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Abstract

Information sampling can reduce uncertainty in future decisions but is often costly. To maxi-

mize reward, people need to balance sampling cost and information gain. Here we aimed to

understand how autistic traits influence the optimality of information sampling and to identify

the particularly affected cognitive processes. Healthy human adults with different levels of

autistic traits performed a probabilistic inference task, where they could sequentially sample

information to increase their likelihood of correct inference and may choose to stop at any

moment. We manipulated the cost and evidence associated with each sample and com-

pared participants’ performance to strategies that maximize expected gain. We found that

participants were overall close to optimal but also showed autistic-trait-related differences.

Participants with higher autistic traits had a higher efficiency of winning rewards when the

sampling cost was zero but a lower efficiency when the cost was high and the evidence was

more ambiguous. Computational modeling of participants’ sampling choices and decision

times revealed a two-stage decision process, with the second stage being an optional sec-

ond thought. Participants may consider cost in the first stage and evidence in the second

stage, or in the reverse order. The probability of choosing to stop sampling at a specific

stage increases with increasing cost or increasing evidence. Surprisingly, autistic traits did

not influence the decision in either stage. However, participants with higher autistic traits

inclined to consider cost first, while those with lower autistic traits considered cost or evi-

dence first in a more balanced way. This would lead to the observed autistic-trait-related

advantages or disadvantages in sampling optimality, depending on whether the optimal

sampling strategy is determined only by cost or jointly by cost and evidence.

Author summary

Children with autism can spend hours practicing lining up toys or learning all about cars

or lighthouses. This kind of behaviors, we think, may reflect suboptimal information sam-

pling strategies, that is, a failure to balance the gain of information with the cost (time,
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energy, or money) of information sampling. We hypothesized that suboptimal informa-

tion sampling is a general characteristic of people with autism or high level of autistic

traits. In our experiment, we tested how participants may adjust their sampling strategies

with the change of sampling cost and information gain in the environment. Though all

participants were healthy young adults who had similar IQs, higher autistic traits were

associated with higher or lower efficiency of winning rewards under different conditions.

Counterintuitively, participants with different levels of autistic traits did not differ in the

general tendency of oversampling or undersampling, or in the decision they would reach

when a specific set of sampling cost or information gain was considered. Instead, partici-

pants with higher autistic traits consistently considered sampling cost first and only

weighed information gain during a second thought, while those with lower autistic traits

had more diverse sampling strategies that consequently better balanced sampling cost and

information gain.

Introduction

Information helps to reduce uncertainty in decision making but is often costly to collect. For

example, to confirm whether a specific tumor is benign or malignant may require highly inva-

sive surgery procedures. In such cases, it can be more beneficial to tolerate some degree of

uncertainty and take actions first. To maximize survival, humans and animals need to balance

the cost and benefit of information sampling and sample the environment optimally [1,2].

However, autism spectrum disorder (ASD)—a neurodevelopmental disorder characterized

by social impairments and repetitive behaviors [3]—seem to be accompanied by suboptimal

information sampling, though in various guises. For example, individuals with repetitive

behaviors tend to spend time on redundant information that helps little to reduce uncertainty

[4]. Eye-tracking studies reveal that people with ASD have atypical gaze patterns in ambiguous

or social scenes, that is, they sample the visual environment in an inefficient way [5,6]. Accord-

ing to the recently developed Bayesian theories of ASD that explain a variety of perceptual,

motor, and cognitive symptoms [7–13], deviation from Bayesian optimality in information

processing is primary to ASD [4,14–17]. In this Bayesian framework, information sampling is

referred as “disambiguatory active inference” [4] and plays an important role in guiding the

subsequent inferences or decisions. We hereby conjectured that ASD symptoms such as repeti-

tive behaviors and ineffecient gaze patterns reflect general impairments in information

sampling.

The autistic traits of the whole population form a continuum, with ASD diagnosis usually

situated on the high end [18–24]. Moreover, autistic traits share genetic and biological etiology

with ASD [25]. Thus, quantifying autistic-trait-related differences in healthy people can pro-

vide unique perspectives as well as a useful surrogate for understanding the symptoms of ASD

[23,26].

The present study is aimed to understand how autistic traits in typical people may influence

their optimality of information sampling. In particular, we focused on the situation where

information can be used to improve future decisions (e.g. [27–29], in contrast to non-instru-

mental information gathering such as [30–39]) and hypothesized that individuals with high

autistic traits may deviate more from optimality in information sampling.

Possible suboptimality may arise from a failure of evaluating sampling cost or information

gain, or improper trading off the two, or a greater noise [27]. To investigate these possibilities,

we tested healthy adults of different levels of autistic traits in an information sampling task
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adapted from [40,41]: On each trial of the experiment, participants could draw samples

sequentially to accumulate evidence for a probabilistic inference and would receive monetary

rewards for correct inferences. Each additional sample may increase their probability of cor-

rect inference but also incur a fixed monetary cost. In order to maximize expected gain, partic-

ipants should draw fewer samples when each sample had higher cost or provided higher

evidence, and vice versa. We manipulated the cost and evidence per sample and compared

participants’ performance to optimality. We found that different levels of autistic traits were

accompanied by different extents of deviation from optimality. Compared to their peers, par-

ticipants with higher level of autistic traits received higher rewards in the zero-cost conditions

due to less undersampling, where the optimal strategy was to sample as many as possible, but

meanwhile lower rewards in the high-cost, low-evidence condition due to more oversampling,

where the optimal strategy would sacrifice accuracy to save cost.

What cognitive processes in information sampling are particularly affected by autistic

traits? Through computational modeling, we further decomposed participants’ sampling

choices into multiple sub-processes and found that the influence of autistic traits was surpris-

ingly selective and subtle. In particular, participants’ sampling choices could be well described

by a two-stage decision process: When the first decision stage does not reach the choice of

stopping sampling, a second decision stage is probabilistically involved to arbitrate, which

offers a second chance to consider stopping sampling. The two stages were independently con-

trolled by cost and evidence and neither stage showed autistic-trait-related differences. What

varied with levels of autistic traits was the strategic diversity: Participants with higher autistic

traits were more likely to always consider cost in the first stage and evidence in the second,

while those with lower autistic traits had a larger chance to use the reverse order as well. As a

consequence, the former would perform better when the optimal strategy does not depend on

evidence, while the latter would do better when the optimal strategy is determined jointly by

cost and evidence.

Results

One hundred and four healthy young adults participated in our experiment, whose autistic

traits were measured by the self-reported Autism Spectrum Quotient (AQ) questionnaire [18].

The computerized experimental task is illustrated in Fig 1A. On each trial, participants first

saw two jars filled with opposite ratios of pink and blue beads and were told that one jar had

been secretly selected by the experimenter. They could sample up to 20 beads sequentially with

replacement from the selected jar to infer which jar had been selected. Each key press would

randomly sample one bead and participants could decide to stop sampling at any moment.

For each correct inference, participants would receive 10 points minus the total sampling cost.

Their goal was to earn as many points as possible, which would be redeemed into monetary

bonus in the end. The cost of sampling one bead could be 0, 0.1, or 0.4 points, referred below

as zero-, low-, and high-cost conditions respectively. The pink-to-blue ratios of the two jars

could be 60%:40% vs. 40%:60%, or 80%:20% vs. 20%:80%, which corresponded to lower (60/

40) or higher (80/20) evidence per sample favoring one jar against another. The sample size

that maximizes expected gain would change with the cost and evidence conditions (Fig 1B, see

Methods).

Sampling optimality may increase or decrease with autistic traits in

different conditions

We computed efficiency—the expected gain for participants’ sample sizes divided by the maxi-

mum expected gain—to quantify the optimality of participants’ sampling choices and used

Autistic traits and information sampling
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linear mixed model analyses to identify the effects of AQ and its interactions with sampling cost

and information gain (LMM1 for efficiency, see Methods). Participants’ efficiency (Fig 2A) was

on average 94% (i.e. close to optimality) but decreased with increasing cost (F2,100.98 = 65.38,

p<.001) or decreasing evidence (F1,101.88 = 124.95, p<.001), and decreased more dramatically

when high cost and low evidence co-occurred (interaction F2,202.89 = 123.20,p<.001). Though

participants with different AQ did not differ in overall efficiency, AQ influenced efficiency

through its interaction with cost and evidence (three-way interaction F2,203.45 = 5.60, p = .004).

