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Abstract

A Global Ocean Carbon Algorithm Database (GOCAD) has been developed from over 500 

oceanographic field campaigns conducted worldwide over the past 30 years including in situ 

reflectances and coincident satellite imagery, multi- and hyperspectral Chromophoric Dissolved 

Organic Matter (CDOM) absorption coefficients from 245–715 nm, CDOM spectral slopes in 

eight visible and ultraviolet wavebands, dissolved and particulate organic carbon (DOC and POC, 

respectively), and inherent optical, physical, and biogeochemical properties. From field optical and 

radiometric data and satellite measurements, several semi-analytical, empirical, and machine 

learning algorithms for retrieving global DOC, CDOM, and CDOM slope were developed, 

optimized for global retrieval, and validated. Global climatologies of satellite-retrieved CDOM 

absorption coefficient and spectral slope based on the most robust of these algorithms lag seasonal 

patterns of phytoplankton biomass belying Case 1 assumptions, and track terrestrial runoff on 

ocean basin scales. Variability in satellite retrievals of CDOM absorption and spectral slope 

anomalies are tightly coupled to changes in atmospheric and oceanographic conditions associated 

with El Niño Southern Oscillation (ENSO), strongly covary with the multivariate ENSO index in a 

large region of the tropical Pacific, and provide insights into the potential evolution and feedbacks 

related to sea surface dissolved carbon in a warming climate. Further validation of the DOC 

algorithm developed here is warranted to better characterize its limitations, particularly in mid-

ocean gyres and the southern oceans.
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1. Introduction

1.1. Background

In 1896, Svante Arrhenius introduced the theory that adding carbon dioxide (CO2) to the 

atmosphere enhances the planetary greenhouse effect. Over the intervening century, it 

became clear that the marine dissolved organic carbon (DOC) pool comprised the vast 

majority of the organic carbon in the oceans, and was nearly equivalent to the atmospheric 

pool of CO2 [1]. In fact, remineralization of just 1% of the DOC in the oceans (e.g., by 

microbial metabolism and photo-oxidation) would generate a flux of CO2 into the 

atmosphere greater than that resulting from all the fossil fuel burned in a year [2]. Recently, 

Belanger et al. [3] estimated that photoproduction of CO2 from Chromophoric Dissolved 

Organic Matter (CDOM) has already increased by ~15% in Arctic waters due to an increase 

in ultraviolet radiation and the decrease in sea ice associated with global warming. Positive 

feedbacks such as this have potentially serious consequences for humans and ecosystems 

alike, and emphasize the urgency to develop robust, global algorithms for retrieving oceanic 

carbon products remotely and synoptically.

CDOM (refer to Table 1 for terms and abbreviations) is used to describe an often difficult to 

define fraction of the DOC pool (see Section 1.4) which has historically been called gilvin, 

gelbstoff, or simply “yellow substance”. As its name suggests, the presence of CDOM 

imparts color to the water column through absorption of light by various chromophores, 

thereby providing an effective means of detecting CDOM remotely from ocean color 

reflection. Found in all natural waters and generally in highest concentration near shore, 

CDOM results from the breakdown products of plants and other organic matter into humic 

materials, and plays a significant role in aquatic photochemistry, photobiology, and as a 

tracer of the origins of oceanic water masses, e.g., [4,5]. DOC and CDOM can be 

terrigenous or autochthonous (i.e., deriving from in situ primary and bacterial production in 

river to ocean waters), with the DOC variously composed of high molecular weight (HMW) 

humic substances (which tend to be more labile) and low molecular weight (LMW) humics 

(such as fulvic acids), depending on its origin, labile fraction, age, and whether it has 

transitioned from fresh waters to marine [6–12]. Most estuarine and nearshore CDOM is 

terrigenous, and as it mixes in rivers on its transit to marine waters, the amount of HMW 

material declines from flocculation, photo-oxidation and microbial decomposition leaving 

marine waters dominated by LMW CDOM (e.g., [6]), a condition imparting a characteristic 

spectral shape to inherent light absorption by CDOM (ag(λ), where λ is wavelength) [7]. 

Inherent optical properties (IOPs) of the water column, such as the absorption and 

backscattering coefficients, depend on the composition and concentration of the dissolved 

and suspended material present, as well as the size and structure of the particles, and water 

itself. CDOM concentration—for which ag(λ) is the common proxy following Beer’s law—
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varies widely in the ocean, tending to be highest near river outflows, but may also be high in 

upwelling regions and other regions of autochthonous, plankton-based production through 

exudation, excretion, and microbial breakdown of detritus [8]. It is degraded over time both 

by microbial activity, photooxidation, and other abiotic processes, ultimately resulting in 

remineralization of the carbon, and release from the ocean as CO and CO2. In the case of the 

CDOM fraction of DOC, degradation over time scales of days to millennia can significantly 

change the magnitude and spectral characteristics of ag(λ).

CDOM absorption is a superposition of the spectral absorption by its varied chromophores, 

and increases roughly exponentially (or hyperbolically [9]) with decreasing wavelength in 

the visible (VIS) and ultraviolet (UV) spectral ranges, as described in the next section. 

CDOM tends to dominate the blue and UV spectrum in many coastal and estuarine 

environments (e.g., [7,10–12]), and is the most important factor controlling UV and blue 

light penetration even in the open ocean [13] despite its generally lower concentration and 

distance from land. Within the visible spectrum, ag(λ) reduces the photosynthetically 

available radiation supporting phytoplankton and macrophytic growth, and generates heat in 

the surface layer of the water column, thus affecting mixing [14]. In the UV, CDOM causes 

surface heating as well, but also acts to protectively shade aquatic organisms, thus reducing 

the amount of damaging high frequency radiation reaching vulnerable cell structures.

From the passive remote sensing perspective, CDOM reduces the amount of blue light 

available for reflection out of the water column, and can therefore have a significant impact 

on ocean color algorithms, for example increasing uncertainty in blue-green band-ratio 

algorithms designed to estimate chlorophyll-a concentration (Chl) from its absorption peak 

near 443 nm [13,15]. These types of Chl algorithms assume covariance in Chl, CDOM, and 

other water column constituents (i.e., the “Case 1 waters” assumption [16]). By contrast, 

semi-analytical algorithms (SAAs) that invert the ocean color signal to retrieve individual 

component absorption spectra (particles, CDOM, water) are stymied by the presence of non-

algal particulates (NAPs), which have a similar spectral shape to CDOM. As a result, these 

approaches tend to retrieve only the sum of these two elements [17] (and references therein).

1.2. Spectral Shape of CDOM

The CDOM absorption coefficient is generally modeled with an exponentially decaying 

function with increasing wavelength, λ.

ag(λ) = ag(λ0) e
−Sg(λ − λ0)

(1)

where Sg is the spectral slope parameter and λ0 is a reference wavelength. Sg in various 

spectral ranges in the UV and VIS contains information about CDOM’s photoreactive state, 

chemical composition, molecular weight distribution, and origin [4,7,18–21].

While the single exponential model in Equation (1) is accurate within limited wavebands, 

CDOM spectral slope, Sg, is not constant across the UV and VIS and depends on the 

wavelength range used, spectral resolution, and reference wavelength λ0. Furthermore, 
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comparative analysis of CDOM spectral shape as reported in the literature has been 

confounded by the multitude of methodologies and reference wavebands used historically to 

calculate Sg [9]. For instance, a linear fit to logarithmically transformed ag data yields results 

for Sg biased by higher wavelength absorption, whereas a least-squared difference 

minimization fitting favors the lower wavelengths where the magnitude of ag is higher, and 

is considered more accurate [7,22]. Changes to Sg resulting from photodegradation are 

wavelength dependent, i.e., increasing below 460 nm and decreasing above 510 nm [23], 

although when calculated across the VIS from 412–555, slope is expected to increase 

through the destruction of large humic complexes resulting in lower molecular weight 

CDOM [24]. This effect appears to reverse over time as more refractory, low-molecular 

weight compounds are also degraded, thereby reducing CDOM absorption at shorter 

wavelengths relative to longer, and decreasing spectral slope across the VIS.

All these factors lead to challenges in comparing CDOM spectral slope between studies, and 

a more standardized approach to CDOM spectral shape measurement still seems warranted 

[19]. The concept of the spectral slope curve, Sg(λ)—analogous to the first derivative of Sg 

with respect to λ—was explored by Loiselle et al. in 2009 [23]. Calculating Sg from natural 

waters, cultures, and laboratory standards at 20 nm waveband intervals between 200–700 

nm, they showed that Sg(λ) had complex spectral characteristics including peaks near 390 

nm likely indicating a prevalence of autochthonous production of fulvic acid-type CDOM, 

and near 280 nm possibly due to the release of proteins or phenols by phytoplankton. While 

the spectral slope curve approach of Loiselle et al. 2009 represents an elegant method for 

quantifying many subtle characteristics of CDOM spectral shape when compared to, for 

example, using a single slope parameter across the UV and VIS, it does require relatively 

high spectral resolution data collection. Historically, this was not always available or 

reported, and here we focus on a set of eight different spectral ranges commonly seen in the 

literature and described in detail below.

1.3. Remotely Sensing CDOM and Sg

As interest in CDOM has grown in recent years, numerous empirical ocean color algorithms 

for retrieving CDOM within limited geographic regions have emerged, e.g., [25–30]. A 

smaller number of more generally applicable, global empirical algorithms have also been 

developed, including one for retrieving a unitless index of CDOM prevalence, though it does 

not retrieve ag(λ) or Sg and depends upon Case 1 assumptions. More recently, Tiwari and 

Shanmugam published global empirical algorithms for both ag(λ) and Sg [31,32]. These 

were optimized and tested using field data aggregated in NOMAD (the NASA bio-Optical 

Marine Algorithm Dataset version 2 [33]) and the synthetic ocean color dataset developed 

by the International Ocean Colour Coordinating Group (IOCCG) for the purpose of 

algorithm development and validation [34].

Other approaches to retrieving CDOM remotely depend on the premise that sea-surface 

reflectance is approximately inversely proportional to the total absorption coefficient 

[16,35,36], which can be linearly separated into various contributions by particulate and 

dissolved constituents. This forms the basis to semi-analytical ocean color algorithms 

(SAAs) for retrieving constituent absorption, e.g., [37–39], but, as already mentioned, owing 
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to the similarity in spectral shape of non-algal particulate (i.e., detrital, microbial, and 

sedimentary) absorption and ag(λ), SAAs generally retrieve only their sum, adg [17]. To 

circumvent this difficulty, empirical methods are sometimes added to SAAs to help 

distinguish non-algal from dissolved absorption [40–45].

1.4. Remotely Sensing DOC

One of the most challenging aspects of developing robust, global ocean color algorithms for 

DOC is that the relationship between DOC and CDOM (i.e., the DOC-specific absorption) is 

highly variable, in some cases negatively correlated (e.g., Southern Ocean, [46]) and often 

poorly defined, particularly in open ocean areas such as the Sargasso Sea [47,48]. In some 

cases, the relationship is better constrained within a particular region and season, as shown 

by measurements made in the Mid-Atlantic Bight on the eastern shelf of North America 

[28]. Because absorption by CDOM is the only way in which ocean color is impacted by 

DOC, some other independent knowledge of water type is needed for retrieval of DOC from 

space.

