy in Vero cells.
The increase in double-membrane vesicles (DMVs) in Vero cells during PEDV infection
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indicates that Vero triggers autophagy to promote PEDV replication, and autophagy is
positively correlated with the PEDV-induced NF-κB pathway [108]. A study has shown that
PEDV-induced autophagy enhances replication through PI3K/Akt/mTOR signal pathway
in IPEC cells [109]. On the contrary, rapamycin increases autophagy flux in IPEC-J2 cells,
inhibits PEDV infection, and reduces PEDV-induced cell death [110]. Another study shows
that bone marrow stromal cell antigen 2 (BST2) can recruit E3 ubiquitin ligase to deliver
N proteins to autophagosomes through the ubiquitin pathway for selective degradation
and inhibit the replication of PEDV in LLC-PK1 and Vero cells [111].

The transcriptome results of SADS-CoV in Vero-E6 cells show that SADS-CoV in-
fection down-regulates the expression of PI3K and AKT genes in the autophagy-related
PI3K/Akt/mTOR signal pathway, suggesting that autophagy plays a proviral role in
SADS-CoV infection [112]. The relationship between SADS-CoV and autophagy needs to
be further studied due to the short time of discovery.

The first proteomic analysis of PDCoV infection in IPEC-J2 cells shows that the
autophagy-related pathway PI3K/AKT/mTOR is activated, suggesting that PDCoV infec-
tion induces autophagy in IPEC-J2 cells [113]. PDCoV infection also increases the amount of
DMVs in PK cells, and the ratio of LC3-II/LC3-I. Additionally, the degradation of SQSTM-1
(p62) is detected, as an indicator of autophagy, indicating that PDCoV may induce au-
tophagy, such as other SeCoVs [114]. The P38MAPK signal pathway is a major cellular
signal pathway, which can regulate many cellular responses, including autophagy. Ergos-
terol peroxide (EP) exhibits the p38MAPK pathway and PDCoV replication in LLC-PK1
cells, suggesting that PDCoV may enhance infection by inducing autophagy [115], and the
present study proves this conclusion [116].

Nsp6 of other types of CoV (such as MHV, SARS-CoV, IBV) can stimulate omega
intermediates to produce autophagosomes in the endoplasmic reticulum [1], so nsp6 may
also be the critical factor of autophagy induced by SeCoV.

The differences in the relationship between SeCoVs and autophagy may be due to the
differences between cell lines and virus strains, calling for more comprehensive studies
in vivo. Vero is an IFN-deficient cell line, so the competition between the virus and the host
may benefit the virus. In order to determine the relationship between SeCoV infection and
autophagy at the cellular and molecular levels, IPEC-J2, which is very similar to natural
target cells, is a better choice.

4. Apoptosis Induced by SeCoV Infection

Apoptosis is a ubiquitous mode of cell death, also known as programed cell death,
and an energy-dependent process strictly regulated by genes [117]. Morphological changes
of apoptotic cells, including cell membrane atrophy and deformation, chromatin condensa-
tion, nuclear fragmentation, plasma membrane blistering, and the formation of apoptotic
bodies [118]. Unlike apoptosis, cell necrosis is not controlled by genes, and the release of
cytoplasmic contents into the extracellular space can induce inflammation.

There are two pathways of apoptosis: the extrinsic pathway mediated by mitochondria
and intrinsic pathway mediated by death receptors (DRs). Each pathway activates specific
pro-cysteinyl aspartic acid protease (caspase), eventually inducing apoptosis (Figure 5).
The change of mitochondrial outer-membrane permeability (MOMP) plays an essential
role in the intrinsic apoptosis pathway, which is coordinated by B-cell lymphoma 2 (Bcl2)
family proteins [119]. BAX and BAK are pro-apoptotic proteins that increase MOMP,
whereas Bcl2-like proteins are anti-apoptotic proteins that inhibit the increase in MOMP.
Under stressful conditions, BAX or BAK translocate into the mitochondria and combine
with the BH3 domain of Bid to destroy the integrity of the mitochondrial membrane.
The increase in MOMP promotes the release of cytochrome c (Cyt c), contributing to the
oligomerization of APAF-1 (apoptotic protease-activating factor-1), and then binds to the
precursor of caspase-9 to form an apoptotic complex. Subsequently, activated caspase-9
cleavage downstream related caspase family proteins (such as caspase-3, caspase-6, and
caspase-7) to induce apoptosis [120,121]. DRs belong to the tumor necrosis factor receptor
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(TNFR) superfamily in the extrinsic pathway. The binding of death ligand (such as the fatty
acid synthase ligand (FasL) and TNF-α Apo3 ligand (Apo3L)) DRs leads to the formation
of the death-induced signal complex (DISC) and the activation of caspase-8 to initiate the
executive stage of apoptosis [121,122].
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Figure 5. Apoptosis induced by SeCoV infection and modulatory mechanisms. Schematic diagram
showing the signaling pathways of intrinsic and extrinsic apoptosis and the modulatory mechanisms
during SeCoV infection. The yellow ovals are proapoptotic proteins, whereas the blue ovals are
antiapoptotic proteins. The viral or viral components involved in the modulation of apoptosis
are shown in bold red in the figure. Abbreviations: FADD, Fas-associated via death domain; BID,
BH3-interacting domain death agonist; BAX, Bcl2-associated X; Mcl1, myeloid cell leukemia 1; Mcl1,
myeloid cell leukemia 1; and APAF1, apoptotic peptidase-activating factor 1.

