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SUMMARY

Recent studies have revealed that newly emerging transformed cells are often eliminated from 

epithelial tissues via cell competition with the surrounding normal epithelial cells. This cancer 

preventive phenomenon is termed epithelial defense against cancer (EDAC). However, it remains 

largely unknown whether and how EDAC is diminished during carcinogenesis. In this study, using 

a cell competition mouse model, we show that high-fat diet (HFD) feeding substantially attenuates 

the frequency of apical elimination of RasV12-transformed cells from intestinal and pancreatic 

epithelia. This process involves both lipid metabolism and chronic inflammation. Furthermore, 

aspirin treatment significantly facilitates eradication of transformed cells from the epithelial 

tissues in HFD-fed mice. Thus, our work demonstrates that obesity can profoundly influence 
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competitive interaction between normal and transformed cells, providing insights into cell 

competition and cancer preventive medicine.

In Brief

Sasaki et al. demonstrate using a cell competition mouse model that high-fat diet feeding 

substantially attenuates the frequency of apical elimination of RasV12-transformed cells from 

intestinal and pancreatic epithelia. These results indicate that obesity can profoundly influence 

competitive interaction between normal and transformed cells at the initial stage of carcinogenesis.

Graphical Abstract

INTRODUCTION

At the initial stage of carcinogenesis, transformation occurs in single cells within the 

epithelial layer. The emerging transformed cells and the surrounding normal epithelial cells 

often compete with each other for survival, and this phenomenon is called cell competition. 

Cell competition was originally found in Drosophila (Morata and Ripoll, 1975), but recent 

studies using cell culture and mouse models have demonstrated that cell competition also 

occurs in mammals (Bondar and Medzhitov, 2010; Clavería et al., 2013; Hogan et al., 2009; 

Kon et al., 2017; Leung and Brugge, 2012; Martins et al., 2014; Maruyama and Fujita, 2017; 

Oliver et al., 2004; Sancho et al., 2013). For example, when RasV12-transformed cells are 

surrounded by normal epithelial cells, RasV12 cells are apically eliminated from epithelia in 
vitro and in vivo (Hogan et al., 2009; Kon et al., 2017). During the apical extrusion of 

transformed cells, various non-cell-autonomous changes occur in both normal and 

transformed cells at their boundary. In RasV12-transformed cells, glycolysis is enhanced, 

whereas mitochondrial membrane potential is decreased, and these Warburg-effect-like 

metabolic changes promote the apical elimination of the transformed cells (Kon et al., 2017). 

In the neighboring normal cells, the cytoskeletal protein filamin is accumulated at the 
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interface with transformed cells, which actively facilitates their apical extrusion (Kajita et 

al., 2014). These data imply a notion that normal epithelia have anti-tumor activity that does 

not involve immune cells; this process is termed epithelial defense against cancer (EDAC) 

(Kajita et al., 2014). However, it remains unknown whether environmental factors, such as 

obesity, aging, and infection, affect EDAC.

Obesity is one of the major risk factors in metabolic syndromes, and the number of obese 

individuals has been increasing worldwide (Collaboration, 2016; Afshin et al., 2017). 

Obesity can induce various systemic disorders, such as altered lipid metabolism, 

dysregulated hormone secretion, dysbiosis, and chronic inflammation (González-Muniesa et 

al., 2017; Heymsfield and Wadden, 2017; Kopelman, 2000; Rosenbaum et al., 1997). It has 

also become evident that obese individuals have higher incidents of certain types of 

malignancies, including colon, pancreatic, and breast cancer (Bhaskaran et al., 2014; 

Genkinger et al., 2011; Lauby-Secretan et al., 2016; Ma et al., 2013; Renehan et al., 2008). 

Previous studies have revealed molecular mechanisms of how obesity promotes tumor 

growth and malignant progression, e.g., oxidative stress, chronic inflammation, dysbiosis, 

and hormonal alterations (Bianchini et al., 2002; Donohoe et al., 2017; Font-Burgada et al., 

2016; Hopkins et al., 2016; Khandekar et al., 2011; Lauby-Secretan et al., 2016; Poloz and 

Stambolic, 2015; Renehan et al., 2015). However, it remains elusive whether and how 

obesity is also involved in tumor initiation.

In this study, we present several data suggesting that obesity can influence cell competition 

between normal and transformed cells, thereby facilitating the initial step of carcinogenesis.

