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In 2020, the first male-type mitochondrial genome from the clam Macoma
balthica was published. Apart from the unusual doubly uniparental inheri-
tance of mtDNA, scientists observed a unique (over 4k bp long) extension
in the middle of the cox2 gene. We have attempted to replicate these data
by NGS DNA sequencing and explore further the expression of the long
cox2 gene. In our study, we report an even longer cox2 gene (over 5.5 kbp)
with no stop codon separating conserved cox2 domains, as well as, based
on the rtPCR, a lower relative gene expression pattern of the middle part
of the gene (50 = 1; mid = 0.46; 30 = 0.89). Lastly, we sequenced the cox2
gene transcript proving the excision of the intronic sequence.
1. Introduction
With the growing popularity of next-generation sequencing methods, scientists
are discovering more new features of mitogenomes, breaking the established
view of conserved structure and compactness of animal mitogenomes. Consid-
ering only animal mitogenomes, the length of mtDNA can vary greatly from
the usual 16–17 k base pairs (bp) [1]. The longest known animal mitochondrial
DNA belongs to clams from the Arcidae family Anadara sativa and reaches a
length of 48 kbp (KF667521). The shortest 10 kbp long belongs to the comb
jelly Mnemiopsis leidyi [2] (NC_016117). Mitochondrial DNA can also differ in
structure from typical circular, throughout linear in some medusozoan cnidar-
ians, calcareous sponges, ending in multipartite, fragmented in hydrozoan
cnidarians, lice and jellyfish [3]. What is more, the number of protein-coding
genes can also vary. There are mitogenomes lacking some of the canonical 13
protein: atp8 in flatworms [4,5], nematodes [6,7], atp6 and atp8 in comb jelly
[2], atp8 and nad5 in Hong Kong whipping frog [8], nad5 in tuatara [9] up to
mitogenomes with additional genes: mtMuts in Octocorallia [10]; dnaB in jelly-
fish [11]; atp9 in sponges [12] and protein-coding novel open reading frames
(orf’s) in bivalves [13–17]. It is worth mentioning here that in some rare cases,
the ‘missing’ genes might have been omitted and remain unannotated due
to the low-sequence homology to their counterpart genes present in
the available databases at that time (e.g. GenBank). One of those situations
was reported in bivalves from genus Mytilus, which were thought for a long
time to be missing atp8 gene in their mtDNA [18–21]. The typical ‘average’
metazoan mitogenome does not contain any introns, but as usual in these
cases, even here scientists found exceptions. Most cases concern group I and
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II introns found in non-bilaterian animals: hexacorals [22–26],
demosponges [27–31], and placozoan [32,33]. Such taxo-
nomic distribution is often used as empirical support for
mutational-pressure hypothesis explaining lack of introns in
fast-evolving mtDNA [34]. Up to this point, the only bilater-
ian animals where mitochondrial intronic sequences have
been identified are several species of annelids [35–38].

Bivalves are one of the animal classes with a wide range of
mitochondrial features scattered over many species that dis-
tinguish them from the typical structure of mtDNA. Some of
them vary in mitogenome size, some possess additional
tRNA, gene extensions, and additional protein-coding open
reading frames often associated with doubly uniparental
inheritance of mitochondrial DNA (DUI), which is unique
for bivalves. In DUI species male individuals are heteroplas-
mic, possess two divergent mitogenomes (Female-type and
faster evolving Male-type), while most of the female individ-
uals are homoplasmic toward F-type mitogenome. M-type
mitogenomes are localized mostly in male gonads and are
typically the only mitotype passed to progeny through
sperm [15,21, 39–45]. Fertilized egg cells receive F-type
mtDNA from mother and M-type from father, then depending
on the sex of future progeny (scenario when the embryo grows
into the female individual), male mitochondria get dispersed
during cell divisions resulting in quick loss of detectable
signal from male-type mtDNA. In the second case, when the
embryo develops into a male specimen, M-type mitochondria
migrate grouped together during the first cell divisions,
becoming the dominant fraction in the future gonads [46–49].