As post hoc comparisons, we compared the regression slope of AQ—the change in efficiency

with one unit of increase in AQ—across conditions (Fig 2D). Under the low-evidence condi-

tions, the slope was more negative under high cost than under zero (t137.82 = −3.16, p = .005) or

Fig 1. The bead-sampling task. (a) Time course of one trial. “Preview” informed the participant of the pink-to-blue ratios of the two jars

(80%:20% vs. 20%:80% in this example, corresponding to the high-evidence condition). Then the participant could sample beads from the

unknown pre-selected jar one at a time up to 20 beads (“sampling”) or quit sampling at any time. Afterward, the participant judged which jar had

been selected (“judgment”). Feedback followed, showing the correctness of judgment and winning of the current trial. Feedback was presented for

1 s, whereas preview, sampling, and judgment were self-paced. During sampling, the remaining bonus points (green bar), as well as the array of

bead samples, were visualized and updated after each additional sample. (b) Optimal sampling strategy vs. participants’ performance for each of

the six cost-by-evidence conditions. On a specific trial, the expected probability of correctness (dashed lines) and the remaining bonus points

(dotted lines) are respectively increasing and decreasing functions of the number of bead samples. The expected gain (solid lines), as their

multiplication product, first increases and then decreases with the number of samples. Note that the sample size that maximizes expected gain

varies across different cost and evidence conditions. Each circle represents a participant with the color indicating their AQ score.

https://doi.org/10.1371/journal.pcbi.1006964.g001
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low cost (t151.58 = −2.64, p = .023). No significant differences were found among different costs

in the high evidence conditions. In almost all conditions the slope was non-negative or even sig-

nificantly positive (i.e. the zero cost, low evidence condition, t136.08 = 2.11, p = .037; see S1A

Fig), indicating higher efficiency for participants with higher AQ. However, when sampling was

both costly and little informative (i.e. the high-cost, low-evidence condition), the efficiency

decreased with AQ (t121.32 = −2.51, p = .014; S1A Fig). We verified these AQ-related differences

in an alternative analysis, where we divided participants evenly into three groups of low, middle,

and high AQ scores and found similar results (S2A Fig).

The overall high efficiency was accompanied by adaptive sampling behaviors that were

modulated by both sampling cost and information gain: Participants drew fewer samples in

costlier or more informative conditions as the optimal strategy would require (Fig 2B). We

quantified participants’ sampling behaviors in a particular condition using two measures: sam-

pling bias (the actual number of sampling minus the optimal number of sampling, denoted

Fig 2. Optimality of sampling performance and the effects of autistic traits. (a) Sampling efficiency varied with cost (abscissa) and evidence (different colors)

conditions. Participants’ efficiency was on average 94% (i.e. close to optimality) but decreased with increasing cost or decreasing evidence, and decreased more

dramatically when high cost and low evidence co-occurred. (b) The mean number of bead samples participants drew in a condition (solid lines) decreased with

increasing cost or increasing evidence. Compared to the optimal number of samples (dashed lines), participants undersampled in the zero- or low-cost conditions while

oversampled in the high-cost conditions. (c) Sampling variability (standard deviation of the numbers of samples drawn across trials) varied with cost and evidence

conditions. Error bars in (a)–(c) denote between-subject standard errors. (d)–(f) Effects of AQ levels on participants’ sampling performance in different cost (different

colors) and evidence (abscissa) conditions. ΒAQ is the unstandardized coefficient of AQ indicating how much the efficiency (d), number of samples (e), and sampling

variability (f) would change when AQ increases by one unit. Error bars represent standard errors of the coefficients. Orange asterisk: p< .05, orange plus: p< .1.

https://doi.org/10.1371/journal.pcbi.1006964.g002
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ns � nopt ) and sampling variability (standard deviation of the actual numbers of sampling,

denoted SD(ns)).
A linear mixed model analysis on ns � nopt (LMM2, see Methods) showed main effects of

cost (F2,100.93 = 752.65, p<.001) and evidence (F1,101.98 = 177.48, p<.001), as well as their inter-

actions (F2,202.97 = 546.59, p<.001). Similar to its influence on efficiency, AQ did not lead to a

general tendency of more oversampling or undersampling but had significant interactions

with cost (F2,101.13 = 3.99, p = .022). In particular, the slope of AQ for ns � nopt (Fig 2E) was

more positive for the zero-cost than for the low-cost condition (t101.90 = 2.61, p = .025). Under

zero cost, given that participants tended to undersample (Fig 2B), a positive slope of AQ

(t110.02 = 2.67, p = .009 for high evidence and t107.86 = 1.68, p = .096 for low evidence; S1B Fig)

implies less undersampling for participants with higher AQ.

According to a similar linear mixed model analysis on SD(ns) (LMM3, see Methods), the

main effects of cost (F2,100.86 = 57.13, p<.001) and evidence (F1,101.89 = 161.78, p<.001) as well as

their interactions (F2,203.43 = 33.51, p<.001) were significant (Fig 2C). Again, AQ influenced sam-

pling variability through its interaction with cost and evidence (three-way interaction F2,204.09 =

5.27, p = .006). Post hoc comparisons showed that the slope of AQ for sampling variability was

more negative under zero cost than under low (t172.54 = −2.43, p = .042) or high cost (t188.90 =

−3.51, p = .002) in the low-evidence conditions but was little influenced by cost in the high-evi-

dence conditions (Fig 2F; also see S1C Fig). In the low-evidence conditions, the observed slopes

imply that higher AQ led to lower sampling variability under zero cost (t140.52 = −2.22, p = .028)

but higher sampling variability under high cost (t154.23 = 2.50, p = .014).

Taken together, participants with different levels of AQ differed in both the mean and SD

of sample sizes. Participants with higher AQ had higher efficiency in the zero-cost, low-evi-

dence condition, which was associated with less undersampling and lower sampling variability.

Meanwhile, higher AQ corresponded to lower efficiency and higher sampling variability in the

high-cost, low-evidence condition.

Bimodal decision times suggest two consecutive decision processes

Decision time (DT) for a specific sample—the interval between the onset of last bead sample

(or, for the first sample, the start of the sampling phase) and the key press to draw the sample—

provided further information about the cognitive process underlying sampling choices. Though

decision or response times usually have a positively skewed unimodal distribution and are close

to Gaussian when log-transformed [42,43], the log-transformed DTs for continuing sampling

in our experiment had a bimodal distribution (Hartigan’s dip test for multimodality, D = 0.004,

p<.001), well fitted by a mixture of two Gaussian distributions (Fig 3A). Such bimodality was

evident in the low-cost and high-cost conditions (low-cost, low-evidence: D = 0.013, p<.001;

low-cost, high-evidence: D = 0.009, p<.001; high-cost, low-evidence: D = 0.014, p<.001; high-

cost, high-evidence: D = 0.015, p<.001), but was barely palpable in the zero-cost conditions

(zero-cost, low-evidence: D = 0.002, p = .11; zero-cost, high-evidence: D = 0.001, p = .95), where

the first peak was dominant. Similar bimodal distributions were observed for individual partici-

pants (S3 Fig) and could not simply be artifacts of data aggregation.

Linear mixed model analysis (LMM4) showed that the mean DTs (Fig 3B) increased with

cost (F2,101 = 120.62, p<.001) and decreased with evidence (F1,102 = 165.85, p<.001). The dif-

ference between different evidence conditions was also larger for higher sampling cost (inter-

action F2,204 = 14.65, p<.001). Moreover, there was a significant interaction between cost and

AQ (F2,101 = 6.22, p = .003): DTs tended to decrease with AQ under zero cost but increase with

AQ under low cost (Fig 3C, slope difference between these two conditions reached signifi-

cance, t102 = 3.45, p = .002).
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The DTs within the same trial changed with sample number (LMM5, F19,10805525.21 = 24.5,

p<.001). Post hoc contrasts showed significantly negative linear trends (S4 Fig, t4323568 = −12.26,

p<.001), indicating that sampling decisions in a trial became faster after more samples were

drawn. AQ significantly moderated the effect of sample number (interaction F19,11498809.98 =

1.66, p = .035), with higher AQ associated with a flatter trend (t4628456 = 3.62, p = .002). In other

words, participants with higher AQ tended not to speed up their decisions as much as those

with lower AQ.

A straightforward explanation for the bimodal DT distribution would be a probabilistic

mixture of two cognitive processes. Next, we used computational modeling to explore the pos-

sibility of two decision stages and showed that it could quantitatively predict the effects of cost

and evidence as well as the bimodal distribution of DTs.

Sampling is controlled by cost and evidence in two separate stages

We considered a variety of models for sampling choices, which fell into two categories: one-

stage models and two-stage models (Fig 4A, see Methods). In one-stage models, the choice of

Fig 3. Decision time (DT) for each sampling. (a) The distributions of DTs aggregated over all participants (main plot) and for each cost and evidence condition

(insets). In the main plot, the distribution of DTs (histogram) was clearly bimodal, well fitted by a Gaussian mixture (gray curve) with two Gaussian components (black

curves). Such bimodality was also visible in most inset plots, though the relative weights of the two components varied with experiment conditions. (b) Mean DTs varied

with cost (abscissa) and evidence (different colors) conditions. Error bars represent between-subject standard errors. (c) Effects of AQ levels on participants’ DTs in

different cost (different colors) and evidence (abscissa) conditions. ΒAQ is the unstandardized coefficient of AQ indicating how much the mean DT in a condition would

change when AQ increases by one unit. Error bars represent standard errors of the coefficients.

https://doi.org/10.1371/journal.pcbi.1006964.g003
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whether to take a (j+1)-th sample after j samples is modeled as a Bernoulli random variable,

with the probability of stopping controlled by cost- and evidence-related factors, including the

expected cost and evidence for the prospective sample and the total cost and evidence of exist-

ing samples. To separate the influences of different factors on participants’ sampling choices,

we constructed a set of one-stage models that are controlled either by cost-related factors, or

by evidence-related factors, or by both. To test the possibility that people of higher autistic

traits may overweight recent evidence in evidence integration [4,17], we also considered mod-

els with an evidence decay parameter, in which the weight for an earlier sample decays as a

function of the number of samples thereafter.