RESULTS

HFD-Induced Obesity Suppresses EDAC in the Small Intestine and Pancreas

To monitor the fate of newly emerging RasV12-transformed cells in various epithelial 

tissues, we have established a cell competition mouse model system. To this end, we used 

LSL-RasV12-IRES-EGFP mice whereby RasV12 expression is induced in a Cre-dependent 

fashion and traced by simultaneous expression of EGFP (Figure 1A; Kon et al., 2017). We 

then crossed LSL-RasV12-IRES-EGFP mice with cytokeratin 19 (CK19) (epithelial-specific 

marker)-Cre-ERT2 mice (Figure 1A). In the offspring RasV12; CK19-Cre mice, 

administration of a low dose of tamoxifen induced recombination events less frequently, 

resulting in mosaic expression of RasV12 within various epithelial tissues (Figures 1C, 1E, 

and 1G). In a previous study, using villin (intestinal-specific marker)-Cre-ERT2 mice, we 

have shown that newly emerging RasV12-transformed cells are eliminated into the apical 

lumen of the intestinal epithelium (Kon et al., 2017). Similarly, using the newly established 

mouse model, we found that, after three days of tamoxifen treatment (1.0 mg/20 g body 

weight), more than 65%–90% of RasV12-expressing cells underwent apical extrusion from 

small intestine, pancreas, and lung epithelia (Figures 1C–1H, S1A–S1C, and S2A). Then we 

examined whether obesity affects EDAC by analyzing the effect of high-fat diet (HFD) 

treatment on the fate of RasV12 cells. Mice were fed with normal diet (ND) or HFD for 

three months prior to tamoxifen administration (Figure 1B). Compared with ND-fed mice, 

HFD-fed mice profoundly gained body weight and became severely obese (Figure S2B). In 

the small intestine and pancreas, compared with ND, HFD treatment significantly 
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suppressed the frequency of apical extrusion, and consequently, RasV12 cells more 

frequently remained within the epithelium (Figures 1C–1F). Compared with the small 

intestine and pancreas, in the lung, most of RasV12 cells underwent apical extrusion in ND-

fed mice, and HFD treatment did not significantly affect the frequency of the elimination of 

RasV12 cells (Figures 1G and 1H). These data indicate that HFD treatment could suppress 

the elimination of transformed cells in certain epithelial tissues.

Alteration of Lipid Metabolism Influences Apical Elimination of RasV12-Transformed Cells 
from Epithelia

HFD treatment increases the concentration of circulating and tissue fatty acids (Figures 

S2C–S3E) and induces various systemic disorders, including altered lipid metabolism and 

chronic inflammation (Font-Burgada et al., 2016; Hotamisligil, 2006; Khandekar et al., 

2011; Newgard, 2017). HFD contains higher amounts of fatty acids, such as palmitic acid, 

stearic acid, linoleic acid, and α-linolenic acid. Treatment of cultured cells with fatty acids 

can affect intracellular lipid metabolisms and signaling pathways (Beyaz et al., 2016; 

Laugerette et al., 2012). We first examined whether and how alteration of lipid metabolism 

influences the behavior and fate of RasV12-transformed cells within the epithelium using 

our in vitro cell competition model with Madin-Darby canine kidney (MDCK) epithelial 

cells (Hogan et al., 2009). In this model system, when RasV12-transformed cells were 

surrounded by normal cells, the transformed cells were often apically extruded from the 

monolayer of normal epithelial cells (Figures 2A–2C; Hogan et al., 2009). We found that 

addition of either fatty acid in condition media significantly suppressed frequency of apical 

extrusion of RasV12 cells from the epithelial monolayer (Figures 2A–2C). In contrast, non-

fatty acid lipid cholesterol or sphingomyelin did not affect apical extrusion (Figures S3A and 

S3B).