1.5. Algorithm Development Data

One of the most confounding challenges in the development of both empirical and semi-

analytical algorithms is the lack of a large, comprehensive database containing a broad 

enough dynamic range in optical characteristics to be representative of the majority of the 

world’s oceans, while also having realistic combinations of inherent optical properties, 

which are not guaranteed in large, synthetic, modeled datasets. NOMAD represents the first 

(and most recent, as of this writing) major effort to provide the ocean color community with 

such a dataset. It was aggregated and selected from all of the relevant field data submitted to 

the NASA SeaBASS archive (http://seabass.gsfc.nasa.gov/), and has been extremely useful 

to those in the ocean color algorithm community since its original publication in 2005 and 

update in 2008. However, NOMAD was not focused on CDOM. For example, while it 

contains about 3700 coincident radiometric and phytoplankton pigment observations, 

coincident radiometric and CDOM observations number just ~1200. In part, this is because 

CDOM data collected using in situ instrumentation were excluded for various reasons 

discussed at greater length below. The remaining CDOM records—those measured from 

discrete water samples—were modeled spectrally at the preselected NOMAD wavebands 

after fitting field data to Equation (1), and do not extend into the UV where spectral shape 

can provide useful insights into the origin and photooxidation state of CDOM. NOMAD 

does not contain any DOC data observations.

Using the methodology described in the next section, we extend the NOMAD approach to 

create a global ocean color algorithm development database better suited to DOC and its 

optical components, CDOM and CDOM spectral slope, ultimately including over 51,000 

field observations of surface-averaged inherent optical properties. These are matched to 

between ~8000 and ~11,000 coincident estimates of sea surface reflectance made from in 

situ measurements as well as satellite imagery from SeaWiFS and MODIS Aqua and Terra 

instruments. The global ocean carbon algorithm database (hereafter Global Ocean Carbon 

Algorithm Database (GOCAD) records are split into independent sets of field stations for 

training/optimization (i.e., with in situ radiometry) and validation (i.e., with satellite 
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imagery) of algorithms, as described in the Section 2. A basic overview of the most relevant 

aspects of the global dataset is presented in Section 3.1. In Section 3.2, empirical and SAA 

approaches to retrieval of DOC, CDOM, and CDOM slope are developed and discussed. 

Finally, algorithms are applied to global climatological satellite imagery and discussed in 

Section 3.3.

2. Methodology

2.1. Database Assembly Overview

Field measurements of CDOM, DOC, remote sensing reflectance, Rrs(λ), and ancillary data 

and metadata were downloaded from SeaBASS and the Hansell/Carlson collection (https://

hansell-lab.rsmas.miami.edu/research/data-collection/index.html) in April 2013. Coincident, 

Level 2 (L2) SeaWiFS and MODIS Aqua and Terra satellite imagery at all field stations 

were downloaded from the NASA Ocean Color website (http://oceancolor.gsfc.nasa.gov). 

Due to the size of aggregated datasets for each of the key constituents (e.g., 117,291 raw 

CDOM records, 31,474 raw DOC records, 115,773 in situ reflectance records, and ~177,000 

matching satellite scenes), extensive automation in the processing, quality control, and 

merging of the databases was a necessity. A station-by-station analysis (or field experiment-

specific analysis, as in [33]) of the data for establishing the customized spatial and temporal 

thresholds for matching coincident inherent and apparent optical properties and satellite 

imagery was not feasible. Relatively broad guidelines conducive to automation were 

established, as described in detail in the following sections. We assume, for example, that 

geospatial and temporal variability of CDOM and DOC is higher in coastal and shelf waters 

(defined here as samples collected in waters of 1000 m depth or less) than in the pelagic.

2.2. Field Data

Targeted searches of SeaBASS were conducted for all records containing ag, DOC, or in situ 

reflectances (see 2.2.3). Resultant data from the following physical, bio-optical, and 

biogeochemical fields were also retained where they happened to be present in SeaBASS 

files: depth, temperature, salinity, anap, ap, apg, adg, bbt, particulate organic carbon (POC), 

total organic carbon (TOC), and Chl. Ancillary data including time and date, latitude, 

longitude, and bottom depth were also retained, as well as complete SeaBASS metadata for 

each record. Carbon data were downloaded from each of the data repository resources linked 

in the Hansell/Carlson DOM Data Collection (http://yyy.rsmas.miami.edu/groups/

biogeochem/Data.html). These were also queried for all the parameters above and assigned 

metadata for each cruise. Table 2 provides a complete listing and overview of all the field 

experiments retained in the final, quality-controlled database.

2.2.1. CDOM—CDOM absorption was measured in field experiments using a variety of 

instruments and protocols. Examples include in-line filtered (generally 0.2 μm) flow-through 

systems outfitted with ac-9 or ac-S absorption and attenuation meters (Wet Labs) and 

processed to ag(λ) [49–51], as well as discrete sampling and filtration for bench-top 

spectrophotometry [52], or in liquid capillary waveguides [53]. Unfortunately, SeaBASS 

metadata did not historically specify which methods or protocols were used in data 

collection or processing, but more recently (since approximately 2012), investigators have 
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been required to submit ancillary documentation, such as instrument calibration records, and 

encouraged to submit documentation retroactively.

CDOM data measured in situ (i.e., with ac-9 or ac-S instruments; 33.5% of the preliminary 

CDOM dataset) were subject to particulate and bubble contamination, especially in 

experiments in which an automated in-line flow valve switched between filtered and 

unfiltered water presenting the opportunity for unfiltered water to reside in the plumbing 

during CDOM data collection. To identify and eliminate particle contamination, any CDOM 

records with a notable (i.e., ≥0.006 m−1) increase in absorption at 676 nm (a phytoplankton 

absorption peak) above the absorption curve from 650–715 nm were considered 

contaminated and removed (109 records).

Nonlinear, least squares minimization was used to fit ag(λ) to Equation (1) for calculating 

slopes of all hyperspectral ag into seven spectral ranges: 275–295 nm, 290–600 nm, 300–600 

nm, 350–400 nm, 350–600 nm, 380–600 nm, and 412–600 nm. Multispectral ac-9 data were 

fitted for slope using the six wavebands in the 412–555 nm range. To reduce outliers and 

noisy data, any CDOM slope data found to be outside of the range 0.005–0.05 nm−1 were 

considered unrealistic and eliminated, together with the ag(λ) data used to calculate them. 

This accounted for only 125 hyperspectral records in the 300–600 nm range 

(spectrophotometric), but nearly 6,000 records in the 412–600 nm range (predominantly 

flow-through). To further reduce outliers and noisy records, Sg and ag data were eliminated 

where Sg in any slope range was greater than two standard deviations from the median for 

the entire database, or where they were outside the 2nd and 98th percentiles. This reduced 

the database of CDOM by nearly 11,000 records. In addition, 460 records were removed for 

ag(676) > 0.1 m−1, ag(715) > 0.05 m−1, or an average ag(λ > 680 nm) > 0.05 m−1, and an 

additional 1,057 CDOM records with extreme outliers (>4 standard deviations from the 

median) in the red (λ > 620) were eliminated.

2.2.2. DOC—While DOC was included in about 850 SeaBASS records, the majority of 

the carbon data retained after surface and spatial binning (see 2.2.4) were from the Hansell/

Carlson datasets. In total, 1957, 625, and 45 stations included DOC, POC, and TOC, 

respectively. Outliers (1st and 99th percentiles) were eliminated, and stations were merged 

with the CDOM records after surface and spatial binning. Specifically, Hansell/Carlson data 

were matched to CDOM field stations if they were within 1 h, 2.5 m depth, and 1 km in 

continental shelf waters (bottom depth ≤ 1000 m) and within 3 h, 5 m depth, and 5 km off 

the shelf. Multiple matches within these criteria were averaged and retained if individual 

measurements were with 1.5 standard deviations of the mean and the coefficient of 

variability of the ensemble was ≤0.25.

2.2.3. In situ Reflectances—SeaBASS searches for field radiometry targeted Rrs (or 

equivalently Lw and Es, where Rrs = Lw/Es, or Lwn, where Rrs is Lwn divided by the top of 

atmosphere solar irradiance [54]). A total of 135,966 independent field observations of Rrs 

were binned as described in 2.2.4, quality controlled as described in 2.2.5, and then matched 

to the CDOM database using the same spatial, temporal, and outlier elimination criteria used 

for DOC (2.2.2).
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2.2.4. Bathymetry, Surface Averaging, and Spatial and Spectral Binning—
Records with no reported bottom depth (~85% of the database) were matched to the nearest 

pixel in the UNESCO GEBCO 08 0.05 degree bathymetry grid (http://www.gebco.net/

data_and_products/gridded_bathymetry_data/documents/gebco_08.pdf). The purpose of 

GOCAD is the development of satellite algorithms for surface retrievals, so data collected at 

depth were discarded as follows: on the continental shelf (defined here as bottom depth 1000 

m or less) samples from deeper than 5 m were discarded, as were data from deeper than 10 

m off the shelf (~34% of the database combined). 57,127 surface records remained. Samples 

collected in profile within the surface layer (top 5 m on-shelf, top 10 m off-shelf) were 

averaged. Samples collected in transect were additionally binned to a 0.5 km grid and 

averaged.

All absorption related IOPs were matched to the following wavebands with a 2.5 nm 

tolerance: 245 nm, 1 nm resolution between 250 and 555 nm, 560, 620, 630, 645, 650, 665, 

670, 676, 680, 705, and 715 nm. Backscattering data were similarly matched to 1 nm bands 

from 400 to 700 nm. Hyperspectral in situ Rrs(λ) were matched to both SeaWiFS bands 

(412, 443, 490, 510, 555, and 670 nm) and MODIS bands (412, 443 488, 531, 547, 667) by 

weighting the data to the instrument-specific spectral response functions for SeaWiFS, 

Aqua, and Terra (https://oceancolor.gsfc.nasa.gov/docs/rsr/rsr_tables/). Multispectral in situ 

Rrs(λ) were matched to satellite bands to within a 2.5 nm tolerance.

2.2.5. Additional Quality Controls—In addition to those measures already discussed 

for CDOM and CDOM slope outliers in Section 2.2.1, ad(λ) records were considered 

unrealistic and removed at all wavelengths if they exceeded 12 m−1 anywhere within the 

spectral range reported. Similarly, ap(λ) was removed if it exceeded 20 m−1, bbt(λ) if it 

exceeded 0.15 m−1. Rrs(λ) were eliminated if they exceeded 0.075 sr−1 or were less than 

−0.001 sr−1 in any band, or if they were outside the 95th percentile for any given band.

2.3. Satellite Imagery and Matching

Ocean color satellite imagery from SeaWiFS, MODIS-Aqua, and MODIS-Terra that 

matched the field observations were selected and processed for further analysis. Scripted 

calls to the NASA GSFC Ocean Color browser (http://oceancolor.gsfc.nasa.gov/cgi/

browse.pl) after the 2012.0 MODIS-Aqua reprocessing (http://oceancolor.gsfc.nasa.gov/

WIKI/OCReproc20120MA.html) were used to identify and download 1 km nominal nadir 

resolution L2 SeaWiFS, Aqua, and Terra satellite scenes within 0.05 degrees of field 

observations on the same day. These were spatially extracted for a 5 × 5 pixel array around 

the station location. In <1% of stations, high resolution SeaWiFS imagery was not available, 

and Global Area Coverage (GAC; nominally 4.4 km spacing) scenes were substituted. By 

default, data were masked based on standard L2 flags using the criteria described in [55]: 

land, high solar or satellite zenith angle, clouds, sea ice, high light, stray light, glint, low 

water leaving radiance, and atmospheric correction failure. Extracted satellite data were then 

evaluated for coincidence with field sampling stations. Criteria were principally based on 

those of Bailey and Werdell (2006). Specifically, extracted satellite pixel arrays were 

retained in the database if the overpass occurred within 8 h of field sampling. For each 

waveband of Rrs, negative and outlier pixels within each array (>1.5 standard deviations 
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from the mean) were set to null values. Data were only retained in each waveband if greater 

than 50% of non-land pixels were still valid, with no fewer than five valid pixels in total. 

Finally, the mean Rrs values for each array were calculated and retained in the database only 

if those pixels had a coefficient of variation (CV) < 0.25 (rather than <0.15 applied in Bailey 

and Werdell (2006)). Of the 50,127 field stations with spatially gridded, depth binned and 

quality controlled CDOM data, 8252 stations had matching quality controlled Aqua imagery, 

11,156 matched Terra imagery, and 11,818 matched SeaWiFS imagery.