In two-stage models of sampling choices, we assumed that deciding whether to stop or con-

tinue sampling may involve two consecutive decision stages, where the decision in the first

stage can either be final or be re-evaluated in an optional second stage. Whether to enter the

second stage is probabilistic, conditional on the decision reached in the first stage. The deci-

sions in the two stages are independent and controlled separately by the cost- and evidence-

related factors and are subject to evidence decay. In other words, the decision in each stage is

similar to that of a one-stage model. We considered 12 different two-stage models whose

assumptions differ in three dimensions (see Methods): (1) which factors control the first stage

and which control the second stage (cost-first or evidence-first), (2) what kind of decision in

the first stage (continuing or stopping sampling) has a chance to trigger the second stage, and

(3) what determines the probability to enter the second stage (“second-thought probability”)

after a qualified first-stage decision. For example, the best-fitting second-stage model described

below, denoted Cost!continueC� cond Evidence, has the following assumptions: cost-related factors con-

trol the first stage and evidence-related factors control the second stage. If stopping sampling

is the decision in the first stage, it is finalized and there is no second stage; otherwise, either

continuing sampling becomes the final decision, or the decision is re-evaluated in the second

stage, with the second-thought probability determined by the cost condition (i.e. three differ-

ent second-thought probabilities for the zero-, low-, and high-cost conditions).

We fit all the models to participants’ sampling choices separately for each participant using

maximum likelihood estimates. For each fitted choice model, with some additional assump-

tions, we were able to model participants’ DTs and fit the additional DT parameters using

maximum likelihood estimates as well (see Methods). The sum of the log likelihoods for

choices and DTs was used for further model comparisons, which was mathematically equiva-

lent to the log likelihood from modeling the joint distribution of choices and RTs (see Methods

for proof). We compared the models in goodness-of-fit using the Akaike Information Crite-

rion corrected for small samples (AICc) [44,45]. The ΔAICc for a specific model was calculated

for each participant with respect to the participant’s best-fitting model (i.e. lowest-AICc) and

then summed across participants. We also used the group-level Bayesian model selection

Fig 4. Computational modeling of sampling choices and decision times. (a) Schematic of one-stage and two-stage models. One-stage models only consist of the steps

on the left-hand side: Each time a participant decides whether to stop or continue sampling, the probability of stopping is a sigmoid function of a linear combination of

multiple decision variables. Two-stage models assume that participants may probabilistically have a second thought to reconsider the choice (the coral dashed arrow).

The second stage (on the right-hand side) works in the same way as the first stage but the two stages are controlled by different sets of decision variables. (b) Results of

model comparison based on the joint fitting of choice and DT. The ΔAICc for a specific model was calculated for each participant with respect to the participant’s best-

fitting model (i.e. lowest-AICc) and then summed across participants. Both fixed-effects (summed ΔAICc: lower is better) and random-effects (estimated model

frequency: higher is better) comparisons revealed that the best-fitting model was a two-stage model with cost-related variables considered in the first stage and evidence-

related variables in the second stage (i.e. Cost!continueC� cond Evidence). The best one-stage model was the model involving only cost-related decision variables (i.e. Cost only).

See Methods (or S1 Table) for the description of each model. Estimated model frequency (color coded) is a random effects measure of the proportion of participants best

fit by the model. (c) Distribution of sample sizes (i.e. number of bead samples) for each condition: data vs. model predictions. (d) Distribution of DTs for each condition:

data vs. model predictions. The best-fitted two-stage model (red curves) well predicted the observed distributions (histograms) of sample sizes and DTs for each cost and

evidence condition, including the bimodality of the observed DT distributions, while the best-fitted one-stage model (blue curves) failed to do so. Both data and model

predictions were aggregated across participants.

https://doi.org/10.1371/journal.pcbi.1006964.g004
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[46,47] for random effects model comparisons and plot each model’s estimated model fre-

quency—a random effects measure of the proportion of participants best fit by the model.

Among the four one-stage models (Fig 4B), the best model (i.e. model with the lowest summed

ΔAICc) was the one that is influenced by cost only (denoted Cost only). However, the two-

stage models, all of which were controlled by the same cost- and evidence-related factors as the

one-stage models, fit much better to participants’ choices and DTs than the best one-stage

model. The best two-stage model was Cost!continueC� cond Evidence (described above), which best

accounted for 50% of the 104 participants (estimated model frequency = 44.6%) and whose

probability of outperforming all the other 15 models (protected exceedance probability)

approached 1. Model comparisons based on the Bayesian Information Criterion (BIC) [48,49]

led to similar results (see S5 Fig for group and individual participants’ ΔAICc and ΔBIC).

When two-stage models were fit to participants’ DTs, the second-thought probabilities were

estimated exclusively from choices and not free parameters adjustable by DTs (see Methods).

However, predictions of the Cost!continueC� cond Evidence model agreed well not only with participants’

choices but also with their bimodal DTs (Fig 4C and 4D, see S3 & S6 Figs for individual plots) and

the decrease of DT with sample number (S4 Fig). This further supports our hypothesis that the

observed bimodal DT distribution arises from a two-stage decision process.

As additional evidence for the link between two-stage decisions and bimodal RTs, the mean

DT—as a proxy for the proportion of slow decisions—increased with the probability of using

the second stage (Fig 5; rS = .60,p<.001). The positive correlation also held for each separate

cost condition (zero cost: rS = .44,p<.001; low cost: rS = .35,p<.001; high cost: rS = .22,p =

.027). Moreover, the effects of cost on mean DT (LMM4, as we reported earlier) could be partly

explained away by the effect of second-thought probability when the latter was added as a pre-

dictor (LMM6; second-thought probability and its interaction with evidence, F1,78.06 = 47.74,

p<.001 and F1,284.99 = 25.76,p<.001 respectively; cost and its interaction with evidence,

F2,73.75 = 2.43,p = .09 and F2,233.83 = 2.59,p = .08).

Autistic traits influence the strategic diversity of sampling decisions

What individual differences in the decision process may relate to the autistic-trait-related

effects on the optimality of sampling choices? We first examined the estimated parameters of

Fig 5. Positive correlations between mean decision time and second-thought probability. According to two-stage models, mean DT—as a proxy for the proportion

of slow decisions—should increase with the probability of using the second stage. Indeed, mean DT and second-thought probability were positively correlated,

separately for each cost condition (the first three panels) and when aggregated across all cost conditions (the last panel), thus providing additional support for the two-

stage decision process. Each dot is for one participant in one specific cost condition. Lines and shaded areas respectively represent regression lines and standard errors.

The rS refers to Spearman’s correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1006964.g005
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the best model (Cost!continueC� cond Evidence), which allowed us to characterize individual partici-

pants’ sampling choices from three aspects: cost- or evidence-related weights (11 parameters),

second-thought probabilities (three parameters separately for the three cost conditions), and

evidence decay rate (one parameter). We computed the correlation between participants’ AQ

score and each parameter, correcting for multiple comparisons separately for each parameter

group. Only a negative correlation between AQ and the zero-cost second-thought probability

was marginally significant (rS = −.22,p = .07, uncorrected p = .023), which suggests that higher

AQ participants were less likely to use the second stage to reconsider stopping sampling in the

zero-cost conditions, where the optimal strategy was to sample as many as possible. Though

intuitive and consistent with the AQ effects on efficiency, we found this correlation would van-

ish when only the participants who were best fit by the Cost!continueC� cond Evidence model were

included (rS = −.02,p = .86) and thus might have been an epi-phenomenon arising from differ-

ent individuals’ different decision strategies.

Next we tested whether participants’ autistic traits influenced the decision strategies they

used. As shown in our results of model comparisons, participants may have used a variety of

different two-stage decision processes: Among the 104 participants, 52 participants were best

fit by the Cost!continueC� cond Evidence model and the remaining participants by the other two-stage

models. It is also possible that the same individual may have used different decision processes

in different choices. The assumptions of the 12 two-stage models, as we specified earlier, dif-

fered in three dimensions. On each dimension, we could classify the 12 models into different

families (e.g. cost-first vs. evidence-first models concerning which factor controls the first

stage). We quantified a specific participant’s decision strategies on the dimension by the partic-

ipant’s mean AICc difference between the different families of models and computed its corre-

lation with AQ (corrected for possible multiple comparisons on the dimension). We found

that the AICc difference between cost-first and evidence-first model families (denoted by

AICccost!evidence−AICcevidence!cost and referred to as cost-evidence strategy index) was nega-

tively correlated with AQ (rS = −.23,p = .018; Fig 6A). An alternative analysis using the tripar-

tite division of participants into AQ groups showed similar results (S2B Fig). Little correlations

were found between cost-evidence strategy index and other demographic variables including

IQ, age, and gender (S7 Fig).