When RasV12 cells are surrounded by normal epithelial cells, glycolysis is elevated, but 

instead mitochondrial membrane potential is diminished via increased expression of 

pyruvate dehydrogenase kinase (PDK4; Kon et al., 2017). Accumulated PDK4 

phosphorylates and inactivates pyruvate dehydrogenase (PDH) that catalyzes the conversion 

from pyruvate to acetyl-coenzyme A (CoA), thereby blocking the entry into tricarboxylic 

acid (TCA) cycle (Figure S3C; Kon et al., 2017). Consequently, mitochondrial membrane 

potential is decreased in RasV12 cells that are surrounded by normal cells, which positively 

regulates apical extrusion of RasV12 cells (Kon et al., 2017). Thus, the non-cell-autonomous 

downregulation of mitochondrial activity promotes elimination of transformed cells from 

epithelia. TMRM (tetramethylrhodamine methyl ester) is a positively charged red 

fluorescent dye that accumulates in active mitochondria according to the negative membrane 

potential gradient across their inner membranes. Using TMRM, we observed that 

mitochondrial membrane potential was profoundly decreased in RasV12 cells when they 

were surrounded by normal cells, as previously reported (Figures 2D, 2E, and S3D; Kon et 

al., 2017). Incubation with the excessive amount of palmitic acid, stearic acid, or linoleic 

acid significantly restored the mitochondrial membrane potential (Figures 2D, 2E, and S3D). 

Next, we examined the effect of the fatty acid oxidation inhibitor trimetazidine (TMZ), 

which blocks the conversion from fatty acids to acetyl-CoA (Figure S3C). When TMZ was 

added together with palmitic acid or linoleic acid, incorporation of TMRM was substantially 
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diminished (Figure S3D). Furthermore, TMZ treatment suppressed the inhibitory effect of 

palmitic acid or linoleic acid on apical extrusion (Figures 2F and 2G). Collectively, these 

data suggest that the excess fatty acids are converted into acetyl-CoA and thus restore 

mitochondrial membrane potential in RasV12 cells surrounded by normal cells, thereby 

inhibiting the eradication of transformed cells from the epithelium.

To further explore the involvement of lipid metabolism in apical extrusion of RasV12-

transformed cells, we examined the effect of short-term HFD feeding in which HFD were 

fed for only 4 days prior to tamoxifen administration (Figure 2H). Under this condition, 

plasma free fatty acids are elevated, whereas chronic inflammation is not yet induced 

(Figure S3E; Hernández Vallejo et al., 2009; Lee et al., 2011). The short-term HFD feeding 

did not substantially affect body weight (Figure S3F). In the small intestine and pancreas, 

short-term HFD significantly suppressed apical extrusion, and RasV12 cells remained within 

the epithelium more frequently compared with ND feeding (Figures 2I–2L). However, the 

extent of the inhibitory effect of (short-term HFD on apical extrusion was smaller than that 

of long-term HFD (Figures 1D and 1F). These results suggest that modulation of 

intracellular metabolism is partially involved in HFD-mediated suppression of EDAC.

Chronic Inflammation Also Plays a Role in the Elimination of RasV12-Transformed Cells 
from Epithelial Tissues

Next, we examined whether chronic inflammation is involved in the extrusion of 

transformed cells as well. For mammals, essential fatty acids mainly consist of unsaturated 

ω6 and ω3 fatty acids (Smith, 2008). As energy source, both ω6 and ω3 fatty acids can be 

metabolized into acetyl-CoA through oxidation. In another metabolic pathway, ω6 fatty 

acids are metabolized to arachidonic acid, which can cause chronic inflammation in various 

tissues, including the intestine and pancreas. In contrast, ω3 fatty acids are converted into 

eicosapentaenoic acid and thus have the anti-inflammatory effect (Miyata and Arita, 2015; 

Serhan, 2014). In addition, ω3-fatty-acid-enriched linseed oil presents anti-inflammatory 

effect in vivo (Kunisawa et al., 2015; Wahli and Michalik, 2012). Indeed, the serum levels of 

inflammation markers were substantially elevated in HFD with soybean-oil-fed mice, but not 

in HFD with linseed-oil-fed mice (Figure S4A). In addition, macrophages were substantially 

more accumulated in adipose tissues in HFD with soybean-oil-fed mice than in HFD with 

linseed-oil-fed mice (Figure S4B). These results suggest that ω3 and ω6 essential fatty acids 

are critical determinants for the regulation of inflammation. We then examined the effect of 

soybean oil or linseed oil on apical elimination of RasV12-transformed cells in the cell 

competition mouse model (Figure 3A). HFD with soybean-oil- and linseed-oil-fed mice 

gained weight to a comparable extent (Figure S4C). Soybean oil feeding profoundly 

diminished apical extrusion of RasV12-expressing cells in the small intestine and pancreas 

(Figures 3B–3E). Linseed oil also suppressed apical extrusion but to a lesser extent than 

soybean oil (Figures 3B–3E). These data suggest that chronic inflammation may have an 

inhibitory role in the elimination of transformed cells.