The relationship between virus and apoptosis is bidirectional. Viruses can increase
virus production or release offspring viruses to infect other cells by delaying apoptosis or
promoting apoptosis [123]. TGEV infects PK-15 and ST cells to induce apoptosis (Table 1),
in which p53 and the reactive oxygen species (ROS)-mediated apoptosis-inducing factor
(AIF) pathway and caspase-dependent pathway are involved [124,125]. TGEV infection
induces ROS accumulation in PK-15 cells and decreases the mitochondrial membrane
potential. ROS is involved in the activation of p38MAPK and p53, and p53 can, in turn,
positively regulate the level of ROS, resulting in apoptosis [126]. In addition, TGEV infection
down-regulates Bcl2, up-regulates the expression of BAX, promotes BAX translocation
from cytoplasm to mitochondria, activates the mitochondrial-mediated intrinsic apoptosis
pathway leading to the release of Cyt c, and then activates caspase-9 [127]. TGEV infection
can also up-regulate FasL and activate its mediated extrinsic apoptosis pathway, eventually
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activating caspase-3 and the cleavage of poly (ADP-ribose) polymerase (PARP), leading
to apoptosis [127]. These researches suggest that TGEV infection can regulate apoptosis
through extrinsic and intrinsic pathways. On the contrary, TGEV may not induce apoptosis
of intestinal cells in piglets [128]. The TGEV N protein can locate to the nucleolus and
may destroy the cell cycle [129]. The TGEV N protein up-regulates p53 and p21 in S phase
and G2max M, thus inhibiting the expression of B1, cdc2, and cdk2 and promoting the
translocation of BAX from the cytoplasm to mitochondria, resulting in the release of Cyt c
and the activation of caspase-3, finally resulting in the apoptosis of PK-15 cells [130]. TGEV
infection induces mitochondrial autophagy and up-regulates antioxidant genes, such as
DJ-1, to inhibit apoptosis and promotes TGEV replication in IPEC-J2 cells [103].

PEDV infection can damage the integrity of intestinal barrier and lead to the death
of piglets, and apoptosis may be the critical factor in the pathogenicity of PEDV. AIF
translocation to nucleus during PEDV infection induces the apoptosis of Vero cells, without
caspase dependence, and the inhibition of AIF with Cyclophilin D (CypD) can inhibit
PEDV infection [123]. Activated p53 and accumulated ROS play an essential role in the
apoptosis of Vero cells mediated by caspase-3 and caspase-8 during PEDV infection, and
p38 MAPK is not involved in the process of apoptosis [131,132]. In addition, IPEC-J2 cells
lacking lymphotoxin beta receptor (LTβR) are more susceptible to apoptosis caused by
PEDV infection, suggesting that LTβR may be a natural anti-apoptotic gene [133]. The
studies on apoptosis induced by the PEDV protein show that the S1 protein is the most
critical functional protein in inducing apoptosis [134]; on the contrary, the ORF3 protein
promotes proliferation by inhibiting apoptosis [135].