We assured that such differences in decision process could cause the observed autistic trait-

related effects in sampling optimality by computing the correlation between cost-evidence

strategy index and efficiency for each cost and evidence condition (corrected for 6 compari-

sons). The correlation (Fig 6B) was significantly negative for the zero-cost, low-evidence con-

dition (rS = −.66,p<.001), the zero-cost, high-evidence condition (rS = −.55,p<.001), and the

Fig 6. Effects of autistic traits on decision process and how it relates to sampling optimality. (a) Correlation between AQ and cost-evidence strategy index

(AICccost!evidence−AICcevidence!cost). More negative cost-evidence strategy index indicates stronger preference for cost-first over evidence-first decision processes,

while more positive cost-evidence strategy index indicates the reverse. Each dot is for one participant. The blue line and the shaded area respectively represent

regression line and standard error. (b) Correlation coefficients between cost-evidence strategy index and efficiency for each cost and evidence condition. C:0 = zero-

cost, C:0.1 = low-cost, C:0.4 = high-cost, E:0.6 = low-evidence, E:0.8 = high-evidence. Error bars represent FDR-corrected 95% confidence intervals. All these

correlations were consistent with what we would expect if AQ influences sampling efficiency through its influence on the use of cost-first vs. evidence-first decision

processes. For example, given that AQ was negatively correlated with cost-evidence strategy index, and cost-evidence strategy index was negatively correlated with

the efficiency in the zero-cost, low-evidence condition, we would expect AQ to be positively correlated with the efficiency in the zero-cost, low-evidence condition,

and indeed it was. (c) Correlation between AQ and cost-evidence strategy index varied with the value of cost-evidence strategy index. We ranked all participants by

cost-evidence strategy index in ascending order, that is, from the strongest preference for cost-first to the strongest preference for evidence-first, and plot the

Spearman’s correlation coefficient between cost-evidence strategy index and AQ as a function of the number of participants included in the correlation analysis. The

observed overall negative correlation and the stronger correlation given only the cost-first-dominated participants were included supports the cost-first vs. balanced-

strategy hypothesis (see text): Participants with higher AQ tended to always consider cost first, while those with lower autistic traits considered cost or evidence first

in a more balanced way. Statistical significance marked on the plot was based on cluster-based permutation tests (see Methods).

https://doi.org/10.1371/journal.pcbi.1006964.g006
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low-cost, low-evidence condition (rS = −.34,p<.001), and was significantly positive for the

high-cost, low-evidence condition (rS = .48,p<.001). All these correlations were consistent

with what we would expect if AQ influences sampling efficiency through its influence on the

use of cost-first vs. evidence-first decision processes. For example, given that AQ was nega-

tively correlated with cost-evidence strategy index, and cost-evidence strategy index was nega-

tively correlated with the efficiency in the zero-cost, low-evidence condition, we would expect

AQ to be positively correlated with the efficiency in the zero-cost, low-evidence condition, and

indeed it was. Similar correlations were also found between cost-evidence strategy index and

sampling bias (ns � nopt ) or sampling variation (SD(ns)) (S8 Fig).

Given that all participants were either much better modeled by cost-first models (i.e. cost-

evidence strategy index� 0) or almost equivalently well by cost-first and evidence-first mod-

els (i.e. cost-evidence strategy index� 0) (Fig 6A), the negative correlation between cost-evi-

dence strategy index and AQ implies that participants with higher AQ preferred to consider

cost first, while those with lower AQ preferred to have cost-first and evidence-first decisions

more balanced (instead of preferring evidence first). If this cost-first vs. balanced-strategy

(instead of cost-first vs. evidence-first) hypothesis for higher vs. lower AQ is true, we would

also expect the correlation between cost-evidence strategy index and AQ to be weak for those

whose decisions were almost equally likely to be cost-first or evidence-first (i.e. cost-evidence

strategy index� 0). In other words, we expect the correlation to be stronger if only the partici-

pants whose decisions were more dominated by cost-first (i.e. cost-evidence strategy index�

0) is included. To test this, we ranked all participants by cost-evidence strategy index in

ascending order and plot the Spearman’s correlation coefficient between cost-evidence strat-

egy index and AQ as a function of the number of participants included in the correlation anal-

ysis (Fig 6C). The correlation was statistically significant when the number of participants

included was large enough (cluster-based permutation test, p = .006). In addition, compared to

the overall correlation across the 104 participants, the correlation indeed appeared stronger

when only the cost-first-dominated participants were included, which reached marginal signif-

icance when the number of participants included was between 54 and 60 (cluster-based per-

mutation test, p = .083) or between 65 and 72 (p = .081). This provides further evidence for the

cost-first vs. balanced-strategy hypothesis and suggests that participants with different levels of

autistic traits differ in the diversity of their decision processes: Participants with higher AQ

tended to always consider cost first, while those with lower autistic traits considered cost or

evidence first in a more balanced way.

In the two-stage decision process we modeled, because the second stage is only proba-

bilistically recruited, factors considered in the first stage would effectively leverage a greater

influence on the sampling choice than those of the second stage. In other words, always

being cost-first means the sampling choice is mainly determined by cost-related factors,

while sometimes cost-first and sometimes evidence-first means the sampling choice is more

of a tradeoff between cost- and evidence-related factors. Neither strategy is necessarily opti-

mal but may approximate the optimal strategy in different situations: The former is closer

to optimal when the optimal strategy does not depend on evidence, while the latter is closer

to optimal when the optimal strategy varies with both cost and evidence. Participants’ dif-

ferences in strategic diversity thus explain the autistic trait-related differences we observed

in efficiency.

Discussion

Humans must sample the environment properly to balance the advantage of gaining additional

information against the cost of time, energy, and money [50]. Previous research suggests that
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suboptimal information sampling may be a fundamental deficit in ASD [4,14–17,51]. In the

current study, we tested healthy adults with different levels of autistic traits to investigate how

autistic traits influence information sampling decisions. We found that participants adjusted

their sample sizes according to both sampling cost and evidence gain and were overall close to

optimality. However, there were also systematic deviations from optimality which varied with

levels of autistic traits. Computational modeling allowed us to characterize the decision process

of sampling choices by two stages. The two-stage model well predicted the bimodality of DT

distributions as well as the positive correlation between mean DT and the second-thought

probability estimated from sampling choices. Autistic traits influenced the strategic diversity

concerning whether cost or evidence is considered first.

Previous ASD studies that had used similar bead-sampling tasks yielded inconclusive

results: One study found that adolescents with ASD sampled more than the control group

[52], whereas a second study of adults with ASD found the reverse [40]. As to healthy people

with higher autistic traits, we did not find overall oversampling or undersampling but more

subtle differences. To ask whether people with ASD or higher autistic traits oversample or

undersample information is probably not a proper question. In fact, both oversampling and

undersampling may lower one’s expected gain, depending on the rewarding structure of the

environment. As we suggested in the Introduction, a more important question is whether

autistic traits influence one’s ability to sample optimally, that is, to balance sampling cost and

information gain. In previous ASD studies [40,52], sampling incurred no explicit cost but

implicit cost such as time or cognitive effort whose exact value to a specific individual is hard

to measure, therefore we could hardly compare the optimality of different individuals’ perfor-

mances. By introducing explicit monetary cost for sampling (as Juni et al. did [50]) in our

experiment, we were able to evaluate sampling cost as a potential moderator for autistic trait-

related differences in information sampling. Indeed, we found that people with higher autistic

traits can be more optimal or less optimal than those with lower autistic traits depending on

the level of sampling cost.

The autistic-trait-related differences in sampling decisions we found through computa-

tional modeling are surprisingly selective. Participants with different levels of autistic traits

were indistinguishable in their ability to weigh sampling cost or evidence gain in the two deci-

sion stages. What distinguished them was the strategic diversity across choices concerning

whether to consider cost or evidence in the first stage. Participants with higher autistic traits

were less diverse and stuck more to evaluating cost first.

Studies using autistic traits as a surrogate for studying ASD have revealed congruent and

converging autistic-trait-related effects as those of ASD [9,10,53–56]. Although our findings

could provide some insights on how autistic traits could influence people’s information sam-

pling, we should also be aware that high autistic traits in typical people are not equivalent to

symptoms of ASD [57–59] and autistic-trait-related differences do not necessarily characterize

the differences between people with and without ASD. Thus, future research should test people

with ASD to see how their information sampling differs from the typical population.

In our task, information sampling is instrumental—additional information would increase

the probability of correct judgment. There are also situations where information is non-instru-

mental, for example, the information that is gathered after one’s decision and that would not

change the outcome of the decision. Both humans [30–35] and non-human primates [36–39]

are willing to pay for non-instrumental information, especially when it is good news. Whether

autistic traits influence one’s tendency to seek non-instrumental information is a question for

future research.