The Baltic clam Macoma balthica (Linnaeus 1758) is an
infaunal tellinid bivalve that is commonly found in marine
and estuarine soft-bottom habitats in the Northern Hemi-
sphere. The first sequencing of mitogenome of this species
was performed by Saunier et al. [50], who assembled and
annotated six nearly complete mitochondrial genomes from
five mitochondrial lineages distinguished based on cox1 hap-
lotypes [51]. Recently, a male-type mitogenome of Macoma
balthica was published [52]. Its unusual feature was a very
long (over 4 kbp long) cytochrome c oxidase subunit II
gene with stop codon separating the 50 part of cox2 gene.
This caught our interest, so we decided to analyse the
expression pattern of this gene to check if the whole sequence
is expressed as a single transcript, as well as to verify if the
reported stop codon that separates cox2 domains is true or
only an assembly artefact.
2. Methods
Individuals of Macoma balthica, used for DNA analysis and NGS
DNA sequencing, were collected in the Gulf of Gdansk (southern
Baltic Sea, Poland) using a bottom dredge on 8 November 2017.
The Gulf of Gdansk is a brackish-water basin, dominated by soft-
bottom habitats, with an elevated levels of pollution, eutrophica-
tion and primary production. Water temperature ranges
annually from −0.43 to 24.7°C, whereas average annual water
salinity is around 7–8 PSU ([53] and references therein). Collected
specimens were checked for the presence of sperm and egg cells
under a microscope, sectioned and stored in the freezer in 70%
ethanol until DNA extraction. Individuals for RNA samples
were gathered from the beach in Sopot (Poland) after the storm
in February 2021 and stored frozen at −80°C. DNA extraction
from male gonads was performed according to Hoarau et al.
[54] (the protocol was described in detail in [55]). RNA was
extracted from the entire body (half of the individual; approxi-
mately 1 cm × 1 cm shells) with the GenElute Mammalian Total
RNA miniprep kit (Sigma). After RNA extraction, the remaining
contaminating DNAwas digested with DNase I (EurX) and pur-
ified again on new columns from the GenElute Mammalian Total
RNA kit. To ensure the presence of chaotropic salts allowing for
the binding of the nucleic acids to the columns silica resin, RNA
extracts were mixed with isolation buffer in 1 : 1 ratio. Total DNA
from single-male individuals was sent to Macrogen Inc. for high-
throughput NGS sequencing (NovaSeq Illumina, TruSeq NGS
library 2 × 150 bp). Complete mitochondrial sequences have
been recovered with NOVOplasty [56] and validated by map-
ping NGS reads onto the assembled mitogenomes in CLC
Genomic Workbench 9.5 (QIAGEN). For gene prediction and
annotation MITOCONSTRICTOR [55,57] script with default par-
ameters was used, running and combining results from CRITICA
[58], Wise2 [59], GLIMMER [60], ARWEN [61], nhmmer [62] and
Phobius [63] software (detailed parameters for dependent pro-
grams can be found in MITOCONSTRICTOR pythons scrips).
The annotated mitochondrial genomes of Macoma balthica can
be found in the GenBank database under MH285593 and
MH285592 accession numbers. The cox2 gene expression pattern
was checked by mapping NGS RNA-seq reads (SRR5758183;
SRR5758184) [64] onto the assembled mitogenome in CLC
genomic workbench 9.5.