As recently discovered SeCoVs, PDCoV, and SADS-CoV are related to apoptosis
through limited studies, it is reported that SADS-CoV infection can induce the apop-
tosis of Vero and IPI-2I cells in vitro and the apoptosis of ileal epithelial cells in vivo.
SADS-CoV infection up-regulates FasL and induces apoptosis through the cascade reaction
of caspase-8 and caspase-3 [136]. In addition, Bid translocates to mitochondria after cleav-
age by caspase-8, destroying the integrity of mitochondria to promote the release of Cyt c,
which, in turn, activates caspase-9 and promotes apoptosis [136]. SADS-CoV infection
triggers Bax recruitment into mitochondria, resulting in the release of MOMP and Cyt c,
resulting in cell death. The results suggest that SADS-CoV induces apoptosis through
extrinsic and intrinsic pathways, caspase-dependent. Apoptosis inhibition restricts virus
replication, indicating that SADS-CoV promotes self-replication by inducing apoptosis;
the exact viral proteins involved in apoptosis are still unknown. PDCoV infection induces
BAX recruitment into mitochondria, triggers MOMP, the opening of the mitochondrial
permeability transition pore (MPTP) and the release of Cyt c, leading to the apoptosis of ST
cells through the intrinsic pathway [137]. PDCoV infection in vitro can cause apoptosis in
LLC-PK cells. In vivo infection can not cause apoptosis in intestinal cells, instead leading
to necrosis [138].

The current research results show that SeCoVs utilize complex strategies to regulate
apoptosis in different periods to promote replication. Infections in different cells activate
different apoptosis pathways, reflecting the complex interactions between the virus and
host cells. However, there are still many problems to be solved, such as the fact that the
mechanism of apoptosis induced by viral proteins is not clear, the results of virus infection
in vitro and in vivo are not consistent, and a better infection model is needed.

5. SeCoV and the Innate Immune Mechanism

Innate immunity is a conservative immune strategy important for pathogen identifica-
tion, restriction, and the subsequent activation of adaptive immunity, considered as the
first line of defense against pathogens [139].

5.1. Pattern Recognition Receptors

Host cells first sense the presence of viruses and virus products with pathogen-related
molecular patterns (PAMPs) through different types of pattern recognition receptors (PRR)
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after virus infection, triggering different signal transduction pathways and finally activating
related immune pathways to inhibit virus replication. The PRRs for virus recognition mainly
include endosome Toll-like receptors (TLRs), cytoplasmic RIG-I-like receptors (RLRs), and
nuclear oligomeric domain (NOD)-like receptors (NLRs) [140].

TLR is a type I transmembrane protein, which exists in the cell and on the surface of the
cell membrane. TLRs mediate the recognition of PAMP and damage-associated molecular
patterns (DAMPs) from various sources (including bacteria, fungi, and viruses) through
leucine-rich repetitive (LRR) sequence domains [141]. The activation of TLRs mainly occurs
in antigen-presenting cells (APCs), including dendritic cells (DCs), monocytes, and B cells.

According to the cell location and PAMP ligand, the functions of TLRs are different.
The TLR3, 7, 8, and 9 expressed on the vesicles are involved in recognizing microbial
nucleic acids in the vesicles [142]. TLR3 detects double-stranded RNA (dsRNA) viruses
(e.g., reovirus) and single-stranded RNA (ssRNA) viruses that produce dsRNA during
replication (e.g., West Nile virus) and some small interference RNA (siRNA) [143]. TLR7
and 8 detect ssRNA, while TLR9 mainly detects DNA viruses [144,145]. Other types of
TLRs expressed on the cell surface, such as TLR2 and 4, recognize viral proteins, such as
hepatitis virus and human immunodeficiency virus (HIV) [146,147]. Different TLR induces
specific biological effects. For example, the activation of TLR3 and 4 not only induce
IFN-I, but also induce the expression of inflammatory cytokines, while TLR1, TLR2, TLR6,
and TLR5 mainly mediate the production of inflammatory cytokines. After activation,
TLRs recruit signal transduction molecules containing Toll/IL-1 receptors (TIR) to activate
specific signal pathways, such as NF-κB and MAPK signaling pathways activated by the
myeloid differentiation primary response protein 88 (MyD88) [148,149].

RLRs are a type of pattern recognition receptor located in the cytoplasm, belonging
to the DExD/H-box RNA helicase family (x can be any amino acid). RLRs contain three
members: RIG-I (also known as DDX58), melanoma differentiation-associated factor 5
(MDA5, also known as helicard or IFIH1), and laboratory of genetics and physiology 2
(LGP2) [150,151]. Both RIG-I and MDA5 contain N-terminal caspase-recruitment domains
(CARD), binding to the CARD domain of downstream junction proteins. In addition,
RIG-I and MDA5 contain a DExD/H-box RNA helicase domain that binds to RNA and
a repressor domain (RD) located at the C terminal. However, LGP2 lacks an N-terminal
CARD domain [152], positively or negatively regulating RIG-I and MDA5, considered as
the inhibitor or cofactor of the RLR signaling pathway [153–155]. RIG-I recognizes the
short dsRNA in the virus genome containing the stalk-like structure of 5′-triphosphate,
while, in contrast, MDA5 recognizes long dsRNA fragments [156–158]. Conformational
changes occur when RIG-I and MDA5 bind to dsRNA, which releases the N-terminal CARD
domain and finally activates the MAVS, also known as IPS-1, VISA, or CARDIF. Then,
MAVS induces the activation of transcription factors, such as the translocation of NF-κB into
the nucleus, to initiate the expression of IFN-I and pro-inflammatory cytokines [159–161].