For the purpose of further quality assurance, several match-up metrics were retained in the 

final database, including the time difference, CV, the number of matched satellite pixel 

arrays for each Rrs channel, the areal extent of the matched pixels (nominally ~25 km2), and 

the distance between the field sampling location and the central pixel (nominally < ~1 km). 

Sensor viewing angle, which can significantly increase error in estimates of satellite Rrs due 

to increased uncertainties in the atmospheric correction, is not available on a pixel-by-pixel 

basis in standard L2 products. On the other hand, ground sample area, which can be 

approximated from the geographic coordinates of pixel arrays, is a good proxy for sensor 

viewing angle, with larger areas representing larger viewing angles. Area is also a 

reasonable metric for accuracy of the geographic collocation, wherein Rrs averaged over 

larger areas of the ocean may not be representative of those measured at the sampling 

location, depending on the degree of spatial variability of ocean color within the sampled 

region. These match-up metrics were described in greater detail in [56].

2.4. Statistical Methods

Various metrics and visualization techniques are employed below to gauge the performance 

of algorithms. Retrieval parameters are compared with the same parameter collected in situ 

for both the optimization/tuning dataset (i.e., using in situ reflectances) and satellite 

validation. In addition to common metrics such as the number of samples (N), the standard 

deviation (STD), and the squared correlation coefficient (r2), we evaluate the adjusted r2 

(r2’):

r2′ = r2 − 1 − r2 βn
N − βn − 1 , (2)

where βn is the number of regressors) which adjusts the r2 downward to correct for the 

number of predictive values relative to the number of samples in, for example, multiple 

linear regression. The root mean square difference (RMSD) was also calculated:

RMSD =
∑i

N (modi − re f i)
2

N , (3)

where “mod” is the model retrieved parameter and “ref” is the field measurement. The 

centered-unsigned (or unbiased) RMSD (RMSD*′) was defined as follows:
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RMSD ∗ ′ =
∑i

N (modi − mean(modi)) − (re f i − mean(re f i))
2

N , (4)

and the signed RMSD*′ is simply the RMSD*′ multiplied by the sign of the difference 

between the STD of the model retrieval and the STD of the field data (RMSD*′(σD)). The 

bias and the normalized bias (Bias*) are also employed:

Bias∗ =
∑i

N (modi − re f i)
N × STD(re f ) (5)

as well as the percent bias (%Bias),

% Bias = 100 × mean(mod − re f )
mean(re f ) , (6)

and the mean average percent difference

MAPD = 100 × mean abs mod − re f
re f . (7)

While most of these metrics are fairly straightforward, a few warrant further explanation and 

context. A powerful graphical tool for assessing the skill of model performance—and 

comparing one model to another—is the Taylor diagram [57], which combines the RMSD*′, 

STD, and correlation into a single figure in which proximity to the field data indicates how 

well the pattern of the modeled data matches the observations. This is made possible in two 

dimensions because of the relationship between the RMSD*′, the correlation, and the 

variances of model and reference. Because the means of the model and reference are 

removed prior to calculating higher statistics shown in Taylor diagrams, they represent the 

comparisons between the patterns with any bias removed. For this reason, we have added 

color here to Taylor diagrams to include %Bias. Another graphical assessment used here 

which accounts for the bias (Bias*) and adds a sign to the RMSD*′ is the target diagram 

[58], in which the y-axis represents normalized bias of the model, the x-axis is signed-

centered RMSD, and distance in any direction from the origin to the model is the total 

RMSD. Here, we also include color in our target diagrams to help visualize the MAPD.

3. Results and Discussion

3.1. Database Characteristics

GOCAD has over 40 times more CDOM records than NOMAD, and nearly 100 times as 

many spectra as IOCCG. It contains ag(412) data that is more normally distributed than 

either NOMAD or IOCCG, and a Chl distribution similar to NOMAD (Figure 1). IOCCG 
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model data, while covering the same dynamic range as the two field databases, have 

unrealistically flat distributions of both CDOM and Chl, raising concerns for introducing 

bias when the dataset is used for algorithm development and optimization. The dynamic 

range in ag(λ) is larger in GOCAD than NOMAD (e.g., ag(412) from 0.005 to 2.457 m−1, 

and from 0.0013 to 1.923m−1, respectively), but the data distribution of GOCAD is narrower 

than NOMAD and IOCCG (ag(412) 75th minus 25th percentiles of 0.095 m−1, 0.204 m−1, 

0.627 m−1, respectively) around a lower mean absorption level (mean ag(412) = 0.120 

± 0.133 m−1, 0.194 ± 0.266 m−1, 0.514 ± 0.745 m−1, respectively), reflecting the 

predominance of low CDOM, offshore data in the database. The large number of field 

records of CDOM in GOCAD, its range and mean value, all indicate that it is suitable for 

developing global retrieval algorithms.

The data distributions shown along the bottom row of Figure 1 (with the exception of Chl—

see figure caption) show data used to optimize algorithms developed in this study (i.e., from 

field stations with matching in situ radiometry and IOPs), versus data used for validation—

in this case with SeaWiFS wave bands and satellite imagery. For each parameter, 

distributions of optimization and validation data were compared for similarity to test by 

analysis of variance (ANOVA) whether the populations share a common mean. Optimization 

and validation dataset were found to differ (p << 0.01) for CDOM absorption and spectral 

slope, but not for DOC and salinity. The difference between the CDOM and DOC match-up 

datasets results from availability of the data (i.e., stations may not have both CDOM and 

DOC measurements in addition to in situ radiometry). Based on the distributions shown in 

Figure 1, as well as the geographic distributions highlighted in Figure 3, differences between 

the optimization and validation data populations for CDOM absorption and slope appear to 

derive from slightly fewer near-shore stations being present in the optimization dataset 

compared to the validation set, although there is clearly some endmember representation in 

the optimization set for near-shore conditions. We may conclude from this, however, that 

algorithms for CDOM absorption and spectral slope developed using these optimization data 

would perform best in oceanic conditions, while regional algorithms may be more accurate 

in coastal waters, or waters with very high CDOM absorption and low CDOM spectral 

slope.

IOCCG and NOMAD contain no UV CDOM data, so direct comparison of spectral slope is 

only possible in the VIS (Figure 2). The median Sg(412–600) is lower for GOCAD, 

demonstrating again the predominantly oceanic characteristics (i.e., photodegraded, 

primarily of marine origin, and presumably refractory) of the CDOM in the database. Slope 

decreases significantly (p << 0.01) as the reference wavelength (i.e., the shortest wavelength 

in the spectral range) increases from 275–412 nm. Overall, the variability in spectral slope 

for each range is quite low—generally no more than a factor of 2–3. This narrow dynamic 

range in slope within each waveband presents a challenge for retrieving fine scale 

differences in CDOM slope by limiting the sensitivity of algorithms built from inherently 

uncertain ocean color. However, errors in the retrievals should be small relative to the 

absolute magnitude of the slope even if the algorithm sensitivity (e.g., correlation between 

retrievals and field measurements) is low.
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Geographic locations of GOCAD field stations overlap with NOMAD stations (Figure 3). 

We can see that many of the NOMAD stations were ultimately excluded from GOCAD 

during the quality assurance analysis described in Section 2.2. Highlighted in the central 

panel of Figure 3 are those stations with high-quality in situ radiometry, which were set 

aside for tuning, training, and optimization of ocean color algorithms. The geographic 

distributions of both the training data and the validation data show a representational 

combination of stations from both offshore and nearshore waters, which theoretically 

improves the odds of being able to retrieve a broad dynamic range of bio-optical properties, 

although as pointed out above the optimization data appears to be slightly dominated by 

oceanic stations. It is clear from Figure 3 that while there is significant overlap in the CDOM 

and DOC datasets in certain regions such as northern Alaska and the mid-Atlantic Bight in 

the Northeastern U.S., globally they follow a somewhat different pattern, and many DOC 

field stations are not obviously represented in the CDOM dataset.

The dense concentrations of field stations sampled in relatively smaller regions such as the 

Northeastern U.S. are difficult to resolve at the small scale in Figure 3. Figure 4 shows three-

dimensional maps of select sub-regions with ag(412), Sg(275–295), and Sg(412–555), 

including the Northeast US and coastal Alaska between the Chukchi Sea and the Beaufort 

Sea. These are set in broad continental shelves with numerous nearby river outflows. Not 

surprisingly, CDOM is high throughout the regions shown in Figure 4 with low spectral 

slope in the UV. CDOM and Sg(275–295) increase and decrease, respectively, in close 

relation to distance from shore, as expected given the considerations discussed in Section 1.2 

and elsewhere. Variability is higher for spectral slope in the VIS (Sg(412–555)), but it 

generally follows the opposite pattern from that in the UV, i.e., decreasing with distance 

from new sources of CDOM. This is indicative of aging processes as the newly mobilized, 

near-shore CDOM mixes seaward and photo- and microbial degradation reduce absorption 

in the UVA relative to the UVB (thus increasing Sg(275–295) and relative to the VIS (thus 

decreasing Sg(412–555)). It may indicate marine sources of CDOM with chromophores that 

absorb in the UVA and blue rather than terrestrial sources that also absorb in the UVB. 

These patterns are perhaps clearest at the outflows of the Colville River (~135° W and 70° 

N) and the Chesapeake Bay (~77° W and 37° N). An interesting exception for Sg(412–555) 

can be found in the Gulf Stream transect (~70° W and 37°M0° N; GOMECC-2 experiment, 

Table 2), where slope increases upon entering the productive waters at the edge of the Gulf 

Stream despite a lack of CDOM increase, and then rapidly declines upon entering the 

oligotrophic waters south of the Gulf Stream.

3.2. Algorithm Tuning and Validation

3.2.1. Algorithm Structures and Optimization—Both empirical and semi-analytical 

approaches to ocean color retrievals of CDOM, Sg, and DOC were explored using the 

GOCAD dataset. Of the former, a band ratio, single exponential decay model similar to that 

presented by Mannino (2008) was tested, but found to be better suited for the continental 

shelf waters for which it was derived rather than for the deep ocean, and will not be 

presented here. A multiple linear regression (MLR) approach was tested matching the 

natural logarithm of Rrs in four ocean color bands with the logarithm of ag(λ) and Sg at each 

waveband described in Section 2.2.1, and DOC. The least square difference minimization 
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regression, performed using Matlab’s regstats function (www.mathworks.com), follows the 

form:

ln(Υ) = β0 + β1 × ln(Rrs(λ1)) + β2 × ln(Rrs(λ2)) + β3 × ln(Rrs(λ3))
+ β4 × ln(Rrs(λ4))

(8)

where β0–β4 are the regression coefficients, γ is the retrieval parameter, and λ1–λ4 are the 

sensor-specific wavelengths (i.e., 443, 488, 531, and 547 nm for MODIS, 443, 490, 510, and 

555 nm for SeaWiFS). Using monthly, binned L3 Aqua imagery for 2010, MLR retrievals 

were used to establish the 99th percentiles for each retrieval waveband of ag. Retrievals 

above these values were considered outside the scope of this global algorithm, and 

eliminated. Regression coefficients, statistics, and thresholds are presented in Figure 5, and 

Tables 3–5. Model retrievals plotted against field data are well organized about the 1:1 line 

with low scatter, particularly in the UVA, which is reflected in high correlation coefficients 

and low error and bias. MAPD is below 30% for all bands below 488 nm; from this band to 

higher wavelengths, the CDOM signal becomes very weak in most of the global ocean.