Based on the cytochrome oxidase subunit II sequence from
M-type mitogenome, six pairs of primers spanning 50-end,
mid-section, and 30-end of the sequence have been designed in
Primer3 [65]. Only optimized primer pairs (with high efficiency
approx. 100%) used in the study will be shown (electronic sup-
plementary material, table S1). Primers and PCR reaction
conditions were optimized on an approximately 6 kbp long
PCR M-cox2 amplicon containing complementary targets for all
primers. Composition of the PCR reaction mix for the approxi-
mately 6 kb amplicon was as follows: 25 ng DNA, 0.4 U
polymerase Phusion (New England Biolabs), 1 × Buffer GC for
difficult templates, 0.4 µM for each primer (Lim-F1z and Lim-
R3z) and 200 µM dNTP. Conditions for the PCR reaction were
as follows: initial denaturation at 98°C for the 30 s then denatura-
tion at 98°C for 10 s, annealing at 66°C for 30 s, elongation for
3 min at 72°C and final elongation 4 min at 72°C. Denaturation,
annealing and elongation were repeated in 35 cycles. The pro-
ducts of amplification from three male individuals were then
checked by gel electrophoresis and purified with the PCR/
DNA Clean-up kit (EurX). Next, products were digested with
the restriction enzymes (BamHI) or sent for Sanger sequencing
(Genomed SA). The standard curve for rtPCR was repeated
nine times in total and showed a very good correlation (five
10 × dilution points) between 103 and 107 target gene copies
per reaction (determination coefficient R2 > 0.99) (electronic sup-
plementary material, table S2). Parameters for all rtPCR reactions
were as follows: reverse transcription at 50°C for 20 min, initial
denaturation at 95°C for 10 min, followed by the 35 cycles of
denaturation (at 95°C for 30 s), annealing (at 58°C for 30 s) and
extension (at 72°C for 30 s). The final concentration of reagents
in a single 20 µl rtPCR reaction was as follows: 1 x SG Buffer
(SG OneStep RT-PCR kit; EurX), 0.4 µM of primers, 1 µl/reaction
SG Enzyme Mix and approximately 20 ng of RNA template. In
addition to figure 2, the rtPCR results were put in a tabularized
form in electronic supplementary material, tables S3 and S4.

The nucleic acid sequence of the cytochrome oxidase c sub-
unit II transcript was recovered in the following steps. First, the
reverse transcription reactions, with optional steps for GC-rich
sequences with secondary structures, were carried out according
to the protocol supplied by the manufacturer (Maxima Reverse
Transcriptase, Thermo Scientific). The reaction solution con-
tained both Random Hexamer primer, Oligo(dT)18 primer and
Lim-R3z primer. The reaction thermal profile was as follows:
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10 min at 25°C, 15 min at 50°C, 10 min at 65°C, 10 min at 50°C
and finally 5 min at 85°C. The first PCR reaction on cDNA tem-
plate was carried out with similar conditions as for rtPCR
standard curve controls (protocol above with Phusion polymer-
ase). The only differences were the set of primers used (Lim-
F1z and Lim-R3w), annealing temperature of 60°C and 30 s
extension time. The PCR product was then diluted 100 × times
and another nested PCR with Lim-F1z and Lim_CR22 primers
was performed (Lim-F1w primer also worked but was later
used in verification correct PCR product). PCR was carried out
in a higher volume of 50 µl containing the following concen-
trations of reagents: 2 µl PCR template, 1 × TaqNova buffer,
2 mM MgCl2, 200 µM dNTP, 0.1 µM primers and 1 U polymerase
TaqNova (Blirt). Cycling conditions were as follows: initial dena-
turation at 95°C, followed by 35 cycles of denaturation at 94°C
for the 30 s, annealing at 52°C for 20 s, extension at 72°C for
20 s and final extension at 72°C lasted 1 min. After electrophor-
esis a 500–600 bp long band was cut out from TAE gel,
purified with Agarose-Out DNA purification kit (EurX) and
sent for Sanger sequencing (Genomed SA). Sequence analysis
of mitogenomes and transcript was performed in CLC Genomic
Workbench 9.5 (Qiagen) and MEGA7 [66].
3. Results
Based on the NGS DNA sequencing reads, we have assembled
two new (F and M types) mitogenomes of Macoma balthica
clam. During the analysis, we observed a few discrepancies
between our and the published (MN528029) M-type mitogen-
ome. The divergence is minimal (3.3% p-distance) and is
mostly caused by the sequence and length differences in cox2
gene and non-coding control region. The overall length of our
cox2 gene (5.8 kbp) is different, and there is no stop codon
between both domains of the cox2 gene.What is also interesting
is that it seems almost impossible to map the RNA NGS reads
(SRR5758183 and SRR5758184 [64]) onto the assembled cox2
gene (figure 1). Only a few reads map onto the ‘inserted’
sequence fragment between 50 and 30 cox2 domains. This may
suggest that the assembled cox2with insertion is indeed an arte-
fact created during assembly or some sort of NUMTs (nuclear
mitochondrial DNA sequences) [67,68]. Another explanation
why there is a discrepancy in transcript coverage with sequen-
cing reads might be explained by a multiplicity of local
secondary RNA structures or excision of the inserted fragment
(intron) after transcription. To tackle this question, we took
two steps back from NGS technology, designed primers located
in three distinct parts of the cytochrome c oxidase II subunit and
performed PCR and rtPCR reactions.