To summarize, we find that people with different levels of autistic traits differ in the opti-

mality of information sampling and these differences are associated with their strategic
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diversity in the decision process. Recent studies suggest that autistic traits may influence an

individual’s ability of adaptively using her own information processing capability while not

influencing the capability itself. For example, autistic traits may only influence the flexibility of

updating learning rate but not probabilistic learning itself [10]. Our results add to this line of

findings that autistic-trait-related differences may come from differences in higher-level cogni-

tive functions other than primary information processing.

Methods

Ethics statement

The experiment had been approved by the Institutional Review Board of School of Psychologi-

cal and Cognitive Sciences at Peking University (#2016-03-03). All participants provided writ-

ten informed consent and were paid for their time plus performance-based bonus.

Experiment

Participants. One hundred and fourteen college student volunteers participated in our

experiment. Ten participants were excluded. Six of them were IQ outliers, one misunderstood

instructions, one had a strong judgment bias towards one type of stimuli, one did not draw

any bead in 286/288 of the trials, and one had a poor judgment consistency. This resulted in a

final sample size of 104 participants (42 males, aged 18–28).

We estimated effect size a priori based on a mini meta-analysis of previous literature [60]

on autistic-trait-related perceptual or cognitive differences [9,53,54,56,61–64], which was r =

.36. To achieve a statistical power of 0.80 under the significance level of .05, we would require

57 participants. However, considering initial effect sizes are often inflated [65], we doubled the

estimate and sought to test around 114 participants with some attrition expected.

IQ test. Combined Raven Test (CRT) was used to measure participants’ IQ for control

purpose. Raw CRT scores of all 114 participants averaged 67.69 (s.d., 4.71) and ranged from 41

to 72. Six of the participants (scoring from 41 to 58) fell out of two standard deviations of the

mean and was excluded from further analyses along with four other participants (as men-

tioned above). The remaining 104 participants had a mean CRT score of 68.65 (s.d., 2.82; rang-

ing from 61 to 72), corresponding to a mean IQ score of 117.68.

AQ test. Autism Spectrum Quotient (AQ) questionnaire [18] was used to quantify partici-

pants’ autistic traits. AQ questionnaire is a 4-point self-reported scale with 50 items measuring

five type of autistic characteristics: social interaction, attentional switch, attention to detail,

imagination, and communication. Though the 4-point scale was sometimes reduced to binary

coding [18], we adopted the full 4-point scoring system (“definitely disagree”, “slightly dis-

agree”, “slightly agree”, “definitely agree” respectively scored 0–3) to maximize the coverage of

latent autistic traits [25,66–68].

The AQ scores of the 104 participants were normally distributed (Shapiro-Wilk normality

test, W = 0.99, p = .32; S9 Fig) with mean 69.97 and standard deviation 10.48, ranging from 49

to 95. There was little correlation between AQ and IQ, rs = −.01,p = .95, AQ and age, rs = −.08,

p = .40, or AQ and gender, biserial correlation r = .13,p = .31.

Apparatus. All stimuli of the bead-sampling task were visually presented on a 21.5-inch

computer screen controlled by MATLAB R2016b and PsychToolbox [69–71]. Participants

were seated approximately 60 cm to the screen. Responses were recorded via the keyboard.

Procedure. On each trial of the experiment (Fig 1A), participants saw a pair of jars on the

left and right of the screen, each containing 200 pink and blue beads. The pink-to-blue ratios

of the two jars were either 60%:40% vs. 40%:60%, or 80%:20% vs. 20%:80%. Participants were

told that one jar had been secretly selected, and their task was to infer which jar was selected.
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Each time they pressed the space bar, one bead was randomly sampled with replacement from

the jar and presented on the screen, appended to the end of the sampled bead sequence. Partic-

ipants were free to draw 0 to 20 bead samples, but each sample might incur a cost. The cost per

sample on each trial could be 0, 0.1, or 0.4 points. A green bar on the top of the screen indi-

cated how many bonus points remained (10 points minus the total sampling cost by then).

When participants were ready for inference, they pressed the Enter key to quit sampling and

judged whether the pre-selected jar was the left or right jar by pressing the corresponding

arrow key. Feedback followed immediately. If their judgment was correct, participants would

receive the remaining bonus points; otherwise nothing. Bonus points accumulated across trials

and would be converted into monetary bonus after the experiment. Participants were encour-

aged to sample wisely to maximize their winning.

The pink-dominant jar was pre-selected on half of the trials and the blue-dominant jar on

the other half. Their left/right positions were also counterbalanced across trials. In the formal

experiment, the two evidence (i.e. bead ratio) conditions (60/40 and 80/20) were randomly

mixed within each block and the three cost conditions (0, 0.1, and 0.4) were blocked. Besides

being visualized by the green bar on each trial, cost for each block was also informed at the

beginning of the block. The order of cost blocks was counterbalanced across participants. We

further confirmed that block order (6 permutations) had no significant effects on participants’

sampling choices (efficiency: F5,97.90 = 2.06,p = .08, ns � nopt : F5,97.99 = 1.51,p = .19, SD(ns):
F5,97.97 = 1.53,p = .19) or decision times (F5,98 = 0.60,p = .70). Each of the six conditions was

repeated for 48 times, resulting in 288 trials. The formal experiment was preceded by 24 prac-

tice trials. Participants first performed the experiment, then the Combined Raven Test and last

the AQ questionnaire, which took approximately 1.5 hours in total.

Statistical analyses

All statistical analyses (except for group-level Bayesian model comparison) were conducted in

R 3.5.3 [72].

Linear mixed models (LMMs). Linear mixed models were estimated using “afex” package

[73], whose F statistics, degrees of freedom of residuals (denominators), and p-values were

approximated by Kenward-Roger method [74,75]. Specifications of random effects followed

parsimonious modeling [76]. For significant fixed effects, “emmeans” package was used to test

post hoc contrasts [77]. Interaction contrasts were performed for significant interactions and,

when higher order interactions were not significant, pairwise or consecutive contrasts were

performed for significant main effects. Statistical multiplicity of the contrasts was controlled

by a single-step adjustment, which used multivariate t distributions to estimate the critical

value for conducted contrasts [78,79].

LMM1: decision efficiency is the dependent variable; fixed effects include an intercept, the

main and interaction effects of AQ, cost, and ratio (evidence); random effects include corre-

lated random slopes of costs and ratios within participants and random participant intercept.

LMM2: sampling bias (mean number of actual sampling minus optimal number of sam-

pling; ns � nopt ) is the dependent variable; the fixed and random effects are the same as LMM1.

LMM3: standard deviation of the number of sampling (SD(ns)) is the dependent variable;

the fixed and random effects are the same as LMM1.

LMM4: mean decision time (DT) across all sampling choices of a condition is the depen-

dent variable; the fixed and random effects are the same as LMM1.

LMM5: DT of each sample number (1 to 20 samples) averaged over all trials is the depen-

dent variable; fixed effects involve an intercept, the main and interaction effects of AQ and

sample number, and random effects include a random participant intercept. The model also
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incorporated weights on the residual variance for each aggregated data point to account for

the different number of raw DTs for each sample number of each participant.

LMM6: the dependent variable is the same as LMM4; in addition to the fixed and random

effects of LMM1, the linear effect of second-thought probability is included in the fixed effects,

and a random slope of the second-thought probability that is uncorrelated with the random

intercept is included in the random effects.

Following Jones et al. [80], we identified three “likely noncompliant” outlier observations in

the number of bead samples for each condition based on nonparametric boxplot statistics, that

is, those whose values were lower than the 1st quartile or higher than the 3rd quartile of all the

observations in the condition by more than 1.5 times of the interquartile range (see S10 Fig).

These noncompliant observations (not participants per se) were excluded from LMMs 1–3.

To examine possible non-linear effects of AQ, we constructed LMMs that included AQ2

and its interaction with cost and ratio as additional fixed-effects terms separately for LMM1–6.

We found that adding the second order terms of AQ did not significantly improve the good-

ness-of-fit of any LMM.

Decision times (DTs). Because stopping sampling involved a different key press, only

DTs for continuing sampling were analyzed. Before any analysis of DTs, outliers of log-trans-

formed DTs were excluded based on nonparametric boxplot statistics, with data points lower

than the 1st quartile or higher than the 3rd quartile of all the log-transformed DTs by more

than 1.5 times of the interquartile range defined as outliers.

Correlation analyses based on modeling results. Spearman’s rank correlations (denoted

rs) were computed between AQ and model measures (model parameter or model evidence),

and between model measures and behavioral measures (efficiency, ns � nopt , or SD(ns)). Except

for the statistics in Fig 6C, multiple correlation tests were corrected using false discovery rate

(FDR) to avoid the inflation of false alarm rates with multiple comparisons.