To further clarify the involvement of chronic inflammation, we examined the effect of non-

steroidal anti-inflammatory drugs (NSAIDs) (Figure 3F). In ND-fed mice, treatment of 

aspirin, one of the most commonly used NSAIDs, did not significantly affect the frequency 
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of apical extrusion in both the small intestine and pancreas (Figures 3G–3J). In contrast, in 

HFD-fed mice, aspirin treatment substantially facilitated apical extrusion, and the lesser 

number of RasV12-transformed cells remained within intestinal and pancreatic epithelia 

(Figures 3G–3J). In HFD-fed mice, aspirin treatment suppressed the amount of various 

inflammatory markers in the small intestine and pancreas (Figure S4D). These data 

demonstrate that suppression of chronic inflammation can facilitate the elimination of 

transformed cells from epithelial tissues.

HFD Treatment Induces Tumorous Lesions in the Pancreas

At three days after tamoxifen injection, in both ND- and HFD-fed mice, the substantial 

number of RasV12-expressing cells remained within intestinal and pancreatic epithelia 

(Figures 1C–1F and 4C). We then analyzed the fate of the remaining transformed cells after 

one month of induction of RasV12 expression in the pancreas (Figure 4A). In ND-fed mice, 

the ratio of the epithelial ducts harboring RasV12-expressing cells was profoundly reduced 

during the one month period (Figures 4B and 4C). In the majority of the pancreatic ducts, 

RasV12 cells were not observed, and remaining RasV12 cells were often found in a small 

cell cluster (Figures 4B and 4C). In contrast, in HFD-fed mice, RasV12-expressing cells 

continued to remain within the ducts after one month and frequently formed a tumorous 

mass into the apical lumen of the epithelium (Figures 4B and 4C). In addition, the small 

number of RasV12 cells were basally delaminated (Figure 4B, arrows). These data indicate 

that HFD treatment can reduce EDAC and suppress the elimination of transformed cells 

from epithelia.

DISCUSSION

In this study, we reveal that HFD treatment suppresses the eradication of newly emerging 

transformed cells from the intestinal and pancreatic epithelia, but not from the lung. This 

result seems to be compatible with the fact that correlation between obesity and cancer 

incidence is observed in the intestine and pancreas, but not in the lung (Table S1; Bhaskaran 

et al., 2014; Genkinger et al., 2011; Lauby-Secretan et al., 2016; Ma et al., 2013; Renehan et 

al., 2008). We also show that chronic inflammation is, at least partly, involved in HFD-

mediated suppression of EDAC. Chronic inflammation involves recruitment and activation 

of various cells, including immune cells and fibroblasts. Soluble factors secreted from these 

cells may affect competitive interaction between normal and transformed epithelial cells. 

The molecular mechanism of how chronic inflammation influences cell competition needs to 

be elucidated in future studies. We demonstrate that, in HFD-fed mice, tumorous lesions are 

formed in the pancreas after one month of induction of RasV12 expression. However, the 

metabolic status and fate of these potentially precancerous lesions currently remain unclear. 

This issue also needs to be clarified in the future by analyzing the non-extruded RasV12-

expressing cells after the longer period of time, probably in combination with certain 

carcinogen treatment.

Several lines of studies have suggested molecular mechanisms whereby obesity leads to 

higher incidence of cancer: oxidative stress; hormonal disorder; dysbiosis; and chronic 

inflammation (Bianchini et al., 2002; Donohoe et al., 2017; Font-Burgada et al., 2016; 
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Hopkins et al., 2016; Khandekar et al., 2011; Lauby-Secretan et al., 2016; Poloz and 

Stambolic, 2015; Renehan et al., 2015). These obesity-mediated processes are thought to 

facilitate tumor growth and malignant transformation at the mid or later stage of 

tumorigenesis. But, our data indicate that obesity can also promote tumor initiation by 

influencing cell competition between normal and newly emerging transformed cells at the 

initial stage of carcinogenesis. Previous studies have revealed that NSAIDs can suppress the 

frequency of tumor formation in various tissues, including intestine, pancreas, and breast 

(Chubak et al., 2016; Drew et al., 2016; Giovannucci et al., 1994, 1995; Kune et al., 1988; 

Streicher et al., 2014; Zhang et al., 2015); the underlying molecular mechanisms, however, 

remain obscure. In this study, we have demonstrated that aspirin promotes elimination of 

RasV12-transformed cells in HFD-fed mice, implying that reinforcement of EDAC can be 

one of the potential targets of NSAIDs in cancer prevention.