In the beginning, we checked the presence and length of
cox2-insertion. We performed PCR spanning from the 50

cox2 domain to the 30 cox2 domain and performed digestion
with the restriction enzyme BamHI (only one restriction site
within the target gene). The digestion pattern correlated
with the mitogenome sequence assembled in this study
(two approx. 2833–2834 bp DNA fragments migrating
together). In case, if the sequence reported by Capt et al.
[52] was correct (MN528029) the expected restriction pattern
would result in the 2905 bp and 1870 bp products (electronic
supplementary material, figure S1). Next, we have sequenced
(Sanger sequencing) the 50-end of the PCR product looking
for stop codons in the cox2 open reading frame. No stop
codon was present in the gene sequence (checked on three
different individuals). The frameshift in the published
sequence might have possibly been caused by the homopoly-
mer of four out of five guanine nucleotides (electronic
supplementary material, figure S2).

With the results of the PCR, we have designed and opti-
mized rtPCR reactions for the 50, mid and 30 regions trying to
prove or disprove the integrity of long cox2 transcripts. An
almost equal number of transcripts for each of the three locations
or a decreasing slope from 50 through ‘mid’ to 30 would suggest
that this transcript is indeed unusually long, discrepancies in the
number of mid-transcript fragments would suggest possible
intron excision or (if the PCR showed shorter length) proble-
matic assembly artefacts. Reverse transcription polymerase
chain reactions on average resulted in the following relative
expression pattern 50-end= 1, mid = 0.46 and 30-end= 0.89
(figure 2). This strong decrease in expression between the mid
and both 50 and 30 ends supported the possibility of mid-
sequence excision in an intron-like manner. Finally, to prove
the presence of the intron and identify the excision sites of the
transcript once and for all, we have attempted to sequence
reverse-transcribed cox2 transcript. The complete cox2 gene
and transcript sequence can be found in the electronic sup-
plementary material, data. After alignment and incorporation
of the sequenced transcript fragment into the whole gene, the
acquired cytochrome c subunit II gene transcript was 1005 bp
long, 234 bp from the 50-end, and 771 bp from the 30-end.
What is interesting is that the intron splicing site is located
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before one of the quite conserved transmembrane domains pre-
sent in F-cox2 (cox2 gene from female-type mitogenome) as well
as in dna-M-cox2 (gene frommale-type mitogenome containing
intronic sequence). In rna-M-cox2 (cox2 RNA transcript without
the intron sequence), this missing transmembrane domain is
then complemented at the 30-end of the transcript but has low-
sequence homology (however keeps structural homology) to
the canonical cox2 sequence. Transcript sequencing also revealed
that primers used to amplify the 50-end of the cox2 gene were
indeed amplifying the 50-edge of the intron.

Bioinformatic analysis of the dna-M-cox2 and RNA tran-
script revealed the presence of a canonical intron splicing
site at the 50-end of the sequence (50-GT) and non-canonical
but still possible GG at the 30-end of the intron (canonical
AG-30). Furthermore, the cox2 transcript nucleotides close to
the intron excision site (50-ATCATCTTT-ACT-splicing.site
and splicing.site-GG-AAAGGTGGT-30) can create a stable 9
bp long double-stranded structure possibly facilitating con-
nection of the 50 and 30 transcripts after intron excision.
Unfortunately due to the length (the sequence was too long
for most of the available RNA structure prediction tools) and
lack of similarity to the introns described in the literature, it
is difficult to reliably predict the structure of the cox2 intron,
identify the reverse transcriptase coding open reading frame
and assign it to any of the existing intron groups. The entire
intron is in-frame so in theory any fragment of the sequence
could be coding the ‘nested’ protein limited by flanking sec-
ondary RNA structures, but every BLAST search performed
by us with nucleotide or translated intron sequence reported
no positive hits to sequences in the GenBank database
(except itself, the M-type mitogenome from Macoma balthica).

