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Abstract: Vibrio coralliilyticus (V. coralliilyticus) is a pathogen that causes mass mortality in marine
bivalve hatcheries worldwide. In this study, we used a bacteriophage (phage) cocktail to prevent
multiple-antibiotic-resistant (MAR) and phage-resistant (PR) V. coralliilyticus infection in Pacific oyster
(Crassostrea gigas) larvae. To prevent the occurrence of phage-resistant strains and decrease the effect of
mono-phage treatment, we prepared a phage cocktail containing three types of V. coralliilyticus-specific
phages and tested its prophylactic efficacy against MAR and PR V. coralliilyticus infection. The results
of the cell lysis test showed that the phage cocktail showed an excellent bactericidal effect against
the MAR and PR variants in contrast to the experimental group treated with two mono phages
(pVco-5 and pVco-7). An in vivo test using Pacific oyster larvae also confirmed the preventive
effect against MAR and PR variants. In conclusion, the application of the phage cocktail effectively
prevented V. coralliilyticus infection in marine bivalve seedling production. Furthermore, it is expected
to reduce damage to the aquaculture industry caused by the occurrence of MAR and PR V. coralliilyticus.
Therefore, phage cocktails may be used for the control of various bacterial diseases.

Keywords: pacific oyster larvae; mass mortality; Vibrio coralliilyticus; bacteriophage; phage- resistant
variant; cocktail phage

1. Introduction

The marine bivalve culture industry has been the largest sector of the aquaculture industry
worldwide since the development of the aquaculture industry. In 2018, it accounted for 62.7%
(15,821,176 tons) of the total production of marine animals (25,233,162 tons), including fish and
crustaceans [1]. Therefore, the industry for producing artificial seedlings of various marine bivalves
is also actively developing. However, diseases in marine bivalve hatcheries that occur due to
Vibrio sp. [2–6] and Ostreid Herpesvirus-1 [7–12] infections cause economic losses worldwide.

In marine bivalve hatcheries, Vibrio coralliilyticus (V. coralliilyticus) is one of the major causative
agents of drastic mass mortality in a short period when larvae are at the free-swimming stage [4,5,13].
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To control V. coralliilyticus infection in marine bivalve hatcheries, many studies have been conducted
on the application of various antibiotics, noting problems such as the occurrence of antibiotic-resistant
variants and environmental pollution due to the indiscriminate use of antibiotics in seedling production
facilities [14,15].

Due to problems associated with the use of antibiotics, such as the occurrence of resistant
bacteria, environmental contamination, and the killing of nonpathogenic bacteria, research has been
actively performed on the development of alternative antibiotics. Among these alternative approaches
is the potential prophylactic and therapeutic use of bacteriophages (phages) for the treatment of
bacterial infections. In the aquaculture field, the problem of antibiotic abuse has been continuously
emphasized, and alternative studies on the application of bacteriophages have been actively performed
in invertebrate [16–21] and fish [22–25]. However, if the phage used also has low infectivity, it can
induce phage resistance variants [26–28]. Therefore, the application of a phage cocktail is suggested
to prevent the induction of mono-phage-resistant variants [27,29–31]. In addition, the use of phage
cocktails is suggested to prevent various species of bacterial infections using each specific phage against
the host bacteria [27,32].

The present study was aimed at preventing mass mortality in marine bivalve hatcheries,
caused by multiple-antibiotic-resistant and phage-resistant V. coralliilyticus, using a phage cocktail.
We induced a mono-phage-resistant variant. We also prepared a phage cocktail using three types of
V. coralliilyticus-specific phages, and we evaluated the phage cocktail through in vitro and in vivo tests
to confirm its prophylactic efficacy against a mono-phage-resistant variant.