NLRs are cytoplasmic PRRs with typical conserved domains: the CARD or Pyrin
domain (PYD) at the N terminal, NOD motif in the middle, and LRR motif at the C termi-
nal [162]. LRR motifs detect PAMP and induce molecular conformational rearrangement,
eventually triggering oligomerization through NOD to activate signaling pathways, includ-
ing the NF-κB and MAPK pathways [163]. Subsequently, the associated NLRs oligomize
into inflammatory bodies to activate caspase-1, such as the NLR family PYD-containing 1
(NLRP1) and NLRP3. The activated caspase-1 then cleaves the family of pro-inflammatory
interleukin-1 (IL-1) cytokines into active forms IL-1β and IL-18 [164].

5.2. Interferon and Innate Immunity

IFNs are divided into three types: type I, II, and III. Type I IFN with antiviral activity is
an essential aspect of innate immunity. Type I IFN works through the heterodimer formed
by IFN-α receptor 1 (IFNAR1) and IFNAR2, then triggers the phosphorylation of JAK1
and tyrosine kinase 2 (TYK2), which leads to the phosphorylation of intracellular tyrosine
residues by specific receptors, resulting in phosphorylation of STAT1 and 2. Then, STAT1
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and 2 dimerization recruit IRF9 to form IFN-stimulated gene factor 3 (ISGF3) [165]. ISGs ex-
ert antiviral effects from diverse aspects. For example, tripartite-motif 5α (TRIM5α) directly
binds to and destroys the nucleocapsid protein of the retrovirus, and then releases viral
PAMPs into the cytoplasm, promoting an antiviral response after detection by PRRs [166].

5.3. Interactions between SeCoV and the Innate Immunity

Interferon levels decreased significantly in patients with severe SARS-CoV and
MERS-CoV infection, and coronavirus replication was significantly inhibited after treat-
ment with IFN-α [161], suggesting that type I IFNs played an essential role in the antiviral
effect against CoVs infection.

IFN system cannot completely inhibit CoVs infection, notwithstanding the posses-
sion of solid antiviral activity. SeCoVs have evolved various strategies to antagonize
the interferon pathway, so that the viruses can spread more effectively between host
cells [167–169]. Based on the studies of PEDV-infected cells, two mechanisms have been
summarized to explain the inhibition of type I IFN production mediated by SeCoV infec-
tion. Firstly, the virus genomic and subgenomic RNA evade PRRs recognition through
5′ cap methylation [167,170,171]. Secondly, the virus-encoded proteins interfere with the
innate immunity-related pathways [172,173]. The structural, non-structural, and accessory
proteins of SeCoVs have been proven to change the innate immune response (Figure 6).
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apoptosis are shown in bold red in the figure. Abbreviations: PKR, protein kinase RNA-activated;
OAS, 2′5′-oligoadenylate synthetase; ISRE, interferon-stimulated response element; AP-1, activator
protein 1; TRIF, TIR domain-containing adaptor inducing interferon-beta; RIP1, receptor-interacting
serine/threonine kinase 1; IKK, IkappaB-kinase; and IκBα, NF-κB inhibitor alpha.
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5.4. Viral Proteins Related to Innate Immunity
5.4.1. Structural Proteins of SeCoVs

TGEV M and E proteins play a significant role in inducing IFN-α (Table 1). Cells
co-expressing M and E proteins induce IFN-α, almost as effectively as cells infected with
TGEV [174]. The PEDV S protein interacts with EGFRs, weakening type I IFN activity
through the downstream JAK2-STAT3 signal pathway, thus enhancing PEDV replica-
tion [64]. The ectopic expression of PEDV E, M, and N proteins in MARC-145 cells has
been shown to antagonize the activities of IFN-β and IRF3 [173]. N protein also mediates
NF-κB activation through the TLR2, TLR3, and TLR9 pathways [175]. Further studies show
that the PEDV N protein inhibits the activation of IRF3 and the production of type I IFN by
directly interacting with TBK1 [176]. SADS-CoV N protein inhibits IFN-β production by
targeting TBK1 to interfere with TIR domain-containing adaptor inducing interferon-beta
(TRAF3) and TBK1 [177]. The SADS-CoV N protein also interacts with RIG-I and mediates
the ubiquitination of K27-, K48-, and K63-connections of RIG-I to antagonize IFN-β pro-
duction [178]. The PDCoV N protein inhibits IFN-β production by interfering with dsRNA
binding and the protein activator of protein kinase R (PACT) to RIG-I to inhibit the K63
polyubiquitin of RIG-I [169,179]. It can be concluded that different SeCoVs use different
forms of viral structural proteins to affect the innate immune signal pathways and may
also interact with various host signal molecules, relating to the different host adaptability
of SeCoVs.