4. Discussion
Our results have some implications for the understanding of
doubly uniparental inheritance in bivalves. Supernumerary
open reading frames and gene extensions are often hypoth-
esized as a key element of the molecular mechanism that
stands behind DUI. On the one hand, the intronic cox2 exten-
sion inMacoma balthica may not be a part of this system (there
is still m-orf in the mitogenome), but on the other hand, we do
not know if m-cox2 may exist in more than one isoform. For
example, in theory, the short one could be used most of the
time in the mitochondrial energy cycle, and the long one
could possibly be used during embryo development as a
mitochondrial tagging mechanism. This is highly supported
by a recent study on bivalve Scrobicularia plana done by
Tassé et al. [69]. This clam represents a parallel situation to
the one observed here with M. balthica, a long cox2 gene
with insertions between domains. The authors were able to
detect signal from the long RNA transcript (longer than pre-
dicted), short targeted approximately 1 kb long transcript
fragments containing homologous with typical cox2 domains
and inserted intron-like fragments, and big (Mw. approx.
220 kDa) protein detected with the Western blot technique.
Unfortunately, the signal for a smaller 32–37 kDa version of
the m-cox2 protein was not detected (personal communi-
cation). Furthermore, mitochondrial genes are expressed as
polycistronic mRNA, so the presence of transcripts contain-
ing and lacking introns after excision is expected (figure 2)
[69]. Of course, final proof for the existence of two m-cox2
protein isoforms in M. balthica cannot be reliably answered
without proper proteomic studies.

There is a hypothesis explaining why the set of protein-
coding genes retained in metazoan mitogenomes is limited to
the genes encoding core respiratory chain subunits, stipulating
that these membrane proteins are difficult to properly transport
acrossmembranes [70,71] andhence the selection favoured their
in situ synthesis [72]. Indeed, the density of transmembrane
domains within proteins encoded by the mitogenome is very
high. Nevertheless, short insertions within these proteins are
apparently tolerated by selection and do occur sometimes. In
bivalves, such insertions are present for example in the atp6 of
giant clams [73]. The protein with a relatively small number of
transmembrane domains is cox2, typically having only two
such domains in a relatively long protein. Therefore, one could
expect that insertions within this gene should be tolerated
better. In fact there are cases in which the singular cox2 subunit
was split into two separate proteins in alveolate and chlorophy-
cean mitogenomes [74], with subsequent migration of some of
the resultinggenes to thenucleus. It has beenalso shownthat fis-
sion of cox2 occurred in an insect mitogenome of the wasp
Campsomeris plumipes [75]. In the context of DUI bivalves, cox2
has been postulated to be involved in tagging of M type mito-
chondria in Unionidea [76]. In this case, the protein has a large
extension with multiple additional transmembrane domains,
so this interpretation seems plausible. However, there are also
other, apparently independently derived, modified forms of
this gene inDUIbivalves.A100aminoacid long insertion ispre-
sent in cox2 of theM-typeMeretrix lamarckii [77], but in this case,
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no additional transmembrane domains were predicted in the
protein. InArcuatula senhousia, the gene is duplicated inMmito-
genome, and one of the copies does have an additional
transmembrane domain at the C-terminus [78]. In the case of
Geukensia demissa, theM-type cox2 is singular, but also extended
and features one additional transmembrane domain [79].

In conclusion, we have confirmed the first clear case of
an intronic sequence in the mitochondrial genome of bivalves
and one of the first in mitogenomes of bilaterian animals. This
raises the question of how this discovery fits and resonates
with the hypothesis that faster evolving mitogenomes do not
possess introns, especially because here we have a case of
even faster evolving bivalvian M-type mitogenomes.
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