2. Results

2.1. Induction of Phage-Resistant Variant

Whereas pVco-7-resistant Vco58 colonies were observed, pVco-5- and pVco-14-resistant colonies
were not induced under the conditions conducted in the present study (Figure 1a). Thus, we designated
the pVco-7-resistant variant as VcoR-7. The induced variant was reidentified via a phage susceptibility
test using other phages. The results of the pathogenicity test of VcoR-7 are shown in Figure 1b.
The VcoR-7-treated group (1.87× 104 colony-forming unit (CFU)/mL) showed a cumulative mortality of
32.15%± 1.45% after 24 h of exposure. When concentrations of 1.87× 105 CFU/mL and 1.87× 106 CFU/mL
were used, each group showed a cumulative mortality of 66.03%± 3.38% and 98.93%± 1.5%, respectively,
after 24 h. In the case of the 1.87 × 107 CFU/mL-inoculated group, all larvae died within 12 h. On the
other hand, only the larvae group without bacterial inoculation, which was treated only with pVco-C
had a 100% survival rate. In this study, VcoR-7 also showed high pathogenicity with its parent
Vco58 [16].

Figure 1. Phage-resistant variants and their pathogenicity: (a) pVco-7-resistant Vco58 (VcoR-7) lawn
(the arrowhead indicates the zone each phage was dripped on: A indicates pVco-5, B indicates pVco-7,
and C indicates pVco-14) and (b) pathogenicity of VcoR-7. Control-1 indicates the larvae group with
filtered and sterilized seawater (FSS), and Control-2 indicates the pVco-C-treated larvae group, without
VcoR-7 inoculation. Both control groups were superimposed.
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2.2. Antimicrobial Susceptibility of the Phage-Resistant Variant

The results of the antibiotic disk diffusion test are mentioned in Table 1. VcoR-7 is
susceptible to Cefuroxime sodium, Imipenem, Gentamicin, Tetracycline, Ciprofloxacin, Levofloxacin,
Ofloxacin Sulfonamides, Trimethoprim-sulfamethoxazole and Chloramphenicol, whereas VcoR-7 has
a strong resistance to Ampicillin, Ampicillin-sulbactam, Cefepime, Cefotaxime, Cefoxitin, Ceftazidime,
and Meropenem and had a weak resistance to Amoxicillin-clavulanate and Piperacillin-tazobactam
and Amikacin.

Table 1. Result of the antimicrobial susceptibility test of the pVco-7-resistant Vibrio coralliilyticus
strain (VcoR-7).

Antimicrobial Agent
Zone Diameter

(mm)Interpretive
Criteria

VcoR-7 Antimicrobial Agent
Zone Diameter

(mm)Interpretive
Criteria

VcoR-7

S * I * R * Zone
Diameter/Criteria S I R Zone

Diameter/Criteria

Ampicillin ≥17 14–16 ≤13 0/R Imipenem ≥23 20–22 ≤19 26/S
Amoxicillin-clavulanate ≥18 14–17 ≤13 16/I Meropenem ≥23 20–22 ≤19 18/R
Ampicillin-sulbactam ≥15 12–14 ≤11 11/R Amikacin ≥17 15–16 ≤14 15/I

Piperacillin ≥21 18–20 ≤17 0/R Gentamicin ≥15 13–14 ≤12 15/S
Piperacillin-tazobactam ≥21 18–20 ≤17 20/I Tetracycline ≥15 12–14 ≤11 20/S

Cefepime ≥25 19–24 ≤18 18/R Ciprofloxacin ≥21 16–20 ≤15 25/S
Cefotaxime ≥26 23–25 ≤22 21/R Levofloxacin ≥17 14–16 ≤13 25/S
Cefoxitin ≥18 15–17 ≤14 14/R Ofloxacin ≥16 13–15 ≤12 22/S

Ceftazidime ≥21 18–20 ≤17 15/R Trimethoprim-sulfamethoxazole ≥16 11–15 ≤10 27/S
Cefuroxime sodium ≥18 15–17 ≤14 19/S

* S: susceptible, I: intermediate, and R: resistant.