5.4.2. Non-Structural and Accessory Proteins of SeCoVs

Nsps of CoVs have been proved to possess the function of participating in viral RNA
synthesis [180–182], inhibiting innate immunity to create opportunities for virus invasion
and replication. TGEV nsp14 plays an essential role in the modulation of innate immunity,
with its role as a PAMP [183]. Recent studies have shown that nsp14 induces IFN-β produc-
tion in PK-15 cells, and nsp14 interacts with the DDX1 of DExD/H helicase family to induce
IFN-β production through the NF-κB pathway [184]. PEDV nsp1 interferes with IRF and
blocks type I and type III interferon-mediated production by NF-κB [173,185,186]. PEDV
nsp1 also affects the production of proinflammatory cytokines, such as TNF-α, IL-1 β,
IL-6, IL-15, and IL-17 [185]. The PLpro domain of PEDV nsp3, papain-like protease 2
(PLP2), has been shown to strongly inhibit the expression of type I IFNs activated by
RIG-I and the stimulator of interferon genes (STING), utilizing de-ubiquitination activity
to antagonize the signal transduction mediated by RIG-I and STING [187]. 3C-like pro-
tease (3CLpro) encoded by the nsp5 gene negatively regulates innate immunity in PEDV
infection. PEDV nsp5 proteolysis cleaves the NF-κB essential modulator (NEMO) at Q231,
which antagonizes the production of type I IFN and the activation of the downstream
RIG-I/MDA5 signal pathway [188]. SADS-CoV nsp1 significantly inhibits the phospho-
rylation of STAT1-S727, interfering with the effect of type I IFN, and this phenomenon
may exist in all alphacoronavirus [189]. Similar to PEDV nsp5, PDCoV nsp5 blocks the pro-
duction of IFN-β by reducing the expression of NEMO [190], and also cleaves the porcine
mRNA-decapping enzyme 1a (pDCP1A) to decrease the antiviral activity of pDCP1A [191].
In addition, PDCoV nsp5 hinders the antiviral function of ISGs by the targeted cleavage of
STAT2 [192]. Accessory proteins play a role in the host–pathogen interaction and mediate
viral pathogenesis. Accessory proteins encoded by genes, such as ORF3, ORF6, and ORF9
in SARS-CoV and ORF4a/b in MERS-CoV, have immunomodulatory activity [193–195].
TGEV ORF7 inhibits the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α)
and the activation of RNase L by binding to the protein phosphatase 1 catalytic subunit
(PP1c), antagonizing the host antiviral response [196]. As the only accessory protein, PEDV
ORF3 has been shown to inhibit the induction of type I IFN in vitro [173]. PDCoV NS6
interacts with RIG-I and MDA5, thus interfering with the combination of RIG-I/MDA5
with dsRNA to inhibit the production of IFN-β [197]. The host also has corresponding
countermeasures: after TGEV infection, microRNA-4331 (miR-4331) directly targets the cell
division cycle-associated protein 7 (CDCA7) to inhibit ORF7 transcription [198].



Int. J. Mol. Sci. 2022, 23, 3953 15 of 23

6. Concluding Remarks

SeCoV has been threatening the farming industry as an important type of pathogen in
the past decades, but the mechanism of its interactions with the organism needs further
study. SeCoV tends to utilize various components of host cells to promote replication and
host pathogenesis, and hosts set up various mechanisms to control and resist viral infection.
Due to the COVID-19pandemic, the phenomenon of cross-species transmission of SeCoV is
also a noteworthy research direction, such as the discovery of PDCoV in Haitian children.
The association of SeCoV with bats and birds may be the key to studying the origin and
transmission of SeCoV. Besides, there are still many unknown questions about SeCoV, such
as “what are the receptors for PEDV, PDCoV, and SADS-CoV?”. In-depth research on
all aspects of SeCoV is an exciting area and will help to develop effective antiviral drugs
and vaccines.
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