For the reasons outlined in Section 1.4 (i.e., a large and variable portion of DOC is 

unpigmented), DOC derived directly from ocean color alone using MLR was not robust 

(Table 5; MLR1). However, satellite retrievals of sea surface salinity are now available 

thanks to the Aquarius mission (http://aquarius.nasa.gov/), and for CDOM, salinity was a 

reasonable choice as an additional proxy for water type considering it will generally reflect 

proximity to sources of fresh water and CDOM as well as distinguishing water masses (e.g., 

Gulf Stream). Using GOCAD, a multiple linear regression approach was developed for 

retrieving DOC from ag(355) (in place of Rrs(λ1) in Equation (8)) and salinity (in place of 

Rrs(λ2)), and proved very robust (e.g., r2 = 0.91, %Bias = 0). Using CDOM and salinity as 

predictors significantly improved retrievals of DOC (Table 5; MLR2), with r2′ increasing 

from 0.76 to 0.91, and MAPD dropping by about three percentage points. The strength of 

the correlation between field and retrieved DOC to CDOM and salinity is stronger than 

expected, considering the many ways in which changes in DOC, CDOM, and salinity may 

diverge across seasons or from region to region. It is worth pointing out that other factors 

may be contributing to the stronger statistical performance of MLR2 over MLR1, such as the 

higher number of coincident predictors and retrievals, as well as the absence of uncertainties 

associated with reflectance data in the tuning dataset (i.e., DOC is derived directly from 

CDOM absorption and salinity). Caution is therefore advised when applying this DOC 

algorithm in regions in which DOC is known to change without commensurate changes in 

CDOM and/or salinity. For example, the accumulation of DOC in surface subtropical waters 

including the BATS field station [59,60] appears to be decoupled from CDOM (Norman 

Nelson and Craig Carlson, personal communication).

Another empirical approach tested here was the machine learning approach known as 

Random Forests [61,62], which is a method for multivariate, non-linear, non-parametric 

regression designed to help minimize over-fitting of the training dataset. The method 

improves on standard decision tree regression performance by using an ensemble of 

independent decision trees; bootstrapping for the regression is achieved by repeatedly, 
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randomly resampling the original dataset to provide an ensemble of smaller independent 

datasets, which are each used to grow a decision tree (hence the term random forest tree-

bagger, or RFTB). Here, 200 independent decision trees were used, and each tree is trained 

on approximately 66% of the training dataset. The inputs (i.e., reflectances) and retrievals of 

the regression (i.e., CDOM, CDOM slope, and DOC) were the same as in the MLR. Model 

performance and statistics for select bands in the UV and VIS with the training dataset are 

presented in Figure 6. Comparisons of model retrievals to field data are fairly well 

correlated, but error and bias are quite high, with MAPD reaching several hundred percent.

Semi-analytical approaches included the Quasi-Analytical Algorithm of (QAA) [5,63,64], 

and the Generalized Inherent Optical Property (GIOP) algorithm [65]. These have the 

advantage that they are based on theoretical models for how the light field is affected by the 

inherent properties of the water, but can only retrieve IOPs at those wavebands for which 

Rrs(λ) is measured (i.e., they do not extend into the UV for the current and historical suite of 

satellite sensors). In the future, however, data from GOCAD and elsewhere could be used in 

the development of linear matrix inversion-type semi-analytical algorithms including basis 

vector models extending into the UV for CDOM, thereby potentially enabling their retrieval 

directly using SAAs. In fact, using GOCAD to build more globally representational basis 

models extending CDOM into the UV may not only provide better retrievals of CDOM, but 

also of the other concurrently retrieved optical properties from linear matrix inversion. Both 

the GIOP and QAA invert the Rrs(λ) to retrieve the water column IOPs following the theory 

that sea surface reflectance at a given wavelength is proportional to the backscattering 

coefficient, and inversely proportional to the absorption coefficient [16,66]. Each uses 

various assumptions, empirical parameterizations, and mathematical inversion techniques to 

solve for the IOPs and partition them into their constituents. These include the total 

backscattering coefficient, bbt(λ), backscattering by particles, bbp(λ), absorption by total 

particles, by phytoplankton, and by the combination of non-algal particles and CDOM, 

adg(λ) = ad(λ) + ag(λ), where ad(λ) is non-algal (or detrital) absorption). These latter 

properties are similar in spectral shape, and therefore difficult to partition, which presents a 

challenge if we wish to compare the retrievals of SAAs to the other algorithms presented 

here. Therefore, while we do not re-develop or re-optimize the SAAs here—using them as 

published—we do utilize GOCAD to facilitate the separation of dissolved and detrital 

absorption components. Specifically, we solve for ag(λ) by assuming that ad(λ) is a function 

of the combined backscattering by water, non-algal particles, and the dissolved absorption 

by CDOM, which we assume does not backscatter, although there is some evidence 

supporting backscattering by colloids [46]. These SAAs retrieve only the combined bbp(λ) 

from phytoplankton and non-algal particles, but the latter tend to have a higher refractive 

index, and therefore contribute far more strongly to the backscattering signature, e.g., [67] 

and references therein. An empirical relationship was developed between ad(410), bbt(550) 

and adg(410), and then ag(410) was found by subtracting ad(410) from SAA retrievals of 

adg(410):

ad(410) = 0.06822 × adg
(410) + 1.623 × bbt(550) + 0.0002123 (9)
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Due to a paucity of ad(λ) and bbt(λ) observations in GOCAD, this relationship was tuned 

for multiple linear regression using the IOCCG synthetic dataset (r2′ = 0.76, RMSD = 0.07, 

bias = −0.004 m−1, MAPD = 75%, N = 464). ag(410) was expanded using Equation (1) to 

other wavebands with the empirical retrieval for Sg(412–555) (derived as per Equation (8) 

and Table 4). Regression statics for the optimization data are shown for the QAA and GIOP 

in Figure 6, with slightly better results in the GIOP. Although the current version of GOCAD 

is less well populated with some optical properties than others (i.e., data collection targeted 

carbon-related properties and only included others if they happened to be in the same 

SeaBASS file), the digital structures for each property mentioned in this section are included 

in the database, and future algorithm investigation (particularly using SAAs) would greatly 

benefit from incorporation of these data into GOCAD or a similar, climate-scale, global 

database.

3.2.2. Algorithm Validation—This work represents the most rigorously validated set of 

global CDOM and DOC algorithms to date. Optimization/training of algorithms as 

described in the previous section was conducted on GOCAD field stations with coincident in 

situ radiometry. These stations were then set aside from validation, which was performed 

only on those remaining stations in GOCAD that had coincident satellite imagery (i.e., 

MODIS Aqua, Terra, and SeaWiFS). In addition to the algorithms already mentioned, two 

other empirical algorithms based on band ratio approaches were included in validation 

analysis. The approach of Shanmugam (2011) [31] (hereafter Shan11) used a power-law 

relationship between the ratio of Rrs(443)/Rrs(555) and ag(350) and ag(412), and performed 

well using the NOMAD dataset. The ratio of these was then used in another power-law 

function to solve for Sg(350–412). Tiwari and Shanmugam (2011) [32] (hereafter TS11) 

used linear functions to relate the ratio of Rrs(670)/Rrs(490) to ag(412) and ag(443), and 

solved for Sg(412–670) analytically by inverting Equation (1). As these two algorithms were 

tuned using SeaWiFS bands, a slight adjustment was made to MODIS input reflectances to 

obtain the SeaWiFS reflectances required (only MODIS validation is shown here 

graphically).

The performance of all algorithms in independent validation is weaker than for optimization 

(Tables 6–8, Figures 7–9). This should not be surprising considering satellite imagery is 

subject to higher uncertainty associated with atmospheric correction, where the atmosphere 

comprises ~90% or more of the signal received by the satellite sensor. Furthermore, satellite 

match-ups exacerbate the issue of temporal and geographic coincidence with in situ 

measurements. Any regions of moderate to high variability in surface properties will likely 

not be well captured by the average of a nominally 5 km × 5 km pixel array. Nevertheless, 

results are encouraging, particularly for the MLR approach and particularly in the UV, where 

the CDOM signal is strongest (in terms of in situ data) and the SAAs are not currently 

useful.

Figure 7 shows Taylor and target diagrams comparing the CDOM absorption retrieval 

metrics for various algorithms as described in Section 2.4. In the UVB (275 nm), and UVA 

(380 nm), only the empirical approaches were feasible, while SAAs (i.e., QAA and GIOP) 

are also shown at 412 nm. MLR and RFTB perform comparably with respect to correlation 

between the models and measurements at 275 nm, although MLR does have significantly 
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lower MAPD and bias (Table 6; MLR highlighted in bold), and outperforms the RFTB at 

380 nm in all but correlation for all sensors. MLR also outperforms all other CDOM 

absorption algorithms at 412 nm, although GIOP does not appear significantly worse as seen 

by its proximity to field data in the Taylor plots and the origin in the target diagrams. MLR 

shows a relatively strong negative bias in most sensors and channels, which is the result of 

underestimation in high CDOM waters (data not shown).

CDOM spectral slope was only retrievable with empirical approaches. MLR and RFTB 

performed comparably to each other, although RFTB was not tested at Sg(412–555). In the 

application of retrieval algorithms for Sg below (Section 3.3), the MLR is used mainly for its 

simplicity, but we would expect RTFB retrievals to yield nearly equally accurate results. 

Shan11 and TS11 performed poorly (Table 7; MLR highlighted in bold). Correlations 

between modeled and measured CDOM slope were weak in the UVA and VIS, but as the 

dynamic range of the field data is quite low (Figure 2), error and bias were still low in the 

retrievals (Table 7). In all sensors and bands for the MLR and RFTB, Sg tends to be slightly 

overestimated in waters with low Sg, and slightly underestimated in waters with high Sg, 

indicating the weak sensitivity of these empirical approaches also reflected in the low 

correlation coefficients.

As anticipated, MLR retrievals of DOC using ocean color alone were only weakly correlated 

with field data (i.e., r2 < 0.3, Table 8). RFTB performed considerably better, but was unable 

to match the performance of MLR2 (i.e., regression with retrievals of ag(355) and known 

salinity; highlighted in bold in Table 8). Due to the newness of the Aquarius mission, there 

were too few retrievals available for incorporation in these validation results, and further 

validation of this approach is encouraged based on these results.

We speculated above (Section 3.1) that small differences between the optimization and 

validation records may bias algorithm performance to favor oceanic waters. To test this 

hypothesis, a sensitivity analysis was evaluated for CDOM absorption retrieval by MLR to 

test correlations between algorithm error (percent error between retrievals and field data) and 

salinity, water column depth, and ag(412) measured in the field. We found no sensitivity to 

these factors (r2 < 0.04 in each case, n = 29,757 for Aqua, Terra, and SeaWiFS combined), 

indicating that the algorithm is not optimized in a way that would limit its performance in, 

for example, high salinity, offshore waters, or fresher waters with high inputs of fresh 

CDOM. A geographic distribution of algorithm retrieval error (percent error) for ag(412) and 

Sg(412–600) is shown in Figure 10.

A similar sensitivity analysis was evaluated for MLR2 (DOC retrieval) performance at 

validation stations to help identify limitations of the algorithm. We tested the correlation 

between the DOC retrieval error (percent difference between retrieved and measured DOC) 

and salinity, water column depth, and DOC concentration, but found no strong trends in the 

distribution of error (r2 = 0.17, 0.19, 0.43, respectively, see included figures below), 

although it could be argued that absolute retrieval error increases somewhat (overestimates) 

at the extremely high salinity stations, and at extremely low DOC stations. In general, it 

appears that shallow stations underestimate DOC, and deeper stations tend to overestimate. 

The geographic distribution of error in algorithm retrievals (Figure 10) revealed no patterns 
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with respect to distance from shore or nearby fluvial sources, but MODIS Aqua retrievals 

did overestimate DOC in southern oceans (south of 40° S, 41% ± 16%, n = 18) compared to 

minor underestimates from other sensors and at latitudes north of 40° S (—8% ± 18%, n = 

1054). Care should therefore be taken when evaluating algorithm retrievals in these areas. 