2.3. The Bactericidal Effects of Each Phage and pVco-C against VcoR-7

The bactericidal effects of each phage and pVco-C against VcoR-7 are shown in Figure 2. The Optical
density 600 nm (OD600) value of all control groups (multiplicity of infection (MOI): 0) continuously
increased during the incubation. In the case of pVco-5-treated groups, no increase in the OD value was
observed in the MOI of 10, but the MOI of 0.1 and 1 showed more than 60% of the OD value of the
control (MOI: 0) after 24 h (Figure 2a). In the case of pVco-7, the OD value continuously increased in the
group treated with VcoR-7, similar to the control, regardless of the MOI value (Figure 2b). In contrast,
pVco-14 showed a strong cell lysis effect regardless of the MOI value (Figure 2c). These results showed
pVco-14 had a bactericidal efficacy against VcoR-7 similar to that previously reported for its parent
strain, Vco58 [16]. pVco-C also showed a strong bactericidal efficacy in both groups infected with
VcoR-7 (Figure 2d). Based on the above results, VcoR-7 showed a strong sensitivity to pVco-14 and
a high titer of pVco-5. According to the results of the cell lysis test, pVco-C showed a bactericidal effect
similar to that of pVco-14. VcoR-7 has a strong resistance to pVco-7. Additionally, pVco-5 showed
a weak bactericidal effect when the MOI values were 0.1 and 1. These findings suggest that pVco-14 is
the main contributor to the strong bactericidal effect of pVco-C.

2.4. Pacific Oyster Larvae Infection Prevention Using Various Concentrations of pVco-5, pVco-7, pVco-14,
and pVco-C

In the in vivo test results of pVco-5, there was no significant difference in cumulative mortality
compared to the control-2, except for the 107 plaque-forming units per milliliter (PFU/mL)-treated
group (Figure 3a). In addition, pVco-7 showed no protective effect on the infection with VcoR-7
(Figure 3b). Meanwhile, pVco-14 and pVco-C showed less than 40% cumulative mortality in various
concentrations in phage-treated groups (Figure 3c,d). The results of the in vivo test were remarkably
similar to those of the in vitro test. The utilization of a phage cocktail, which aimed to compensate for
the disadvantage of using a single phage, showed strong preventive effects in in vitro and in vivo tests.



Pathogens 2020, 9, 831 4 of 9

Figure 2. The bactericidal effects of each phage and pVco-C against VcoR-7: (a) pVco-5, (b) pVco-7,
(c) pVco-14, and (d) pVco-C against VcoR-7. The p-value for each hour was confirmed to be <0.001,
except when pVco-7 was compared to the control group; multiplicity of infection (MOI): 0.

Figure 3. Pacific oyster larvae infection prevention using various concentrations of: (a) pVco-5,
(b) pVco-7, (c) pVco-14, and (d) pVco-C. All groups except for the pVco-7-treated group had
p-values <0.001 when compared to the control group. Control-1 indicates the phage-treated group
without VcoR-7 inoculation, and Control-2 indicates the VcoR-7 inoculated larvae group without
phage treatment.

3. Discussion

The emergence of multiple-antibiotic-resistant bacteria continues to be a problem due to the misuse
of various antibiotics in aquaculture industries. As a result, limiting the application of antibiotics in this
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industry is becoming an urgent need. Thus, the aim of several studies in this field is the identification
and development of alternative strategies, such as vaccination [33], and the use of bacteriophages [34],
probiotics [35], and immunostimulants [36]. Vaccination is an ideal method to prevent diseases caused
by pathogen infections, but it cannot be applied to invertebrates because of the absence of an acquired
immune system. Therefore, the phage application is actively studied to prevent bacterial infection in
invertebrates and has shown a substantial prophylactic efficacy [16,17].