This is the first report demonstrating that environmental factors, such as obesity and chronic 

inflammation, influence cell competition within the epithelium. Previous studies have shown 

that, at the boundary between normal and transformed epithelial cells, various non-cell-

autonomous changes occur in both cells, which induces the competitive interaction between 

them (Maruyama and Fujita, 2017). But this study implies that not only epithelial intrinsic 

factors but also extrinsic environmental factors from the outside of epithelia could 

profoundly influence the outcome of cell competition. It is plausible that other 

environmental factors, such as infection, smoking, sleep, and aging also affect cell 

competition. Indeed, a previous Drosophila study has demonstrated that suboptimal cells 

accumulate in the aged flies and that intensification of cell competition reduces the number 

of suboptimal cells, leading to extended lifespan (Merino et al., 2015); however, it remains 

unclear whether aging itself diminishes cell competition. Further development of these 

studies would lead to comprehensive understanding of cell competition in physiology and 

pathology.

EXPERIMENTAL PROCEDURES

Antibodies and Materials

Chicken anti-GFP (ab13970) antibody was purchased from Abcam. Rat anti-E-cadherin 

(131900) antibody was from Life Technologies. Alexa-Fluor-647-conjugated rabbit anti-

cleaved caspase-3 (9602S) antibody was purchased from Cell Signaling Technology. Alexa-

Fluor-568-conjugated phalloidin from Life Technologies was used at 1.0 U/mL. Alexa-488-

conjugated secondary antibody was from Abcam, and Alexa-Fluor-568- and 647-conjugated 

secondary antibodies were from Life Technologies. Hoechst 33342 (Life Technologies) was 

used at a dilution of 1:5,000. TMRM was obtained from Molecular Probes. Palmitic acid, 

stearic acid, linoleic acid, α-linolenic acid, sphingomyelin, cholesterol, and Nile Red were 

from Wako Pure Chemicals Industries. Acetylsalicylic acid (aspirin) was from Sigma-

Aldrich. Trimetazidine (Abcam) was used at 10 μM.

Cell Culture

MDCK and MDCK-pTR GFP-RasV12 cells were cultured as previously described (Hogan 

et al., 2009; Kon et al., 2017). To induce the expression of GFP-RasV12 in MDCK-pTR 
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GFP-RasV12 cells, 2 μg/mL of tetracycline (Sigma-Aldrich) was added. For 

immunofluorescence, cells were plated onto collagen-gel-coated coverslips (Hogan et al., 

2009). To quantify the frequency of apical extrusion, the indicated fatty acids and/or 

trimetazidine were added together with tetracycline and then cells were further cultured for 

24 hr. To monitor the mitochondria activity, cells were cultured for 15.5 hr after tetracycline 

addition and then loaded with 50 nM TMRM for 30 min and subjected to microscopic 

observation as previously described (Kon et al., 2017).

Immunofluorescence

For immunohistochemical examinations of the small intestine, pancreas, and lung, the mice 

were perfused with 1% paraformaldehyde (PFA) (Sigma-Aldrich), and the isolated tissues 

were fixed with 4% PFA in PBS for 24 hr and embedded in FSC 22 Clear Frozen Section 

Compound (Leica Biosystems). Then, 10-μm-thick frozen sections were cut on a cryostat. 

The sections were blocked with Block-Ace (DS Pharma Biomedical) and 0.1% Triton X-100 

in PBS. Primary or secondary antibodies were incubated for 2 hr or 1 hr, respectively, at 

ambient temperature. All primary antibodies were used at 1:1,000, and all secondary 

antibodies were at 1:500. For immunofluorescence of cultured cells, MDCK-pTR GFP-

RasV12 cells were mixed with MDCK cells at a ratio of 1:50 and cultured on the collagen 

matrix as previously described (Hogan et al., 2009). The mixture of cells was incubated for 8 

hr until they formed a monolayer, followed by tetracycline treatment for 24 hr. Cells were 

fixed with 4% PFA in PBS and permeabilized with 0.5% Triton X-100 in PBS, followed by 

blocking with 1% BSA in PBS. Alexa-Fluor-568-conjugated phalloidin was incubated for 1 

hr at ambient temperature. Immunofluorescence images of mouse tissues and cultured cells 

were acquired using the Olympus FV1000 system and Olympus FV10-ASW software. 