Only 1,090 stations (all sensors combined) were available for validation of the MLR2 and 

this analysis of sensitivity, and their distribution is not uniform across the world’s oceans, 

but, as shown in Figure 1, a broad spectrum of water types with a large dynamic range of 

DOC were represented in both the optimization and validation datasets. Unfortunately, no 

validation stations for MLR2 were identified for mid-ocean gyres, and therefore the 

performance of the MLR2 in those waters remains poorly defined, and caution is advised in 

the interpretation of DOC retrievals in those areas.

Differences between retrieval statistics across satellite platforms using the MLR approaches 

were generally small, with Aqua and Terra outperforming SeaWiFS for CDOM absorption 

(Table 6). All three sensors performed comparably for Sg and DOC (Tables 7 and 8).

3.3. CDOM, Sg, and DOC Climatology

Because the Aquarius mission (providing sea surface salinity) was limited to <4 year data 

record (~August 2011–June 2015), climatologies for retrieved DOC similar to those 

presented below for ag and Sg are not possible. Instead, three years (2011–2013) of 

coincident MODIS Aqua and Aquarius data were used to generate a three-year mean 9 km 

global DOC product (Figure 11). An overlay of in situ surface DOC from GOCAD was 

examined, but not included here because with no temporal coincidence in this comparison, 

strong biases likely to occur in the field data (e.g., field sampling of high latitudes is 

proscribed during winter for obvious practical reasons) will not be reflected in the mean 

DOC satellite product. Nevertheless, the relatively large (±~50%–~100%) disparities 

apparent in several regions—including high latitudes and the Atlantic subtropical gyre—

indicate fundamental weaknesses in the global DOC algorithm. For instance, as mentioned 

in 3.2.1, the subtropical Atlantic gyre is characterized by an accumulation of DOM not 

reflected in the CDOM nor apparently traceable with changes in salinity, and is therefore 

overlooked by the DOC algorithm presented here (MLR2). Based on the tuning statistics, 

there appears to be merit in the approach, but more study will be required to establish when 

and where the algorithm works best, and what (if anything) can be done for remotely sensing 

DOC in regions where no robust optical proxies exist.

As outlined in the introductory sections, a common assumption made in ocean color remote 

sensing on a global scale is that CDOM and other water-borne pigmented material covary 

with Chl. A valid concern with empirical approaches to retrieve CDOM from ocean color—

particularly for those that use some of the same spectral bands as Chl algorithms like OC3M

—is that they are essentially tuning themselves to Chl, and not CDOM. While performance 

metrics for MLR are quite robust (e.g., Figure 5, Table 3), there remains the possibility that 

this is true in part because these spectral bands are sensitive to Chl, and CDOM is simply 

covarying with Chl as per Case 1 assumptions. In fact, this was not found to be the case 

generally from global CDOM and Chl field data in GOCAD (r2 = 0.00, N = 19,446, λ = 

412), nor in the investigation by Siegel et al. (2002), although there exist areas of open ocean 
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outside of the strong influence of terrestrial run-off and upwelling zones where fluctuations 

in CDOM are clearly driven by local productivity.

To quantify the distinction between retrievals of CDOM using MLR and Chl using OC3M, 

we calculate retrievals of each over the course of the entire MODIS Aqua mission, and then 

calculate a residual of the normalized properties, as defined by:

Chl − CDOM =
Chli

median(Chl) −
agi

(λ)
median(ag(λ)) (10)

where the median is taken over an entire composite image to scale each property by its 

magnitude. For example, MODIS imagery was separated into seasonal composites for the 

entire Aqua era, then processed to CDOM and Chl, and the residual calculated for each 

(Figure 12). Bear in mind in this analysis that OC3M-like algorithms for retrieving Chl have 

been shown to be strongly influenced by not only phytoplankton biomass, but also 

physiology (particularly in tropical and subtropical regions) as well as the presence of 

significant absorption by CDOM and non-algal particulates (adg) [68].

The results show that over much of the world’s oceans—particularly at high latitudes, 

upwelling zones, and regions influenced by large river plumes—normalized CDOM and Chl 

diverge by as much as a factor of three. Interestingly, the regions shown by Siegel et al. 

(2013) to be most negatively impacted by adg in terms of empirical Chl retrievals are the 

same regions which are shown here to diverge most strongly in terms of the normalized 

CDOM and Chl residual, indicating that a similar pattern would be expected even when 

using Chl retrieval algorithms less susceptible to error induced by adg. The pattern that 

emerges is that in open ocean regions characterized by strong seasonal blooms such as the 

North Atlantic and North Pacific, high primary productivity in the presence of lower CDOM 

(i.e., high residual) is followed after approximately a season by higher CDOM and a 

collapse in Chl (i.e., low residual). This can be seen in the boreal Spring–Summer transition 

in the N. Atlantic and Pacific, in the bloom and collapse associated with the reversal of the 

monsoons in the Arabian Sea between Summer and the following Winter/Spring, and in the 

Congo and Amazon river plumes over the same period where the residual often shifts by 

approximately a factor of six between seasons. This observed seasonal lag between peak Chl 

and peak CDOM helps explain why the two properties rarely covary, as described above for 

GOCAD, and in [13]. The lag may be explained by the time required for microbial 

degradation of the bloom’s less labile particulate detrital material after the bloom has 

collapsed.

Application of these algorithms also shows the Spring–Summer transition in the CDOM 

absorption (left column, Figure 12) as an increase in CDOM from major river outflows such 

as the Amazon and Congo following peak runoff [69], and in the upwelling region of the 

Arabian Sea induced by the southwesterly monsoon. In the case of the Amazon River, the 

CDOM in the distal plume can be seen well into the following season as it drifts slowly 

eastward across the Atlantic from the retroflection of the North Brazil Current [70], 

indicating that satellite retrievals of CDOM using the MLR can successfully track surface 
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DOM as it evolves over time scales of weeks to years and over very long distances. The 

results shown in Figure 12 are broadly similar to those described in [13] for CDM at 440 nm 

retrieved using the GSM algorithm [71], and to the empirical algorithm of Shanmugam [31] 

for ag(350) (their Figure 12), although we show generally higher absorption across the 

equatorial regions and some parts of the Southern Ocean.

Longer time-scale variability in the Aqua-retrieved CDOM was also apparent from the 

roughly twelve years of monthly, 4 km satellite composites. An examination of the monthly 

CDOM anomaly (Δag(λ); the monthly ag(λ) divided by the Aqua-era averages for each 

month) and slope anomaly, ΔSg(λ), revealed several regions characterized by sharp declines 

in CDOM during certain years, and elevations in others, as well as the expected inverse 

proportionality between CDOM and slope in the UV. Figure 13 shows an example of this 

from seasonal Aqua composites of Δag(380) and ΔSg(275) averaged over periods of El Niño 

(2002–2005) when surface temperatures are higher, inhibiting vertical nutrient transport and 

leading to lower primary productivity, and periods of La Niña (2007, 2008, 2010, 2011), 

which exhibit roughly the opposite dynamics. A feature in the western equatorial Pacific 

stands out starkly as a crescent stretching from about 10° N to 15° S and spanning nearly the 

entire 100° longitude range from South America to the Solomon Islands. For brevity, we 

refer to this as the Western Pacific Crescent (WPC). To test the link between El Niño 

Southern Oscillation dynamics and the CDOM anomaly in the WPC, an average of monthly 

Δag(380) within the WPC is compared with the multivariate ENSO index (MEI [72]) and 

ΔSg(275–295) (Figure 14). The MEI provides a convenient index for tracking the dominant 

characteristics associated with ENSO, namely sea-surface pressure, temperature, wind 

stress, and cloudiness. Positive MEI represent the warmer El Niño cycle associated with 

lower wind stress, a flattening in the trans-Pacific thermocline, and inhibited productivity in 

the equatorial Pacific, and negative MEI represents La Niña, which is cooler, and more 

productive. The coupling between MEI and Δag(380) and MEI and ΔSg(275) is remarkably 

strong and well correlated (Figure 14; r = −0.77, r = 0.80, respectively, and p << 0.01 in each 

case). As expected, CDOM and UVB slope are also very well correlated (r = −0.90, p << 

0.01). The tight correlation between CDOM anomaly, CDOM slope anomaly and MEI may 

help to predict broad changes in surface CDOM in a future in which warmer sea surface 

temperatures are expected, particularly in the western Pacific, as the long-term warming 

trend leads to oceanic conditions favorable to El Niño-like conditions [73]. In fact, sustained 

deficits in surface CDOM available for photooxidation and microbial remineralization across 

the WPC, as demonstrated here, is likely to result in a lower partial pressure of CO2 derived 

from CDOM, and may therefore increase the flux of CO2 into the ocean from the 

atmosphere, although this effect would largely be offset by the decrease in solubility 

associated with warmer temperatures in the surface ocean. Another consequence of lower 

CDOM across this region in a warming regime may be decreased surface heating through 

CDOM absorption, potentially providing some degree of negative feedback to the surface 

warming trend.

4. Summary

The importance of characterizing and tracking change in global oceanic dissolved carbon 

over climatic evolutions is only possible synoptically using earth-observing technology. As 
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methods to measure DOM sources and sinks continue to improve using laboratory and in 

situ optical techniques, algorithms and orbital sensor technology must keep pace. With 

technological and methodological improvements, however, come inevitable challenges. The 

nearly three decades of field data presented here are by necessity compromised in that, for 

example, no one standard method was employed for the measurement of spectral CDOM 

absorption. Similarly there is obviously no standard algorithm for global ocean color 

retrievals of CDOM, as the algorithms must also continuously evolve with our knowledge of 

the parameters they retrieve. Many approaches have proven robust in retrieving CDOM 

absorption and its spectral slope over the years, though most are regionally optimized with 

little or no provision for what ties them together (e.g., proxies for optical water types). 

Global algorithms have been hampered by relatively small datasets of coincident radiometry 

with CDOM and CDOM slope extending into the UV, and DOC retrievals have been 

especially challenging due to the highly variable and often unpredictable fraction of 

chromophoric content.

In this study we aggregate a global dataset approximately forty times the size of previous 

global, bio-optical databases. Naturally despite our best efforts to ensure consistency in the 

data through quality control, the data within are subject to error and uncertainty largely 

because methodologies and technology have evolved over thirty years. Quantification of the 

uncertainty in field estimates of the parameters retrieved here must necessarily precede 

uncertainty estimates in the algorithms used to derive them. Efforts are currently underway 

at NASA and elsewhere to do just that. New field data are always being collected and 

archived all over the world by various academic and public-sector agencies, but only a 

fraction is broadly distributed through invaluable archives like SeaBASS, in part because 

submission is only required of those principal investigators funded by NASA. Future 

algorithm development efforts should facilitate more cooperation and collaboration with 

other agencies collecting field data around the world encouraging sharing of data within a 

reasonable time after collection. To date, GOCAD and SeaBASS coverage in regions such as 

the Mediterranean and the oceans around Australia is astonishingly poor. Efforts must be 

sustained to continue bringing newly collected and historical data into GOCAD, NOMAD, 

and similar global, long-term bio-optical databases, and to expand them to include an even 

more comprehensive suite of inherent optical properties, which help support the 

development of more robust semi-analytical approaches. GOCAD was designed using 

nested and comprehensive Matlab structures conducive to expansion for both newly 

collected datasets as well as more complete suites of physical, optical, radiometric, and 

biogeochemical data. Based on our experience with SeaBASS, more rigorous quality control 

and documentation standards should be applied not only to recent and new submissions, but 

retroactively to historic data as well. While some algorithms performed better than others in 

this non-exhaustive comparison, it is important that algorithms continue to evolve as the data 

used to develop them improves, incorporating more than minor adjustments to empirical 

coefficients, and moving algorithms for oceanic carbon closer to theoretical, analytically-

based approaches.