To test whether the curve of correlation coefficients between cost-evidence strategy index

and AQ in Fig 6C was significantly different from 0 or the overall correlation at some points,

we performed cluster-based permutation tests [81] as follows. For the test against 0, we first

identified points that were significantly different from 0 at the uncorrected significance level of

.05 using t tests and then grouped adjacent same-signed significant correlations into clusters.

For each cluster, the absolute value of the summed Fisher’s z values transformed from rs was

defined as the cluster size. We randomly shuffled the values of cost-evidence strategy index

across participants to generate virtual data, calculated the correlation curve and recorded the

maximum size of its clusters for the virtual data. This procedure was repeated for 10,000 times

to produce a distribution of chance-level maximum cluster sizes, based on which we calculated

the p value for each cluster in real data.

For the test against the overall correlation of 104 participants, we randomly shuffled the

order of inclusion across participants and identified points that were significantly different

from the overall correlation at the uncorrected significance level of .05 using Monte Carlo

methods. Otherwise the permutation test was identical to that described above.

Modeling

Expected gain. Given a specific sequence of bead samples, an ideal observer would always

judge the preselected jar to be the one whose dominant color is the same as that of the sample

sequence. In the case of a tie, the observer would choose the two jars with equal probability.

Suppose the sample size is n, the maximal reward is 10 points, the unit sampling cost is c, and

the percentage of predominated beads in the preselected jar is q. The expected probability of
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The expected gain is E[Gain|n,q,c] = (10−nc)p(n|q). For a specific cost and evidence condi-

tion, the optimal sample size is the value of n that maximizes E[Gain|n,q,c].
One-stage models. We modeled participants’ each choice of whether to continue or stop

sampling (i.e. whether to press the space bar or Enter key) as a Bernoulli random variable, with

the probability of stopping sampling determined by cost- or evidence-related factors. Pressing

the Enter key after 20 samples was not included as a choice of stopping sampling, because par-

ticipants had no choice but to stop by then.

We considered two families of models: one-stage and two-stage models. The description

for each model is summarized in S1 Table. In one-stage models, the probability of stopping

sampling on the i-th trial after having drawn j beads is determined by a linear combination of

K decision variables (DVs) via a logistic function:

pij ¼
1

1þ e� Xij
; ð2Þ

Xij ¼
XK

k¼1

bkDVijk: ð3Þ

Different one-stage models differed in whether cost-related variables, evidence-related vari-

ables, or both served as DVs (S1 Table).

Cost-only one-stage model (denoted Cost only): cost-related variables as DVs, including

unit cost per bead (categorical: 0, 0.1, or 0.4), number of beads sampled (j), and total sampling

cost (product of the former two DVs).

Evidence-only without decay one-stage model (denoted Evidence only w/o decay): evi-

dence-related variables as DVs, including unit log evidence per bead (i.e., ln(60/40) or ln(80/

20)), absolute value of cumulative information (cumulative information refers to the difference

between the numbers of pink and blue bead samples), total log evidence (product of the former

two DVs), and the correctness and the number of bead samples in last trial.

Cost + evidence without decay one-stage model (denoted Cost + Evidence w/o decay): both

cost-related and evidence-related variables as DVs.

Cost + evidence with decay one-stage model (denoted Cost + Evidence): both cost-related

and decayed evidence-related variables as DVs.
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In models with decayed evidence, cumulative information (CI) is modulated by a decay

parameter α:

CIij ¼

0 j ¼ 0;

aCIi;j� 1 þ 1 j > 0; after a pink bead;

aCIi;j� 1 � 1 j > 0; after a blue bead:

ð4Þ

8
><

>:

The DVs of absolute value of cumulative information and total log evidence in the models

with decay are modulated by the decay parameter accordingly.

Two-stage models. In two-stage models, sampling choices may involve two decision

stages, with the probability of reaching the decision of stopping sampling in each stage being

pStage1
ij ¼

1

1þ e� X
Stage1
ij

; ð5Þ

pStage2
ij ¼

1

1þ e� X
Stage2
ij

: ð6Þ

Whether to enter the second stage is probabilistic, conditional on the decision reached in

the first stage. For models where the second stage is triggered by the decision of continuing

sampling in the first stage, the overall probability of stopping sampling can be written as:

pij ¼ pStage1
ij þ ð1 � pStage1

ij Þpsec
ij p

Stage2
ij ð7Þ

Here psecij denotes second-thought probability—the probability of using the second stage

given that the first stage concludes with continuing sampling, whose value is defined differ-

ently in different models as specified below. Alternatively, for models where the second stage is

triggered by the decision of stopping sampling in the first stage, the overall probability of stop-

ping sampling can be written as:

pij ¼ pStage1
ij ð1 � psec

ij Þ þ pStage1
ij psec

ij p
Stage2
ij ð8Þ

Each stage works in the same way as one-stage models do (Eqs 2–4) and is influenced by

mutually exclusive sets of DVs (S1 Table). We considered two-stage models whose assump-

tions differ in three dimensions: (1) which factors control the first stage and which control the

second stage (cost-first or evidence-first), (2) what kind of decision in the first stage (continu-

ing or stopping sampling) has a chance to trigger the second stage, and (3) what determines

the probability to enter the second stage (“second-thought probability”) after a qualified first-

stage decision (the cost condition, the evidence condition, or the probability of stopping in the

first-stage decision). A full 2×2×3 combinations resulted in 12 different two-stage models. The

assumptions for each dimension are specified below.

Cost-first two-stage models (models denoted by Cost!�
�
Evidence): cost-related variables as

first-stage DVs and decayed evidence-related variables as second-stage DVs.

Evidence-first two-stage models (models denoted by Evidence!�
�
Cost): decayed evidence-

related variables as first-stage DVs and cost-related variables as second-stage DVs.

Continue-then-2nd-thought two-stage models (models denoted by Cost!continue
�

Evidence
or Evidence!continue

�
Cost): If stopping sampling is the decision in the first stage, it is finalized

and there is no second stage; otherwise, either continuing sampling becomes the final decision,

or the decision is re-evaluated in the second stage.
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Stop-then-2nd-thought two-stage models (models denoted by Cost!stop
�

Evidence or

Evidence!stop
�

Cost): If continuing sampling is the decision in the first stage, it is finalized and

there is no second stage; otherwise, either stopping sampling becomes the final decision, or the

decision is re-evaluated in the second stage.

Cost-controls-2nd-thought two-stage models (models denoted by Cost!�C� cond Evidence or

Evidence!�C� cond Cost): The second-thought probability is controlled by the cost condition,

with psec
ij ¼ pC� zero, psecij ¼ pC� low, and psecij ¼ pC� high, respectively for the zero-, low-, and high-

cost conditions, where pC-zero, pC-low, and pC-high are free parameters.

Evidence-controls-2nd-thought two-stage models (models denoted by Cost!�E� cond Evidence
or Evidence!�E� cond Cost): The second-thought probability is controlled by the evidence condi-

tion, with psec
ij ¼ pE� low and psec

ij ¼ pE� high respectively for the low- and high-evidence conditions,

where pE-low and pE-high are free parameters.

Flexible-2nd-thought two-stage models (models denoted by Cost!�f lex Evidence or

Evidence!�f lex Cost): The second-thought probability is a function of the probability of stopping

sampling in the first stage,

ln
psecij

1 � psec
ij

¼ gln
pStage1
ij

1 � pStage1
ij

þ �; ð9Þ

where γ and ϕ are free parameters.

The intuition behind this form of second-thought probability is that participants should be

likely to use the second stage to stop sampling when they are reluctant to continue but end up

with choosing continue in the first stage, and likewise for the reverse case.

For both one- and two-stage models, given that the probability of stopping sampling on the

i-th trial after having drawn j beads is pij, the likelihood of observing a specific choice cij (0 for

continue and 1 for stop) is

LðcijÞ ¼
� pij; if cij ¼ 1;

1 � pij; if cij ¼ 0:
ð10Þ

Modeling decision times (DTs). Evidence-accumulation models are the common prac-

tice to model the response time (RT) of human decision-making, which can capture the three

properties of the observed RT distributions [82]: (1) RT distributions are positively skewed; (2)

More difficult choices (i.e. when the two options are more closely matched in the probability

of being chosen) lead to longer RTs. (3) Correct choices (i.e. choosing the option with the

higher value) can have equal, shorter, or longer RTs than wrong choices (i.e. choosing the

option with the lower value). However, evidence-accumulation models would be computa-

tionally intractable if applied to the two-stage decision process of our interest, because there

have been no analytical form or efficient numerical algorithms to deal with the RT distribution

resulting from two evidence-accumulation processes, especially when the variables controlling

each evidence-accumulation process vary from choice to choice, as in our case.