However, phage-resistant strains may also be induced. In fact, the pVco-7-resistant variant
induced in our study did not show sensitivity to pVco-7 in the in vitro and in vivo tests. In the present
study, pVco-C showed bactericidal effects similar to those of the pVco-14 mono-phage treatment.
This suggests that pVco-14 is the most effective at lysing VcoR-7. The pVco-14-resistant variant was not
induced in this study. However, it could be speculated that the advantage of using pVco-C, instead of
pVco-14, is superior due to the fact that it could prevent a possible emergence of single-phage-resistant
mutants after the long-term usage of a mono-phage. Therefore, a phage cocktail could be utilized
to prevent the emergence of phage-resistant bacteria that may occur when a mono-phage is applied.
pVco-5, pVco-7, and pVco-14 have been reported to inhibit Vco58 and other V. coralliilyticus strains at
27 ◦C [16,17], indicating that the three phages are suitable for bivalve hatchery environments.

In general, a phage cocktail can be utilized not only for the prevention and treatment of various
bacterial infections but, also, for the control of phage-resistant bacteria that may occur during
mono-phage application [26]. In the present study, we used a phage cocktail to prevent the occurrence
of phage-resistant variants and confirmed the bactericidal effects of pVco-C in in vitro experiments.
The phage resistance mechanisms of bacteria have been widely studied, including the prevention of
phage adsorption, blocking of phage receptors, production of extracellular matrix, and production of
competitive inhibitors [30]. The use of cocktail phages can arise a competition for the same receptor in
each phage. If there is the same infection mechanisms between used phages, phage cocktails do not
show infectivity against the mono-phage-resistant strain. In the present study, pVco-5 and pVco-14
showed a bactericidal effect against the pVco-7-resistant variant. It means that both phages do not show
the same mechanisms to infect the host cell in comparison with pVco-7. Therefore, it is suggested that
the infectious mechanism of each phage used in preparation of phage cocktails should be considered.

4. Materials and Methods

4.1. Bacterial Strain and Growth Conditions

V. coralliilyticus 58 (designated Vco58), a highly virulent strain against Pacific oyster
(Crassostrea gigas) larvae [5,16], was used as a host for phage isolation and propagation. Sodium chloride
(final concentration 2.0%) supplemented with tryptic soy agar (TSA; BD Difco, Sparks, MD, USA),
tryptic soy broth (TSB; BD Difco, Sparks, MD, USA), and semi-solid TSB top agar were used for bacterial
growth and phage propagation. Vco58 and phage-resistant strains were cultured in an incubator at
27 ◦C for 24 h.

4.2. Phage Cocktail Preparation

Three previously isolated V. coralliilyticus specific phages, pVco-5 and pVco-7 [17] and pVco-14 [16],
were used to prepare the phage cocktail (designated pVco-C) (Figure 4). All phages were confirmed
as lytic phages through the whole-genome sequence analysis [37], unpublished data. Phages were
purified using the Caesium chloride density gradient method [38] and adjusted to a concentration of
109 plaque-forming units per milliliter (PFU/mL) and mixed in a ratio of 1:1:1.
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Figure 4. Phages used in this study: (a) pVco-5, (b) pVco-7, and (c) pVco-14. Bar indicates 50 nm.

4.3. Induction of Phage-Resistant Variants of V. coralliilyticus

Ten milliliters of each pure phage suspension (≥108 PFU/mL) were mixed with 100 mL of Vco58
cultured in TSB (106 CFU/mL). After gentle blending, the mixture was incubated in a shaking incubator
at 27 ◦C and 150 rpm for 24 h. One hundred microliters of cultured lysates were mixed with 3 mL
of TSB top agar. After gentle mixing, the cells were spread onto TSA and incubated at 27 ◦C for two
days. If colonies occurred on the plate, they were re-cultured in TSB at 27 ◦C and 150 rpm for 12 h.
Then, 100 µL of the bacterial suspension was spread onto a TSA plate. Ten microliters of the previously
inoculated phage (≥109 PFU/mL) were subsequently dripped onto the bacterial lawns and incubated at
27 ◦C for 24 h. If phage plaques were not observed, the spot assay using the strains that did not form
plaques were repeated, and cultures that produced no plaque were chosen as phage-resistant strains.