A representational suite of approaches, including empirical, semi-analytical, and machine-

learning algorithms was evaluated against GOCAD field data for retrieving ag in six 

wavebands between 275 and about 490 nm, Sg in eight wavebands in the UV and VIS, and 

Aurin et al. Page 20

Appl Sci (Basel). Author manuscript; available in PMC 2019 December 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



DOC using a wide variety of metrics. Ultimately, the most versatile and best performing of 

those tested was a simple, empirical set of relationships based on multiple linear regression 

between four wavebands of remote sensing reflectance (440–555 nm), with the exception of 

DOC which also required sea surface salinity (e.g., from Aquarius) to act as a proxy to 

optical water type. Results varied, with CDOM retrievals showing regression coefficients to 

field data (r2) generally over 0.80 for field radiometry to within 16%−34%, depending on the 

wavelength, and within 33%−54% for MODIS Aqua validation. CDOM slopes retrievals 

were best in the UVB (e.g., r2 = 0.62, MAPD = 11% in satellite validation of Sg(275–295)), 

while DOC algorithms only optimized well after the inclusion of salinity (r2 = 0.91, MAPD 
= 15%), and did not perform well in validation (e.g., RMSE = 27–29 μmol Lμ1). Our 

analysis of the sensitivity of the DOC algorithm performance to factors such as salinity, 

DOC, water column depth, and geographic location ultimately proved inconclusive, 

exposing only a small anomaly involving overestimates of DOC in the southern oceans using 

MODIS Aqua imagery. Further validation—particularly in mid–ocean gyres where DOC 

varies very weakly or not at all with CDOM absorption, and salinity changes are very small

—is clearly warranted prior to application of the DOC algorithm in those regions.

Application of CDOM algorithms to monthly and climatological Aqua imagery 

demonstrated that global retrievals of CDOM do not covary well with similar empirical 

retrievals of Chl, but rather appear to follow Chl on a seasonal lag depending on the region 

and source of dissolved material. This helps explain the lack of correlation between CDOM 

and Chl found in global GOCAD field data and described in previous studies, and further 

challenges the use of Case 1 assumptions in bio-optical remote sensing. Surface CDOM 

concentration varies in regions such the western equatorial Pacific by about 150% over the 

course of long-term climatological shifts associated with ENSO, fluctuating in tight 

correlation with the MEI and CDOM slope. Algorithms developed here may be applied to 

tracking ENSO behavior in the future, as well as observing changes in CDOM character and 

concentration associated with global warming.

Acknowledgments:

We would like to acknowledge all investigators who have contributed to the SeaBASS database and the various 
Hansell/Carlson datasets (see Table 2). Thanks also to Jeremy Werdell, Chris Proctor, Norman Kuring, Chris 
Moellers, and Jason Leffler of the NASA Ocean Biology Processing Group for data acquisition and programming 
support.

Funding: This research was funded by the NASA ROSES Science of Aqua and Terra—MODIS project.

References

1. Siegenthaler U; Sarmiento J Atmospheric carbon dioxide and the ocean. Nature 1993, 365, 119–
125.

2. Hedges JI Why dissolved organics matter. Biogeochem. Mar. Dissolved Org. Matter 2002, 1–33.

3. Belanger S; Babin M; Xie H; Krotkov N; Larouche P; Vincent WF Cdom Photooxidation in the 
Arctic Coastal Waters: New Approach Using Satellite Information and Implications of Climate 
Change In Proceedings of the Ocean Optics XVIII, Montreal, QC, Canada, 9–13 10 2006.

4. Carder KL; Steward RG; Harvey GR; Ortner PB Marine humic and fulvic acids: Their effects on 
remote sensing of chlorophyll. Limnol. Oceanogr 1989, 34, 68–81.

Aurin et al. Page 21

Appl Sci (Basel). Author manuscript; available in PMC 2019 December 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



5. Lee Z; Arnone R; Hu C; Werdell PJ; Lubac B Uncertainties of optical parameters and their 
propagations in an analytical ocean color inversion algorithm. Appl. Opt 2010, 49, 369–381. 
[PubMed: 20090801] 

6. Sempéré R; Cauwet G Occurrence of organic colloids in the stratified estuary of the krka river 
(Croatia). Estuar. Coast. Shelf Sci 1995, 40,105–114.

7. Blough NV; Del Vecchio R Chromophoric dom in the coastal environment In Biogeochemistry of 
Marine Dissolved Organic Matter; Hansell DA, Carlson CA, Eds.; Academic Press: San Diego, CA, 
USA, 2002; pp. 509–546.

8. Nelson NB; Siegel DA Chromophoric dom in the open ocean. Biogeochem. Mar. Dissolved Org. 
Matter 2002, 547–578.

9. Twardowski MS; Boss E; Sullivan JM; Donaghay PL Modeling the spectral shape of absorption by 
chromophoric dissolved organic matter. Mar. Chem 2004, 89, 69–88.

10. Aurin DA; Dierssen HM; Twardowski MS; Roesler CS Optical complexity in long island sound 
and implications for coastal ocean color remote sensing. J. Geophys. Res. Oceans 2010, 115.

11. Del Vecchio R; Subramaniam A Influence of the amazon river on the surface optical properties of 
the western tropical north atlantic ocean. J. Geophys. Res. Oceans 2004, 109.

12. Sauer MJ; Roesler CS Seasonal and spatial cdom variability in the gulf of maine In Proceedings of 
the Ocean Optics XVIII, Montreal, QC, Canada, 9–13 10 2006.

13. Siegel DA; Maritorena S; Nelson NB; Hansell DA; Lorenzi-Kayser M Global distribution and 
dynamics of colored dissolved and detrital organic materials. J. Geophys. Res. Oceans 2002, 107.

14. Pegau WS Inherent optical properties of the central arctic surface waters. J. Geophys. Res. Oceans 
2002, 107, 8035.

15. Carder KL; Chen RF; Lee Z; Hawes SK; Cannizzaro JP MODIS Ocean Science Team Algorithm 
Theoretical Basis Document. ATBD 2003, 19, 7–18.

16. Morel A; Prieur L Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722.

17. Lee Z Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and 
Applications; International Ocean–Colour Coordinating Group: Dartmouth, NS, Canada, 2006.

18. Del Vecchio R; Blough NV Photobleaching of chromophoric dissolved matter in natural waters: 
Kinetics and modeling. Mar. Chem 2002, 78, 231–253.

19. Helms JR; Stubbins A; Ritchie JD; Minor EC Absorption spectral slopes and slope ratios as 
indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic 
material. Limnol. Oceanogr 2008, 53, 955–969.

20. Stedmon CA; Markager S Behavior of the optical properties of coloured dissolved organic matter 
under conservative mixing. Estuar. Coast. Shelf Sci 2003, 57, 973–979.

21. Del Castillo CE; Miller RL Horizontal and vertical distributions of colored dissolved organic 
matter during the southern ocean gas exchange experiment. J. Geophys. Res. Oceans 2011, 116.

22. Stedmon CA; Markager S; Kaas H Optical properties and signatures of chromophoric dissolved 
organic matter (CDOM) in danish coastal waters. Estuar. Coast. Shelf Sci 2000, 51, 267–278.

23. Cartisano CM; Del Vecchio R; Bianca MR; Blough NV Investigating the sources and structure of 
chromophoric dissolved organic matter (CDOM) in the north pacific ocean (NPO) utilizing optical 
spectroscopy combined with solid phase extraction and borohydride reduction. Mar. Chem 2018, 
204, 20–35.

24. Twardowski MS; Donaghay PL Photobleaching of aquatic dissolved materials: Absorption 
removal, spectral alteration, and their interrelationship. J. Geophys. Res. Oceans 2002, 107.

25. D’Sa EJ; Hu C; Muller–Karger FE; Carder KL Estimation of colored dissolved organic matter and 
salinity fields in case 2 waters using seawifs: Examples from florida bay and florida shelf. Proc. 
Indian Acad. Sci. Earth Planet. Sci 2002, 111, 197–207.

26. Johannessen SC; Miller WL; Cullen JJ Calculation of uv attenuation and colored dissolved organic 
matter absorption spectra from measurements of ocean color. J. Geophys. Res. Oceans 2003, 108, 
3301.

27. Kahru M; Mitchell BG Seasonal and nonseasonal variability of satellite–derived chlorophyll and 
colored dissolved organic matter concentration in the california current. J. Geophys. Res. Oceans 
2001, 106, 2517–2529.

Aurin et al. Page 22

Appl Sci (Basel). Author manuscript; available in PMC 2019 December 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



28. Mannino A; Russ ME; Hooker SB Algorithm development and validation for satellite–derived 
distributions of doc and cdom in the u.S. Middle atlantic bight. J. Geophys. Res 2008, 113, 
C07051.

29. Matthews MW A current review of empirical procedures of remote sensing in inland and near–
coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899.

30. Tehrani N; Sa E; Osburn C; Bianchi T; Schaeffer B Chromophoric dissolved organic matter and 
dissolved organic carbon from sea–viewing wide field–of–view sensor (SEAWIFS), moderate 
resolution imaging spectroradiometer (MODIS) and meris sensors: Case study for the northern 
gulf of mexico. Remote Sens. 2013, 5, 1439–1464.

31. Shanmugam P A new bio–optical algorithm for the remote sensing of algal blooms in complex 
ocean waters. J. Geophys. Res. Oceans 2011, 116.

32. Tiwari SP; Shanmugam P An optical model for the remote sensing of coloured dissolved organic 
matter in coastal/ocean waters. Estuar. Coast. Shelf Sci. 2011, 93, 396–402.

33. Werdell PJ; Bailey SW An improved in situ bio-optical data set for ocean color algorithm 
development and satellite data product validation. Remote Sens. Environ 2005, 98, 122–140.

34. Maritorena S; Lee Z; Du KP; Loisel H; Doerffer R; Roesler C; Lyon P; Tanaka A; Babin M; 
Kopelevich OV Chapter 2: Synthetic and in situ data sets for algorithm testing In Remote Sensing 
of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications; Lee Z, Ed.; 
International Ocean Colour Coordinating Group: Dartmouth, NS, Cabada, 2006; pp. 13–18.

35. Gordon HR; Brown OB; Evans RH; Brown JW; Smith RC; Baker KS; Clark DK A semi–analytic 
radiance model of ocean color. J. Geophys. Res. Atmos 1988, 93, 10909–10924.

36. Gordon HR; Brown OB; Jacobs MM Computed relationships between the inherent and apparent 
optical properties of a flat homogenous ocean. Appl. Opt 1975, 14, 417–427. [PubMed: 20134901] 

37. Garver SA; Siegel DA Inherent optical property inversion of ocean color spectra and its 
biogeochemical interpretation. 1. Time series from the sargasso sea. J. Geophys. Res. Oceans 
1997, 102, 18607–18625.

38. Lee ZP; Carder KL Effect of spectral band numbers on the retrieval of water column and bottom 
properties from ocean color data. Applied Optics 2002, 41, 2191–2201 [PubMed: 12003210] 

39. Roesler CS; Perry MJ In–situ phytoplankton absorption, fluorescence emission, and particulate 
backscattering spectra determined from reflectance. J. Geophys. Res. Oceans 1995, 100, 13279–
13294.

40. Dong Q; Shang S; Lee Z An algorithm to retrieve absorption coefficient of chromophoric dissolved 
organic matter from ocean color. Remote Sens. Environ. 2013, 128, 259–267.

41. Matsuoka A; Babin M; Doxaran D; Hooker S; Mitchell B; Bélanger S; Bricaud A A synthesis of 
light absorption properties of the pan–arctic ocean: Application to semi-analytical estimates of 
dissolved organic carbon concentrations from space. Biogeosci. Discuss 2013, 10, 17071–17115.