Therefore, we modeled participants’ decision time (DT) for each sampling with a simplified

form that is able to capture the three properties summarized above. For one-stage models or

the first stage of two-stage models, we have

Ycontinue1

ij ¼ expðbStage1
0
þ b

Stage1
1
ð1 � pStage1

ij Þ þ b
Stage1
2

pStage1
ij ð1 � pStage1

ij ÞÞ; ð11Þ

Ystop1

ij ¼ expðbStage1
0
þ b

Stage1
1

pStage1
ij þ b

Stage1
2

pStage1
ij ð1 � pStage1

ij ÞÞ; ð12Þ
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DTStage1
ij ¼ expðlnYcontinue1

ij þ εStage1ij Þ; ð13Þ

where Ycontinue1
ij and Ystop1

ij denote the expected DTs respectively for continuing and stopping

sampling, which have the same form expect that the pStage1
ij in Eq 11 is replaced by ð1 � pStage1

ij Þ

in Eq 12. DTStage1
ij denotes the observed DT if the decision of continuing sampling is made in

the first stage. Here εStage1ij � Nð0; s2
1
Þ is a Gaussian noise term so that DTStage1

ij is log-normally

distributed, satisfying Property (1). The quadratic term, pStage1
ij ð1 � pStage1

ij Þ, allows DTStage1
ij to

vary with choice difficulty so as to satisfy Property (2). The inclusion of the ð1 � pStage1
ij Þ term,

would enable the three possibilities of Property (3). The b
Stage1
0

, b
Stage1
1

, b
Stage1
2

, and s2
1

are free

parameters.

The expected total DT of reaching the decision of continuing sampling in the second stage

equals to the time required by the first stage plus that of the second stage and has the forms

Ycontinue2

ij ¼ Ycontinue1

ij þ expðbStage2
0
þ b

Stage2
1
ð1 � pStage2

ij Þ þ b
Stage2
2

pStage2
ij ð1 � pStage2

ij ÞÞ; ð14Þ

and Ycontinue2

ij ¼ Ystop1

ij þ expðbStage2
0
þ b

Stage2
1
ð1 � pStage2

ij Þ þ b
Stage2
2

pStage2
ij ð1 � pStage2

ij ÞÞ; ð15Þ

respectively for continue-then-2nd-thought and stop-then-2nd-thought models. The observed

DT of continuing sampling in the second stage is then

DTStage2
ij ¼ expðlnYcontinue2

ij þ εStage2ij Þ; ð16Þ

where εStage2ij � Nð0; s2
2
Þ is a Gaussian noise term. The b

Stage2
0

, b
Stage2
1

, b
Stage2
2

, and s2
2

are free

parameters.

Thus, for one-stage models, the likelihood of observing a specific DTij for drawing the (j
+1)-th bead on the i-th trial is

LðDTijÞ ¼ LðDTij ¼ DTStage1
ij Þ ¼

1
ffiffiffiffiffiffi
2p
p

s1

exp �
ðlnDTij � lnYcontinue1

ij Þ
2

2s2
1

 !

: ð17Þ

For two-stage models, where DTij is a mixture of DTStage1
ij and DTStage2

ij , its likelihood follows

LðDTijÞ ¼ LðDTij ¼ DTStage1
ij ÞPðStage1jcontinueijÞ þ LðDTij ¼ DTStage2

ij ÞPðStage2jcontinueijÞ

¼
1
ffiffiffiffiffiffi
2p
p

s1

exp �
ðlnDTij � lnYcontinue1

ij Þ
2

2s2
1

 !

PðStage1jcontinueijÞ

þ
1
ffiffiffiffiffiffi
2p
p

s2

exp �
ðlnDTij � lnYcontinue2

ij Þ
2

2s2
2

 !

PðStage2jcontinueijÞ

; ð18Þ

where P(Stage1|continueij) and P(Stage2|continueij) respectively refer to the probabilities that

the choice is finalized at Stage 1 and Stage 2, given that continuing sampling is the choice.
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These probabilities are computed based on the corresponding choice model, which are

PðStage1jcontinueijÞ ¼
1 � psecij

1 � psec
ij þ psecij ð1 � pStage2

ij Þ
ð19Þ

and PðStage1jcontinueijÞ ¼
1 � pStage1

ij

1 � pStage1
ij þ pStage1

ij psec
ij ð1 � pStage2

ij Þ
ð20Þ

respectively for continue-then-2nd-thought and stop-then-2nd-thought two-stage models,

and

PðStage2jcontinueijÞ ¼ 1 � PðStage1jcontinueijÞ: ð21Þ

The pStage1
ij , pStage2

ij , and psec
ij are defined earlier in the choice model and estimated from partici-

pants’ choices.

Joint log likelihood of choice and DT. For a specific sampling choice modeled by two-

stage models, the likelihood of the joint observation of continueij and DTij is

Lðcij;DTijÞ ¼ LðDTij ¼ DTStage1
ij ÞPðStage1; continueijÞ þ LðDTij ¼ DTStage2

ij ÞPðStage2; continueijÞ

¼ LðDTij ¼ DTStage1
ij ÞPðStage1jcontinueijÞPðcontinueijÞ

þ LðDTij ¼ DTStage2
ij ÞPðStage2jcontinueijÞPðcontinueijÞ

¼ PðcontinueijÞ½LðDTij ¼ DTStage1
ij ÞPðStage1jcontinueijÞ þ LðDTij ¼ DTStage2

ij ÞPðStage2jcontinueijÞ�

¼ LðcijÞLðDTijÞ

ð22Þ

That is, the joint likelihood is equivalent to the product of the likelihoods of choice (Eq 10)

and DT (Eqs 17–18). The same equivalence holds for one-stage models, whose proof is a spe-

cial case of that of two-stage models. For the joint log likelihood summed over trials, we have

X

i

X

j

lnLðcij;DTijÞ ¼
X

i

X

j

lnLðcijÞLðDTijÞ ¼
X

i

X

j

lnLðcijÞ þ
X

i

X

j

lnLðDTijÞ: ð23Þ

Therefore, we used the sum of the log likelihoods of the choice and DT models for model

comparisons.

Model fitting. Each one- or two-stage model consists of two parts: choice and DT. We

first fit each choice model separately for each participant to the participant’s actual sampling

choices using maximum likelihood estimates. As an example, if the participant samples 5

beads on a trial, she has a sequence of 6 binary choices on the trial (000001, with 0 for continue

and 1 for stop). Different models differ in how the likelihood of generating a specific choice (0

or 1) varies with the cost or evidence observed before the choice. For one-stage models, where

all decision variables control the choice in one stage, the influence of cost- or evidence-related

variables is fixed across experimental conditions. In contrast, for two-stage models, the deci-

sion variables that control the second stage exert variable influences on the choice, because the

probability for the second stage to be recruited varies with experimental conditions. The

observed choice patterns in the experiment thus allowed us to discriminate different models,

including one- and two-stage models.

For a specific fitted choice model, we could compute the second-thought probability, when-

ever applicable, as well as the probabilities of choosing to stop sampling at each stage. With

this information, we then fit the corresponding DT model to the participant’s DTs to estimate

the DT-unique parameters.
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We chose to optimize the parameters of choice and DT models in this way instead of opti-

mizing them simultaneously to avoid the computational intractability of fitting a large number

of parameters. In addition, choices and DTs can serve as independent tests for the two-stage

decision process we proposed.

All coefficients βk of decision variables, second-thought probabilities psecij , decay parameter

α, and all β and σ in DT models were estimated as free parameters using maximum likelihood

estimates. All parameters were unbounded, except that psec
ij of cost-controlled and evidence-

controlled second-thought models and α were bounded to [0, 1], and b
Stage1
0

, b
Stage2
0

, σ1, and σ2

of DT models were bounded to (0, Inf). Optimization was implemented by the fmincon func-

tion with interior-point algorithm in MATLAB R2017a.

Model comparison. The Akaike Information Criterion corrected for small samples

(AICc) [44,45] and Bayesian Information Criterion (BIC) were calculated as model evidence

for model comparison. In the computation of these information measures, the number of “tri-

als” of a participant’s dataset was defined as the number of DTs modeled for the participant.

The ΔAICc (ΔBIC) for a specific model was computed for each participant as the AICc (BIC)

difference between the model and the participant’s best-fitting model (i.e. the model with the

lowest AICc (BIC)). The summed ΔAICc (ΔBIC) across participants was used for fixed-effects

comparisons. Group-level Bayesian model selection [46,47] was used to provide an omnibus

measure across individual participants that takes into account random effects.

Supporting information

S1 Table. Model descriptions.

(PDF)

S1 Fig. Scatter plots of AQ-related effects of interest: efficiency (a), sampling bias (b), and

sampling variability (c). Each panel is for one cost and evidence condition. Each semi-trans-

parent datapoint represents one participant. The blue line indicates the regression line against

AQ, whose slope corresponds to the ΒAQ in Fig 2D–2F.

(PDF)

S2 Fig. Replication of two analyses in the main text based on the tripartite division of AQ.