4.4. Antimicrobial Susceptibility of the Phage-Resistant Variant

The antimicrobial susceptibility test of the pVco-7-resistant strain was carried out using
21 antibiotics by using the disk-diffusion method following the Clinical and Laboratory Standard
Institute (CLSI) recommendations [39]. The used antibiotic disks are listed in Table 1. A standard
disk diffusion test was performed on Muller Hinton Agar (BD Difco, Sparks, MD, USA). With the
exception of temperature, all experimental conditions were performed following the CLSI guidelines.
The antimicrobial susceptibility test was not conducted at 35 ± 2 ◦C, as suggested by CLSI, but at
27 ◦C, the optimal growth temperature of V. coralliilyticus and the incubation temperature of Pacific
oyster larvae. The results were interpreted according to CLSI guidelines. Escherichia coli, ATCC 25922,
was used as the quality control strain.

4.5. Pathogenicity of the Phage-Resistant Variant

Five-day-old healthy Pacific oyster larvae (100–140 µm) were used to confirm the pathogenicity of
the phage-resistant variant. A challenge test was performed as previously described by Kim et al. [4].
Oyster larvae (n = 50 ± 13) were placed into each well of a 6-well cell culture plate (SPL, Pocheon, Korea)
with 10 mL of 32 practical salinity units (psu) of filtered and sterilized seawater (FSS). The phage-resistant
variant was inoculated into each well, and the final concentrations were adjusted to 0, 1.87 × 104,
1.87 × 105, 1.87 × 106 CFU, and 1.87 × 107 CFU/mL, and incubated at 27 ◦C for 24 h. To evaluate the
toxicity of the phage cocktail, the pVco-C-treated group without bacterial inoculation was also used.
The cumulative mortality of each well was monitored at 6-h intervals using an inverted microscope
BX41 (Olympus, Tokyo, Japan). The pathogenicity tests were performed in triplicate.

4.6. Bacterial Cell Lysis Test of the Phage-Resistant Variant

To evaluate the bactericidal effect of each phage and pVco-C, the phage-resistant variant induced
in this study was used as the host. Bacterial cell lysis tests were performed as previously described by
Kim et al. [17]. The multiplicity of infection (MOIs) of each phage and pVco-C was regulated to 0, 0.1,
1, and 10. The absorbance (OD600) of each group was checked for 24 h at 3-h intervals. All tests were
conducted in six replicates.
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4.7. Prophylactic Efficacy of the Phages and Phage Cocktail

For the in vivo tests, phage preparations were partially purified using 10% polyethylene glycol
8000, 1-M sodium chloride, and FSS, as previously described by Kim et al. [16]. Five-day-old healthy
Pacific oyster larvae (n = 50 ± 19) were placed into each well of a 6-well cell culture plate with 10 mL of
each purified phage suspension, adjusted to 104, 105, 106, and 107 PFU/mL and acclimated at 27 ◦C
for 1 h. After adaptation, 106 CFU/mL of the phage-resistant variant solution, washed with FSS three
times, was inoculated into each well and incubated for 24 h at 27 ◦C. The cumulative mortality was
checked for 24 h at 6-h intervals. We also used two control groups, one without a phage and one
without bacteria. Larvae without cilia and intravalvular movement were considered dead following
the protocol previously described by Sugumar et al. [5]. The in vivo test was performed in triplicate
under the same conditions.

4.8. Statistical Analysis

Statistical analysis was conducted using the SigmaPlot 14.0 software (Systat Software, Inc. Chicago,
IL, USA). One-way analysis of variance (ANOVA) was used to analyze the data followed by the
Bonferroni post-hoc test. A p-value < 0.05 was considered statistically significant.