Images of TMRM were quantified with the MetaMorph software (Molecular Devices).

Statistics and Reproducibility

For data analyses, chi-square test (Figures 1D, 1F, 1H, 2K, 2L, 3C, 3E, 3H, and 3J) and 

unpaired two-tailed Student’s t tests (Figures 2B, 2C, 2E, 2G, 4C, S1C, S2B, S3B, S3E, 

S4A, S4B, and S4C) were used to determine p values using GraphPad Prism7 and Microsoft 

Excel, respectively. p values less than 0.05 were considered to be statistically significant. For 

animal studies, the experiments were not randomized, and the investigators were not blinded 

to allocation during experiments. All results were reproduced in at least three mice for each 

experimental condition. Representative figures are shown in Figures 1C, 1E, 1G, 2A, 2D, 2F, 

2I, 2J, 3B, 3D, 3G, 3I, 4B, S1A, S1B, S2D, S3A, and S3D.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• High-fat diet (HFD) feeding suppresses extrusion of transformed cells from 

epithelia

• Modulation of intracellular metabolism is involved in HFD-mediated 

suppression of EDAC

• Chronic inflammation also negatively regulates the elimination of 

transformed cells

• In HFD-fed mice, aspirin promotes the elimination of transformed cells from 

epithelia

Sasaki et al. Page 12

Cell Rep. Author manuscript; available in PMC 2019 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. HFD Treatment Suppresses Apical Elimination of RasV12-Transformed Cells from the 
Epithelial Monolayer of the Small Intestine and Pancreas, but Not of the Lung
(A) Strategy for the establishment of the cell competition mouse model.

(B) Experimental design for feeding and tamoxifen administration.

(C, E, and G) Immunofluorescence images of RasV12-transformed cells in the epithelium of 

the small intestine (C), pancreas (E), and lung (G). The tissue samples were stained with 

anti-GFP (green) and anti-E-cadherin (gray) antibodies and Hoechst (blue). The yellow 

arrow and arrowheads indicate apically extruded and extruding cells, respectively. The scale 

bars represent 50 μm (left panels) and 20 μm (right panels).

(D, F, and H) Quantification of apical extrusion of RasV12 cells for C, E, and G, 

respectively.

(D) ND 2,063 cells from 8 mice; HFD 1,117 cells from 3 mice.
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(F) ND 560 cells from 9 mice; HFD 298 cells from 4 mice.

(H) ND 144 cells from 4 mice; HFD 213 cells from 4 mice.

*p < 0.0001 (chi-square test). N.S., not significant.
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Figure 2. Alteration of Lipid Metabolism Affects Apical Extrusion of RasV12-Transformed Cells
(A and B) Effect of various fatty acids on apical extrusion of RasV12-transformed cells. 

MDCK-pTR GFP-RasV12 cells were mixed with normal MDCK cells on collagen gels. 

Cells were cultured with the indicated concentration of fatty acids and fixed after 24 hr 

incubation with tetracycline and stained with Alexa-Fluor-568-phalloidin (red) and Hoechst 

(blue)

(C) Dose-dependent effect of palmitic acid on apical extrusion of RasV12 cells.
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(D and E) Effect of various fatty acids on TMRM incorporation in RasV12-transformed cells 

surrounded by normal cells. MDCK-pTR GFP-RasV12 cells were mixed with normal 

MDCK cells on collagen gels. Cells were cultured with the indicated fatty acid (100 μM), 

and TMRM incorporation was examined after 16 hr incubation with tetracycline.

(F and G) Effect of the fatty acid oxidation inhibitor trimetazidine (TMZ) on apical 

extrusion of RasV12 cells. TMZ was added together with tetracycline and the fatty acid (100 

μM) where indicated.

(A, D, and F) Confocal microscopy images of xz (A and F) and xy (D) sections. Arrows 

indicate the apically extruded cells. Asterisks indicate RasV12 cells surrounded by normal 

cells. The scale bars represent 10 μm.