42. Odermatt D; Gitelson A; Brando VE; Schaepman M Review of constituent retrieval in optically 
deep and complex waters from satellite imagery. Remote Sens. Environ 2012, 118, 116–126.

43. Swan CM; Nelson NB; Siegel DA; Fields EA A model for remote estimation of ultraviolet 
absorption by chromophoric dissolved organic matter based on the global distribution of spectral 
slope. Remote Sens. Environ. 2013, 136, 277–285.

44. Tilstone GH; Peters SW; van der Woerd HJ; Eleveld MA; Ruddick K; Schönfeld W; Krasemann H; 
Martinez–Vicente V; Blondeau–Patissier D; Röttgers R Variability in specific–absorption 
properties and their use in a semi–analytical ocean colour algorithm for meris in north sea and 
western english channel coastal waters. Remote Sens. Environ. 2012, 118, 320–338.

45. Zhu W; Yu Q; Tian YQ; Chen RF; Gardner GB Estimation of chromophoric dissolved organic 
matter in the mississippi and atchafalaya river plume regions using above-surface hyperspectral 
remote sensing. J. Geophys. Res. Oceans 2011, 116.

46. Stramski D; Woźniak SB On the role of colloidal particles in light scattering in the ocean. Limnol. 
Oceanogr. 2005, 50, 1581–1591.

47. Nelson NB; Siegel DA The global distribution and dynamics of chromophoric dissolved organic 
matter. Annu. Rev. Mar. Sci 2013, 5, 447–476.

Aurin et al. Page 23

Appl Sci (Basel). Author manuscript; available in PMC 2019 December 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



48. Weishaar JL; Aiken GR; Bergamaschi BA; Fram MS; Fujii R; Mopper K Evaluation of specific 
ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved 
organic carbon. Environ. Sci. Technol 2003, 37, 4702–4708. [PubMed: 14594381] 

49. Sullivan JM; Twardowski M; Zanefeld JRV; Moore CM; Barnard AH; Donaghay PL; Rhoades B 
Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 
400–750 nm spectral range. Appl. Opt 2006, 45, 5294–5309. [PubMed: 16826267] 

50. Twardowski MS; Sullivan JM; Donaghay PL; Zaneveld JRV Microscale quantification of the 
absorption by dissolved and particulate material in coastal waters with an ac–9. J. Atmos. Ocean. 
Technol 1999, 16, 691–707.

51. Zaneveld JRV; Kitchen JC; Moore CM Scattering error correction of reflecting–tube absorption 
meters In Ocean optics XII; Jaffe JS, Ed.; International Society for Optics and Photonics: 
Bellingham, WA, USA, 1994; pp. 44–55.

52. Mitchell BG; Stramska M; Wieland J Determination of spectral coefficients of particles, dissolved 
material and phytoplankton for discrete water samples In Ocean Optics Protocols for Satellite 
Ocean Color Sensor Validation; National Aeronautics and Space Administration: Greenbelt, MA, 
USA, 2003.

53. Mueller JL Inherent optical properties: Instruments, characterizations, field measurements and data 
analysis protocols In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation; National 
Aeronautics and Space Administration: Greenbelt, MA, USA, 2003.

54. Thuillier G; Hersé M; Foujols T; Peetermans W; Gillotay D; Simon P; Mandel H The solar spectral 
irradiance from 200 to 2400 nm as measured by the solspec spectrometer from the atlas and eureca 
missions. Sol. Phys 2003, 214, 1–22.

55. Bailey SW; Werdell PJ A multi–sensor approach for the on–orbit validation of ocean color satellite 
data products. Remote Sens. Environ 2006, 102, 12–23.

56. Aurin DA; Mannino A A database for developing global ocean color algorithms for colored 
dissolved organic material, cdom slope, and dissolved organic carbon In Proceedings of the Ocean 
Optics XXI, Glasgow, Scotland, 8–12 10 2012.

57. Taylor KE Summarizing multiple aspects of model performance in a single diagram. J. Geophys. 
Res. Atmos 2001, 106, 7183–7192.

58. Jolliff JK; Kindle JC; Shulman I; Penta B; Friedrichs MA; Helber R; Arnone RA Summary 
diagrams for coupled hydrodynamic–ecosystem model skill assessment. J. Mar. Syst 2009, 76, 64–
82.

59. Carlson CA; Hansell DA; Tamburini C Doc persistence and its fate after export within the ocean 
interior. Microb. Carbon Pump Ocean 2011, 57–59.

60. Hansell DA; Carlson CA Biogeochemistry of total organic carbon and nitrogen in the sargasso sea: 
Control by convective overturn. Deep Sea Res. Part II 2001, 48, 1649–1667.

61. Breiman L Random forests. Mach. Learn 2001, 45, 5–32.

62. Lary DJ; Zewdie GK; Liu X; Wu D; Levetin E; Allee RJ; Malakar N; Walker A; Mussa H; 
Mannino A; Aurin D Machine learning applications for earth observation In Earth Observation 
Open Science and Innovation; Mathieu PP, Aubrecht C, Eds.; Springer: Cham, Switzerland, 2018.

63. Lee ZP; Carder KL; Arnone R Chapter 10: The quasi–analytical algorithm In Remote Sensing of 
Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications; Stuart V, Ed.; 
IOCCG: Dartmouth, NS, Canada, 2006; pp. 73–79.

64. Lee ZP; Carder KL; Arnone RA Deriving inherent optical properties from water color: A 
multiband quasi-analytical algorithm for optically deep waters. Appl. Opt 2002, 41, 5755–5772. 
[PubMed: 12269575] 

65. Werdell PJ; Franz BA; Bailey SW; Feldman GC; Boss E; Brando VE; Dowell M; Hirata T; 
Lavender SJ; Lee Z Generalized ocean color inversion model for retrieving marine inherent optical 
properties. Appl. Opt. 2013, 52, 2019–2037. [PubMed: 23545956] 

66. Morel A; Bricaud A Theoretical results concerning light absorption in a discrete medium and 
application to the specific absorption of phytoplankton. Deep Sea Res 1981, 28, 1357–1393.

67. Twardowski MS; Boss E; Macdonald JB; Pegau WS; Barnard AH; Zaneveld JRV A model for 
estimating bulk refractive index from the optical backscattering ratio and the implications for 

Aurin et al. Page 24

Appl Sci (Basel). Author manuscript; available in PMC 2019 December 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



understanding particle composition in case i and case ii waters. J. Geophys. Res. Oceans 2001, 
106, 14129–14142.

68. Siegel D; Behrenfeld M; Maritorena S; McClain C; Antoine D; Bailey S; Bontempi P; Boss E; 
Dierssen H; Doney S Regional to global assessments of phytoplankton dynamics from the seawifs 
mission. Remote Sens. Environ 2013, 135, 77–91.

69. Dai A; Qian T; Trenberth KE; Milliman JD Changes in continental freshwater discharge from 1948 
to 2004. J. Clim 2009, 22, 2773–2792.

70. Lentz SJ The amazon river plume during amasseds: Subtidal current variability and the importance 
of wind forcing. J. Geophys. Res. Oceans 1995, 100, 2377–2390.

71. Maritorena S; Siegel DA; Peterson AR Optimization of a semianalytical ocean color model for 
global–scale applications. Appl. Opt 2002, 41, 2705–2714. [PubMed: 12027157] 

72. Wolter K; Timlin MS Monitoring enso in coads with a seasonally adjusted principal component 
index In Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK, USA, 1 1993.

73. Collins M; An S-I; Cai W; Ganachaud A; Guilyardi E; Jin F-F; Jochum M; Lengaigne M; Power S; 
Timmermann A The impact of global warming on the tropical pacific ocean and el niño. Nat. 
Geosci 2010, 3, 391–397.

Aurin et al. Page 25

Appl Sci (Basel). Author manuscript; available in PMC 2019 December 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 1. 
Top row: data distributions and counts (N) of relevant parameters and Chl (for context only) 

in Global Ocean Carbon Algorithm Database (GOCAD), NASA bio-Optical Marine 

Algorithm Dataset (NOMAD), and the synthetic ocean color dataset developed by the 

International Ocean Colour Coordinating Group (IOCCG). Bottom row: comparisons 

between the subset of GOCAD parameters used in optimization/tuning (Optim) and 

validation (Val) of algorithms (shown here with SeaWiFS match-ups, but also evaluated for 

MODIS Terra and Aqua with similar results). Populations of salinity and DOC share a 

common mean between optimization and validation datasets (ANOVA, p > 0.01).
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Figure 2. 
Exponential slope of CDOM in NOMAD, IOCCG, and GOCAD. Median values for 

S412–600 are highlighted in red for comparison. NOMAD and IOCCG lack UV CDOM.
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Figure 3. 
Global distribution of GOCAD and NOMAD field stations for CDOM (upper) and DOC 

(lower). The central panel shows the distributions of data within GOCAD separated into 

optimization (Optim) and validation (Val) dataset. Stations used in algorithm tuning are 

shown as red circles, the remainder of stations were available for satellite validation. The 

boxed subregions in the upper panel are shown in greater detail in Figure 4.
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Figure 4. 
Examples of CDOM absorption at 412 nm (top row), and CDOM spectral slope in the UVB 

(middle row) and VIS (bottom row) from GOCAD show patterns which reflect the sources 

and age of CDOM in environments stretching from estuarine, such as the Chesapeake Bay in 

the eastern U.S., to stations sampled well offshore.
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Figure 5. 
MLR retrievals of CDOM plotted against field data for the tuning dataset (i.e., in situ 

Rrs(λ)). The solid line shows the fit through the data, and the 1:1 line is dashed.
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Figure 6. 
Random forest tree-bagger (RFTB), quasi-analytical algorithm (QAA), and generalized 

inherent optical property (GIOP) retrievals for tuning datasets.
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Figure 7. 
Taylor diagrams (top row) and target plots (bottom row) depicting comparative algorithm 

performance for retrieving CDOM absorption at 275 nm, 380 nm, and 412 nm from MODIS 

Aqua.
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Figure 8. 
Taylor diagrams (top row) and target plots (bottom row) depicting comparative algorithm 

performance for retrieving CDOM slope at 275–295 nm, 300–600 nm, and 412–600 nm 

from MODIS Aqua. Results from Shanll and TS11 were suppressed to preserve scale.
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Figure 9. 
Taylor diagrams (top row) and target plots (bottom row) depicting comparative algorithm 

performance for retrieving DOC from MODIS Aqua and Terra, and SeaWiFS.
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Figure 10. 
Geographic distribution of error in MLR algorithm retrievals of CDOM absorption and slope 

in the VIS (top and center), and MLR2 retrievals of DOC (bottom) using validation stations 

and satellite imagery.
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Figure 11. 
Retrieved three-year mean, 9 km nominal resolution DOC from Aquarius and MODIS Aqua 

using the MLR2 inversion. Validation statistics are reasonably good for the MLR2 (Figure 9, 

Table 8), but a larger number and wider geographic distribution of validation stations than 

are currently available is required to thoroughly evaluate the geographic and water-type 

limitations for MLR2, particularly in the mid-ocean gyres (see text Section 3.2.2). 