5. Conclusions

Like antibiotic-resistant variants, phage-resistant strains can also be induced in nature. In the
present study, the pVco-7-resistant variant was induced and shown to have high pathogenicity towards
Pacific oyster larvae as its parent strain. We prepared a phage cocktail to confirm its prophylactic
efficacy against a mono-phage-resistant variant. The results show that this phage cocktail was found
to be effective in the prevention of the mono-phage-resistant V. coralliilyticus infection in Pacific oyster
larvae. This study may contribute to the reduction of the damaging effects, caused by the occurrence
of multi-drug-resistant variants, to the aquaculture industry. Moreover, the use of a phage cocktail
may prevent the emergence of phage-resistant bacteria that can occur during single-phage therapy and
could potentially be used to control various bacterial diseases.

Author Contributions: H.J.K. and S.C.P. designed the study, and H.J.K., J.W.J., S.S.G., S.G.K., and S.W.K.
conducted the experiments. J.K. and S.B.L. analyzed the data, C.C. and S.C.P. supervised and critically reviewed
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the cooperative research program for Agriculture Science and Technology
Development (Supportive Management Project of the Center for Companion Animals Research), the rural
development administration, grant number PJ013985032020, and the Korea research fellowship program of the
National Research Foundation of Korea (NRF), Ministry of Science and ICT, grant number KRF: 2016H1D3A1909005.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. Food and Agriculture Organization of the United Nations. FAO FishStat, Global Aquaculture Production
for Species (Tonnes): Pacific Oyster. 2019. Available online: http://www.fao.org/fishery/topic/16140/en
(accessed on 31 October 2019).

2. Tubiash, H.S.; Chanley, P.E.; Leifson, E. Bacillary necrosis, a disease of larval and juvenile bivalve mollusks I.
Etiology and epizootiology. J. Bacteriol. 1965, 90, 1036–1044.

3. Elston, R.A.; Hasegawa, H.; Humphrey, K.L.; Polyak, I.K.; Häse, C.C. Re-emergence of Vibrio tubiashii
in bivalve shellfish aquaculture: Severity, environmental drivers, geographic extent and management.
Dis. Aquat. Org. 2008, 82, 119–134.

4. Kim, H.J.; Jun, J.W.; Giri, S.S.; Chi, C.; Yun, S.; Kim, S.G.; Kim, S.W.; Han, S.J.; Kwon, J.; Oh, W.T.; et al.
Identification and genome analysis of Vibrio coralliilyticus causing mortality of Pacific oyster (Crassostrea gigas)
larvae. Pathogens 2020, 9, 206.

http://www.fao.org/fishery/topic/16140/en


Pathogens 2020, 9, 831 8 of 9

5. Sugumar, G.; Nakai, T.; Hirata, Y.; Matsubara, D.; Muroga, K. Vibrio splendidus biovar II as the causative agent
of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis. Aquat. Org. 1998, 33, 111–118.

6. Travers, M.-A.; Achour, R.M.; Haffner, P.; Tourbiez, D.; Cassone, A.-L.; Morga, B.; Doghri, I.; Garcia, C.;
Renault, T.; Fruitier-Arnaudin, I.; et al. First description of French V. tubiashii strains pathogenic to mollusk:
I. Characterization of isolates and detection during mortality events. J. Invertebr. Pathol. 2014, 123, 38–48.

7. Arzul, I.; Renault, T.; Lipart, C. Experimental herpes-like viral infections in marine bivalves: Demonstration
of interspecies transmission. Dis. Aquat. Org. 2001, 46, 1–6.

8. Kim, H.J.; Jun, J.W.; Giri, S.S.; Yun, S.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.; Oh, W.T.; et al.
Mass mortality in Korean bay scallop (Argopecten irradians) associated with Ostreid Herpesvirus-1 uVar.
Transbound. Emerg. Dis. 2019, 66, 1442–1448.

9. Farley, C.A.; Banfield, W.G.; Kasnic, G.; Foster, W.S. Oyster herpes-type virus. Scinece 1972, 178, 759–760.
10. Gittenberger, A.; Voorbergen-Laarman, M.; Engelsma, M. Ostreid herpesvirus OsHV-1 µVar in Pacific oyster

Crassostrea gigas (Thunberg 1793) of the Wadden Sea, a UNESCO world heritage site. J. Fish Dis. 2016,
39, 105–109.