(B, C, E, and G) Quantification of apical extrusion (B, C, and G) and the fluorescence 

intensity of TMRM (E). n ≥ 100 cells (B, C, and G) or n ≥ 10 cells (E) for each experimental 

condition is shown. Data are mean ± SD from three independent experiments. *p < 0.05; **p 

< 0.01 (Student’s t tests).

(H–L) Effect of short-term HFD feeding on apical extrusion in vivo.

(H) Experimental design for short-term HFD feeding and tamoxifen administration.

(I and J) Immunofluorescence images of RasV12-transformed cells in the epithelium of the 

small intestine (I) and pancreas (J). The tissue samples were stained with anti-GFP (green) 

and anti-E-cadherin (gray) antibodies and Hoechst (blue). The arrow and arrowheads 

indicate apically extruded and extruding cells, respectively. The scale bars represent 50 μm 

(I) and 20 μm (J).

(K and L) Quantification of apical extrusion of RasV12 cells in the small intestine (K) and 

pancreas (L).

ND 940 cells from 3 mice; HFD 749 cells from 4 mice.

ND 222 cells from 3 mice; HFD 348 cells from 4 mice.

*p < 0.05 (chi-square test).
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Figure 3. Chronic Inflammation Is Involved in HFD-Mediated Suppression of Apical Extrusion 
of RasV12-Transformed Cells
(A–E) Effect of the soybean-oil- or linseed-oil-enriched diet on apical extrusion in vivo.

(A) Experimental design for diet feeding and tamoxifen administration.

(B and D) Immunofluorescence images of RasV12-transformed cells in the epithelium of the 

small intestine (B) and pancreas (D). The tissue samples were stained with anti-GFP (green) 

and anti-E-cadherin (gray) antibodies and Hoechst (blue). Arrowheads indicate apically 

extruding cells. The scale bars represent 50 μm (B) and 20 μm (D).
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(C and E) Quantification of apical extrusion of RasV12 cells in the small intestine (C) and 

pancreas (E).

(C) ND 2,863 cells from 8 mice, Soy 1,584 cells from 4 mice, and Lin 1,215 cells from 4 

mice.

(E) ND 560 cells from 9 mice, Soy 72 cells from 4 mice, and Lin 190 cells from 4 mice. *p 

< 0.05; **p < 0.0001 (chi-square test).

(F–J) Effect of aspirin on apical extrusion of RasV12-transformed cells in HFD-fed mice.

(F) Experimental design for diet feeding, aspirin treatment, and tamoxifen administration.

(G and I) Immunofluorescence images of RasV12 cells in the epithelium of the small 

intestine (G) and pancreas (I). The arrow and arrowheads indicate apically extruded and 

extruding cells, respectively. The scale bars represent 30 μm (G) and 20 μm (I).

(H and J) Quantification of apical extrusion of RasV12 cells in the small intestine (H) and 

pancreas (J).

(H) ND (W, water) 481 cells, ND (Asp, aspirin) 517 cells, HFD (W) 600 cells, and HFD 

(Asp) 372 cells.

(J) ND (W) 153 cells, ND (Asp) 237 cells, HFD (W) 212 cells, and HFD (Asp) 216 cells.

For each condition, cells were collected from 3 mice. **p < 0.0001 (chi-square test).
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Figure 4. In HFD-Fed Mice, RasV12-Transformed Cells Form Tumorous Lesions in the Pancreas
(A–C) The fate of RasV12-transformed cells after one month of tamoxifen administration in 

the pancreas in ND- or HFD-fed mice.

(A) Experimental design for diet feeding and tamoxifen administration.

(B) Immunofluorescence images of RasV12-transformed cells in the pancreas. The tissue 

samples were stained with anti-GFP (green) and anti-E-cadherin (gray) antibodies and 

Hoechst (blue). The dotted lines delineate the basement membrane of pancreatic epithelia. 

Arrows indicate basally extruded cells. The scale bars represent 50 μm.

(C) Quantification of pancreatic epithelial ducts harboring RasV12-expressing cells. The 

percentage of ducts containing GFP-RasV12 cells relative to total ducts is shown. The total 

number of analyzed ducts are as follows: 198 (ND 3 days); 139 (HFD 3 days); 428 (ND 1 

month); and 354 (HFD 1 month).

Data are mean ± SD from three mice. *p < 0.05 (Student’s t tests).
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