Overestimates of DOC (~41%) retrieved with the MLR2 were found in the southern oceans 

(S of 40° S)), but only for MODIS Aqua (i.e., not Terra, and no SeaWiFS stations were 

identified). Elsewhere (i.e., north of 40° S), retrievals tend to slightly underestimate DOC 

(<10%). Caution is therefore advised in interpreting MLR2 retrievals in mid-ocean gyres, 

and in the southern oceans using Aqua.
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Figure 12. 
MLR retrievals of ag(380) by season over the entire MODIS Aqua era (left column), and 

residuals between Chl and CDOM (right column). Imagery was binned from 4 km resolution 

monthly composites between August 2002 and January 2014.
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Figure 13. 
CDOM anomaly (left) and slope anomaly (right) from MLR applied to MODIS Aqua during 

Autumn in El Niño years (2002–2005; top panel) and La Niña years (2007, 2008, 2010, 

2011; bottom panel). The Western Pacific Crescent (WPC) feature is defined here as the 

broad region exhibiting a notable decline in CDOM during El Niño years, and enhancement 

during La Niña. UV slope shows the opposite pattern, with lower slopes during La Niña, 

although the percentage change is roughly an order of magnitude lower. The box shows the 

portion of the WPC subsampled for comparison with MEI (See Figure 14).
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Figure 14. 
Multivariate ENSO Index (MEI, in red), CDOM anomaly at 380 nm (black), and UVB slope 

anomaly (green, scaled by a factor of −10 for clarity) over the entire MODIS Aqua era for 

the region of interest highlighted in Figure 13. Strong negative and positive correlations exist 

between MEI and CDOM and slope anomalies, respectively (see text).
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Table 1.

Definition of terms, units, and abbreviations.

Units Definition

ag(λ) m−1 CDOM absorption coefficient

ad(λ) m−1 NAP absorption coefficient

adg(λ) m−1 NAP and CDOM absorption coefficient

ap(λ) m−1 Particulate absorption coefficient

bbp(λ) m−1 Particle backscattering coefficient

bbt(λ) m−1 Total backscattering coefficient

CDOM Colored Dissolved Organic Matter

Chl mg m−3 Chlorophyll concentration

DOC, DOM μmol L−1 Dissolved Organic Carbon, -Material

Es(λ) W m−2 nm−1 Downwelling surface irradiance

Lw(λ) W m− 2 nm−1 sr
−1 Water leaving radiance

Lwn(λ) W m− 2 nm−1 sr−1 Normalized water leaving radiance

POC μmol L−1 Particulate Organic Carbon

Rrs(λ) sr−1 Remote sensing reflectance

Sg(λ1-λ2) nm−1 Exponential slope of CDOM and in select spectral range

SPM mg m−3 Suspended Particulate Material

TOC μmol L−1 Total Organic Carbon

AOP Apparent Optical Properties

GIOP Generalized IOP Algorithm

GOCAD Global Ocean Carbon Algorithm Database

HMW High Molecular Weight

IOCCG International Ocean-Colour Coordinating Group

IOP Inherent Optical Properties

LMW Low Molecular Weight

MLR Multiple Linear Regression Algorithm

MODIS Moderate Resolution Imaging Spectroradiometer

NAP Non-Algal Particulate

NOMAD NASA bio-Optical Algorithm Dataset

QAA Quasi-Analytical Algorithm

RFTB Random Forest Tree Bagger Algorithm

SAA Semi-Analytical Algorithm

SeaBASS SeaWiFS Bio-optical Archive and Storage System

SeaWiFS Sea-viewing Wide Field-of-view Sensor

UV, UVA, UVB Ultraviolet spectrum, 315–400 nm, 280–315 nm

VIS Visible spectrum
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Table 3.

Coefficients of the MLR algorithm for retrieving CDOM absorption (ag(λ)) following Equation (8) and 

metrics of fit for the optimization data set.

ß0 ß1 ß2 ß3 ß4 N r2′ RMSD
[m−1]

MAPD
[%]

%Bias
[%]

Threshold
[m−1]

MODIS

[nm] 443 488 531 547

275 0.089 −0.540 −1.142 3.444 −1.875 100 0.56 0.499 16 −1.4 4.825

355 −2.246 −1.186 −0.558 2.912 −1.336 116 0.90 0.102 16 −0.9 0.9104

380 −2.263 −0.300 −1.882 3.831 −1.787 86 0.83 0.040 15 −1.9 0.4341

412 −2.535 −0.563 −1.294 1.606 0.170 483 0.87 0.048 28 −4.3 0.36419

443 −3.287 −0.727 −0.922 1.278 0.261 462 0.85 0.026 29 −4.3 0.1984

488 −3.722 −0.377 −1.429 1.424 0.300 490 0.82 0.016 34 −5.9 0.1114

SeaWiFS

[nm] 443 490 510 555

275 −2.477 −2.880 2.225 0.480 −0.252 174 0.76 0.659 25 −2.2 4.825

355 −4.199 −2.563 1.214 0.955 −0.040 189 0.87 0.118 26 −2.2 0.9104

380 −4.544 −1.808 0.175 1.181 0.001 150 0.80 0.055 26 −2.4 0.4341

412 −6.004 −0.861 −0.006 −0.346 0.515 8066 0.37 0.035 56 −13.0 0.36419

443 −6.410 −0.743 −0.145 −0.367 0.547 8037 0.33 0.026 58 −13.6 0.1984

490 −7.014 −0.736 0.142 −0.796 0.678 7978 0.28 0.016 65 −15.5 0.1114
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Table 4.

Coefficients of the MLR algorithm for retrieving CDOM spectral slope (Sg(λ)) following Equation (8) and 

metrics of fit for the optimization data set.

λ ß0 ß1 ß2 ß3 ß4 N r2′ RMSD
[nm−1]

MAPD
[%]

%Bias
[%]

MODIS

[nm] 443 488 531 547

275–295 −3.289 0.270 −0.335 1.051 −0.921 322 0.61 0.002 6.4 −0.3

290–600 −3.471 0.127 −0.251 1.025 −0.843 322 0.38 0.002 6.2 −0.3

300–600 −3.607 0.044 −0.153 0.881 −0.722 324 0.30 0.001 5.7 −0.3

350–400 −3.924 −0.242 0.055 0.935 −0.710 331 0.26 0.001 6.8 −0.3

350–600 −3.908 −0.204 0.098 0.609 −0.463 331 0.22 0.001 6.3 −0.3

380–600 −3.912 −0.152 0.127 0.236 −0.173 340 0.14 0.001 6.3 −0.3

412–600 −4.219 −0.180 0.137 0.168 −0.131 782 0.16 0.002 7.4 −0.5

412–555 4.195 −0.162 0.147 0.096 −0.084 760 0.10 0.002 7.6 −0.5

SeaWiFS

[nm] 443 490 510 555

275–295 −3.012 0.427 −0.459 0.357 −0.228 424 0.77 0.002 6.8 −0.4

290–600 −3.425 0.131 −0.085 0.145 −0.130 424 0.46 0.002 6.6 −0.4

300–600 −3.615 0.004 0.014 0.160 −0.129 426 0.29 0.002 6.0 −0.3

350–400 −3.968 −0.298 0.178 0.301 −0.150 433 0.23 0.002 7.4 −0.4

350–600 −4.058 −0.288 0.091 0.356 −0.138 433 0.33 0.001 6.9 −0.4

380–600 −4.072 −0.226 0.088 0.208 −0.051 445 0.32 0.002 7.2 −0.3

412–600 −4.498 −0.466 0.690 −0.202 −0.015 8550 0.06 0.004 28.5 −5.2

412–555 −4.533 −0.455 0.683 −0.214 −0.012 8425 0.05 0.004 28.2 −5.1
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Table 5.

Coefficients of the MLR algorithm for retrieving DOC following Equation (8) and metrics of fitfor the 

optimization data set.

Algorithm ß0 ß1 ß2 ß3 ß4 N r2′ RMSD
[μmol L−1]

MAPD
[%]

%Bias
[%]

MODIS

[nm] 443 488 531 547

MLR1 4.923 0.641 −2.424 3.503 1.692 183 0.76 23.9 13.9 −1.5

SeaWiFS

[nm] 443 490 510 555

MLR1 5.272 0.526 −2.982 2.623 0.089 246 0.68 30.3 18.8 −3.0

ag(355) and Salinity

ag(355) Sal

MLR2 192.718 26.790 −3.558 - - 464 0.91 15.2 10.6 0.0
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Table 6.

Validation of algorithms for retrieving CDOM absorption (ag(λ)).

Algorithm γ N r2 RMSE MAPD %Bias

[nm] [m−1] [%] [%]

MODIS-Aqua

MLR 275 186 0.47 2.499 33 −17

MLR 380 188 0.45 0.117 54 −1

MLR 412 7626 0.33 0.068 33 −10

RFTB 275 191 0.50 3.100 78 37

RFTB 380 243 0.47 0.400 102 28

RFTB 412 6820 0.30 0.100 52 18

Shan11 350 237 0.45 1.669 134 108

Shan11 412 7748 0.28 0.287 92 72

TS11 412 7299 0.39 0.201 102 86

GIOP 412 6116 0.30 0.077 40 −12

QAA 412 6133 0.14 0.137 59 18

MODIS-Terra

MLR 275 291 0.43 2.746 48 −26

MLR 380 326 0.32 0.337 45 −29

MLR 412 10612 0.19 0.081 35 −1

RFTB 275 171 0.35 2.950 72 22

RFTB 380 269 0.35 0.380 125 21

RFTB 412 6962 0.20 0.110 63 34

Shan11 350 345 0.35 1.308 97 75

Shan11 412 10734 0.16 0.311 129 108

TS11 412 9607 0.20 0.202 109 87

GIOP 412 7976 0.12 0.108 51 11

QAA 412 8048 0.05 0.200 91 52

SeaWiFS

MLR 275 342 0.25 2.976 49 −57

MLR 380 418 0.32 0.318 58 −53

MLR 412 10233 0.10 0.081 47 23

RFTB 275 199 0.38 2.660 90 40

RFTB 380 423 0.36 0.370 209 41

RFTB 412 11594 0.06 0.110 55 27

Shan11 350 444 0.51 1.425 108 86

Shan11 412 10451 0.26 0.229 100 79

TS11 412 8890 0.20 0.250 152 128

GIOP 412 7863 0.11 0.085 45 11

QAA 412 7904 0.07 0.162 80 53
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Table 7.

Validation of algorithms for retrieving CDOM spectral slope (Sg).

Algorithm Waveband N r2 RMSE MAPD %Bias

[nm] [nm−1] [%] [%]

MODIS-Aqua

MLR 275–295 187 0.62 0.0034 11 6

MLR 300–600 213 0.15 0.0023 10 8

MLR 412–555 7825 0.06 0.0040 32 23

RFTB 275–295 214 0.58 0.0033 8 −1

RFTB 300–600 244 0.20 0.0019 8 4

Shan11 350–600 188 0.01 0.2750 427 366

TS11 412–555 6223 0.02 0.0290 217 −209

MODIS-Terra

MLR 275–295 284 0.41 0.0039 12 3

MLR 300–600 318 0.16 0.0024 10 9

MLR 412–555 10719 0.06 0.0036 27 20

RFTB 275–295 242 0.43 0.0000 10 −3

RFTB 300–600 271 0.11 0.0000 8 5

Shan11 350–600 297 0.03 0.1250 255 176

TS11 412–555 8078 0.00 0.0280 208 −203

SeaWiFS

MLR 275–295 350 0.44 0.0047 14 6

MLR 300–600 417 0.11 0.0021 8 4

MLR 412–555 10883 0.03 0.0029 17 −12

RFTB 275–295 350 0.37 0.0053 11 −7

RFTB 300–600 418 0.09 0.0022 9 5

Shan11 350–600 372 0.01 0.1320 202 140

TS11 412–555 4716 0.03 0.0290 203 −198
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Table 8.

Validation of algorithms for retrieving DOC.

Algorithm N r2 RMSE MAPD %Bias

[μmol
L−1]

[%] [%]

MODIS-Aqua

MLR1 164 0.23 40.8 41 24.7

MLR2 382 0.89 27.8 16 −13.0

RFTB 161 0.57 27.3 26 13.8

MODIS-Terra

MLR1 158 0.23 40.2 32 13.9

MLR2 369 0.90 26.7 15 −12.3

RFTB 114 0.47 29.4 27 12.1

SeaWiFS

MLR1 274 0.29 34.2 34 4.5

MLR2 339 0.89 28.9 15 −14.2

RFTB 182 0.30 25.3 23 6.7
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