11. Moss, J.; Burreson, E.; Cordes, J.; Dungan, C.; Brown, G.; Wang, A.; Reece, K. Pathogens in Crassostrea ariakensis
and other Asian oyster species: Implications for non-native oyster introduction to Chesapeake Bay.
Dis. Aquat. Org. 2007, 77, 207–223.

12. Renault, T.; Arzul, I. Herpes-like virus infection in hatchery-reared bivalve larvae in Europe: Specific viral
DNA detection by PCR. J. Fish Dis. 2001, 24, 161–167.

13. Richards, G.P.; Watson, M.A.; Needleman, D.S.; Church, K.M.; Häse, C.C. Mortalities of Eastern and Pacific
oyster larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii. Appl. Environ. Microbiol. 2015,
81, 292–297.

14. Dubert, J.; Osorio, C.R.; Prado, S.; Barja, J.L. Persistence of antibiotic resistant Vibrio spp. in shellfish hatchery
environment. Microb. Ecol. 2016, 72, 851–860.

15. Nicolas, J.L.; Corre, S.; Gauthier, G.; Robert, R.; Ansquer, D. Bacterial problems associated with scallop
Pecten maximus larval culture. Dis. Aquat. Org. 1996, 27, 67–76.

16. Kim, H.J.; Jun, J.W.; Giri, S.S.; Chi, C.; Yun, S.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.;
et al. Application of the bacteriophage pVco-14 to prevent Vibrio coralliilyticus infection in Pacific oyster
(Crassostrea gigas) larvae. J. Invertebr. Pathol. 2019, 167, 107244.

17. Kim, H.J.; Giri, S.S.; Kim, S.G.; Kim, S.W.; Kwon, J.; Lee, S.B.; Park, S.C. Isolation and characterization of
two bacteriophages and their preventive effects against pathogenic Vibrio coralliilyticus causing mortality of
Pacific oyster (Crassostrea gigas) larvae. Microorganisms 2020, 8, 926.

18. Cohen, Y.; Joseph Pollock, F.; Rosenberg, E.; Bourne, D.G. Phage therapy treatment of the coral pathogen
Vibrio coralliilyticus. Microbiol. Open 2013, 2, 64–74.

19. Jacquemot, L.; Bettarel, Y.; Monjol, J.; Corre, E.; Halary, S.; Desnues, C.; Bouvier, T.; Ferrier-Pages, C.;
Baudoux, A.-C. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread
coral pathogen. Front. Microbiol. 2018, 9, 2501.

20. Li, Z.; Li, X.; Zhang, J.; Wang, X.; Wang, L.; Cao, Z.; Xu, Y. Use of phages to control Vibrio splendidus infection
in the juvenile sea cucumber Apostichopus japonicus. Fish. Shellfish Immunol. 2016, 54, 302–311.

21. Patil, J.R.; Desai, S.N.; Roy, P.; Durgaiah, M.; Saravanan, R.S.; Vipra, A. Simulated hatchery system to assess
bacteriophage efficacy against Vibrio harveyi. Dis. Aquat. Org. 2014, 112, 113–119.

22. Hoai, T.D.; Mitomi, K.; Nishiki, I.; Yoshida, T. A lytic bacteriophage of the newly emerging rainbow trout
pathogen Weissella ceti. Virus Res. 2018, 247, 34–39.

23. Jun, J.W.; Kim, J.H.; Shin, S.P.; Han, J.E.; Chai, J.Y.; Park, S.C. Protective effects of the Aeromonas phages
pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by
Aeromonas hydrophila. Aquaculture 2013, 416, 289–295.

24. Park, S.C.; Shimamura, I.; Fukunaga, M.; Mori, K.I.; Nakai, T. Isolation of bacteriophages specific to a fish
pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol. 2000,
66, 1416–1422.

25. Park, S.C.; Nakai, T. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis.
Dis. Aquat. Org. 2003, 53, 33–39.

26. Gu, J.; Liu, X.; Li, Y.; Han, W.; Lei, L.; Yang, Y.; Zhao, H.; Gao, Y.; Song, J.; Lu, R.; et al. A method for
generation phage cocktail with great therapeutic potential. PLoS ONE 2012, 7, e31698.



Pathogens 2020, 9, 831 9 of 9

27. Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol.
2013, 8, 769–783.

28. Nakai, T.; Sabour, P.; Griffiths, M. Application of bacteriophages for control of infectious diseases in
aquaculture. In Bacteriophages in the Control of Food and Waterborne Pathogens; Sabour, P.M., Griffiths, M.W., Eds.;
American Society for Microbiology Press: Washington, WA, USA, 2010; pp. 257–272.

29. Mateus, L.; Costa, L.; Silva, Y.J.; Pereira, C.; Cunha, A.; Almeida, A. Efficiency of phage cocktails in the
inactivation of Vibrio in aquaculture. Aquaculture 2014, 424, 167–173.

30. Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010,
8, 317–327.

31. Filippov, A.A.; Sergueev, K.V.; He, Y.; Huang, X.Z.; Gnade, B.T.; Mueller, A.J.; Fernandez-Prada, C.M.;
Nikolich, M.P. Bacteriophage-resistant mutants in Yersinia pestis: Identification of phage receptors and
attenuation for mice. PLoS ONE 2011, 6, e25486.

32. Costa, P.; Pereira, C.; Gomes, A.T.P.C.; Almeida, A. Efficiency of single phage suspensions and phage
cocktail in the inactiovation of Escherichia coli and Salmonella Typhimurium: An in vitro preliminary study.
Microorganisms 2019, 7, 94.

33. Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A review of fish vaccine development strategies: Conventional
methods and modern biotechnological approaches. Microorganisms 2019, 7, 569.

34. Nakai, T.; Park, S.C. Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol. 2002,
153, 13–18.

35. Irianto, A.; Austin, B. Probiotics in aquaculture. J. Fish Dis. 2002, 25, 633–642.
36. Wang, W.; Sun, J.; Liu, C.; Xue, Z. Application of immunostimulants in aquaculture: Current knowledge and

future perspectives. Aquac. Res. 2016, 48, 1–13.
37. Kim, H.J.; Jun, J.W.; Giri, S.S.; Chi, C.; Yun, S.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Park, S.C. Complete

genome sequence of a bacteriophage, pVco-5, that infects Vibrio coralliilyticus, which causes bacillary necrosis
in Pacific oyster (Crassostrea gigas) larvae. Genome Announc. 2018, 6, e01143-17.

38. Sambrook, V.; Russell, D.W. Molecular cloning: A laboratory manual (3-volume set). Immunology. 2001,
49, 895–909.

39. Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing
of Infrequently Isolated or Fastidious Bacteria M45, 3rd ed.; CLSI Guideline M45; CLSI: Wayne, PA, USA, 2015.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Induction of Phage-Resistant Variant 
	Antimicrobial Susceptibility of the Phage-Resistant Variant 
	The Bactericidal Effects of Each Phage and pVco-C against VcoR-7 
	Pacific Oyster Larvae Infection Prevention Using Various Concentrations of pVco-5, pVco-7, pVco-14, and pVco-C 

	Discussion 
	Materials and Methods 
	Bacterial Strain and Growth Conditions 
	Phage Cocktail Preparation 
	Induction of Phage-Resistant Variants of V. coralliilyticus 
	Antimicrobial Susceptibility of the Phage-Resistant Variant 
	Pathogenicity of the Phage-Resistant Variant 
	Bacterial Cell Lysis Test of the Phage-Resistant Variant 
	Prophylactic Efficacy of the Phages and Phage Cocktail 
	Statistical Analysis 

	Conclusions 
	References