(a) Similar to what we have found for the linear effect of AQ on efficiency, we have found a sig-

nificant three-way interaction of AQ groups, cost and evidence conditions (F4,200.83 = 11.03,

p< .001). The simple main effect showed the group with high AQ had higher efficiency in the

zero-cost, low-evidence condition, compared to the other two groups with low and middle AQ

scores (F2,132.62 = 4.27, p = .016; post hoc comparison: Low–Mid: t132.62 = 0.53, p = .86, Low–

High: t132.62 = -2.23, p = .07, Mid–High: t132.62 = -2.77, p = .018, ps were corrected by single-

step adjustment, see Methods). Meanwhile, the group with high AQ had significantly lower

efficiency in the high-cost, low-evidence condition (simple main effect: F2,117.67 = 8.18, p<
.001; post hoc comparison: Low–Mid: t118.45 = -1.60, p = .25, Low–High: t117.29 = 2.42, p = .044,

Mid–High: t117.25 = 4.02, p< .001). All these results were consistent with those reported

in the main text based on regressions (see Fig 2B). (b) Participants with different levels of

autistic traits significantly differed in cost-evidence strategy index (i.e., AICccost!evidence−
AICcevidence!cost; F2,101 = 5.96, p = .004), with the value of the high-AQ group smaller than

those of the low-AQ group (t101 = -2.81, p = .017) and the middle-AQ group (t101 = -3.175, p =

.006). This is consistent with the negative correlation between AQ and cost-evidence strategy

index (see Fig 6A). In both (a) and (b), colored lines represent group means and semi-trans-

parent gray symbols represent individual participants. Different shapes of symbols are for dif-

ferent AQ groups: circles for low-AQ, triangles for middle-AQ, and squares for high-AQ.
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Error bars denote model-based standard errors. Dark orange asterisks and lines indicate sig-

nificant simple main effects (p< .05).

(PDF)

S3 Fig. Decision time distributions of individual participants in each cost and evidence

condition: Data vs. model predictions (extended to 5 pages). Gray, blue, and red lines

respectively denote data, the best one-stage model predictions, and the best two-stage model

predictions. Each panel is for one participant, with each of its sub-panels for one cost and evi-

dence condition. Panels are arranged by participants’ AQ (marked at the top-left corner)

ascendingly from left to right and from top to bottom. For most participants, the observed DT

distributions were bimodal and were better predicted by the best-fit one-stage model than by

the best-fit one-stage model. C: Cost, E: Evidence.

(PDF)

S4 Fig. Decision time as a function of sample number: Data vs. model predictions. The

observed decision times had a significant decreasing trend with the increase of sample number

(t = -12.26, p< .001), which was captured by the best two-stage model (red dots) but not by

the best one-stage model (blue dots).

(PDF)

S5 Fig. Model comparisons based on AICc and BIC and individual participants’ model evi-

dence. (a-b) Mean ΔAICc and ΔBIC for every model. ΔAICc or ΔBIC for a specific model was

calculated for each participant with respect to the participant’s best-fitting model (i.e. lowest

AICc or BIC) and then averaged across participants. Error bars denote standard errors. Model

comparisons based on AICc and BIC led to almost the same results. (c-d) Individual partici-

pants’ ΔAICc and ΔBIC for every model. In the heatmaps, each column is for one participant,

arranged in ascending order of AQ from left to right. Each row is for one model, arranged in

the same order as in a-b.

(PDF)

S6 Fig. Sample size distributions of individual participants in each cost and evidence con-

dition: data vs. model predictions (extended to 5 pages). Gray, blue, and red lines respec-

tively denote data, the best one-stage model predictions, and the best two-stage model

predictions. Each panel is for one participant, with each of its sub-panels for one cost and evi-

dence condition. Panels are arranged by participants’ AQ (marked at the top-left corner)

ascendingly from left to right and from top to bottom. For most participants, the observed

sample size distributions were better predicted by the best-fit one-stage model than by the

best-fit one-stage model. C: Cost, E: Evidence.

(PDF)

S7 Fig. The use of cost-first vs. evidence-first decision did not relate to age, IQ, or gender.

There were little correlations between cost-evidence strategy index (AICccost!evidence−
AICcevidence!cost) and participants’ age (a) or IQ score (b); cost-evidence strategy index did not

differ between genders either (c).

(PDF)

S8 Fig. How the use of cost-first vs. evidence-first decision processes related to

sampling bias and sampling variation. Correlations between cost-evidence strategy index

(AICccost!evidence−AICcevidence!cost) and sampling bias (signed deviation from the optimal

number of sampling, denoted ns � nopt ) or sampling variation (standard deviation of actual

number of sampling across trials, denoted SD(ns)) under different cost and evidence condi-

tions were consistent with what we would expect if AQ affects these measures through cost-
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first vs. evidence-first preference in decision process. See Fig 6B for the corresponding plot for

efficiency. Error bars represent 95% confidence intervals (FDR corrected). C:0 = zero-cost,

C:0.1 = low-cost, C:0.4 = high-cost, E:0.6 = low-evidence, E:0.8 = high-evidence.

(PDF)

S9 Fig. Distribution of AQ scores among the 104 participants. Each circle denotes one par-

ticipant.

(PDF)

S10 Fig. Noncompliant observations. Following Jones et al. [81], we identified three observa-

tions (red dots) as “likely noncompliant” in the number of bead samples for each condition

based on nonparametric boxplot statistics, that is, those whose values were lower than the 1st

quartile or higher than the 3rd quartile of all the observations in the condition by more than

1.5 times of the interquartile range. These observations (not participants per se) were excluded

from linear mixed model analyses 1–3 (LMM 1–3, see Methods).

(PDF)

Author Contributions

Conceptualization: Haoyang Lu, Li Yi, Hang Zhang.

Data curation: Haoyang Lu.

Formal analysis: Haoyang Lu.

Funding acquisition: Li Yi, Hang Zhang.

Investigation: Haoyang Lu.

Supervision: Li Yi, Hang Zhang.

Writing – original draft: Haoyang Lu.

Writing – review & editing: Li Yi, Hang Zhang.

References

1. Dall S, Giraldeau L, Olsson O, Mcnamara J, Stephens D. Information and its use by animals in evolu-

tionary ecology. Trends Ecol Evol. 2005; 20: 187–193. https://doi.org/10.1016/j.tree.2005.01.010

PMID: 16701367

2. Stephens DW, Krebs JR. Foraging Theory. Princeton University Press; 1986.

3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®).

American Psychiatric Pub; 2013.

4. Palmer CJ, Lawson RP, Hohwy J. Bayesian approaches to autism: Towards volatility, action, and

behavior. Psychol Bull. 2017; 143: 521–542. https://doi.org/10.1037/bul0000097 PMID: 28333493

5. Au-Yeung SK, Kaakinen JK, Benson V. Cognitive Perspective-Taking During Scene Perception in

Autism Spectrum Disorder: Evidence From Eye Movements. Autism Res. 2014; 7: 84–93. https://doi.

org/10.1002/aur.1352 PMID: 24265216

6. Song Y, Hakoda Y, Sang B. A selective impairment in extracting fearful information from another’s eyes

in Autism. Autism Res. 2016; 9: 1002–1011. https://doi.org/10.1002/aur.1583 PMID: 26777988

7. Chambon V, Farrer C, Pacherie E, Jacquet PO, Leboyer M, Zalla T. Reduced sensitivity to social priors

during action prediction in adults with autism spectrum disorders. Cognition. 2017; 160: 17–26. https://

doi.org/10.1016/j.cognition.2016.12.005 PMID: 28039782

8. Goris J, Braem S, Nijhof AD, Rigoni D, Deschrijver E, Cruys SV de, et al. Sensory Prediction Errors Are

Less Modulated by Global Context in Autism Spectrum Disorder. Biol Psychiatry Cogn Neurosci Neuro-

imaging. 2018;0. https://doi.org/10.1016/j.bpsc.2018.02.003 PMID: 29628433

Autistic traits and information sampling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006964 December 2, 2019 25 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006964.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006964.s011
https://doi.org/10.1016/j.tree.2005.01.010
http://www.ncbi.nlm.nih.gov/pubmed/16701367
https://doi.org/10.1037/bul0000097
http://www.ncbi.nlm.nih.gov/pubmed/28333493
https://doi.org/10.1002/aur.1352
https://doi.org/10.1002/aur.1352
http://www.ncbi.nlm.nih.gov/pubmed/24265216
https://doi.org/10.1002/aur.1583
http://www.ncbi.nlm.nih.gov/pubmed/26777988
https://doi.org/10.1016/j.cognition.2016.12.005
https://doi.org/10.1016/j.cognition.2016.12.005
http://www.ncbi.nlm.nih.gov/pubmed/28039782
https://doi.org/10.1016/j.bpsc.2018.02.003
http://www.ncbi.nlm.nih.gov/pubmed/29628433
https://doi.org/10.1371/journal.pcbi.1006964


9. Lawson RP, Aylward J, Roiser JP, Rees G. Adaptation of social and non-social cues to direction in

adults with autism spectrum disorder and neurotypical adults with autistic traits. Dev Cogn Neurosci.

2018; 29: 108–116. https://doi.org/10.1016/j.dcn.2017.05.001 PMID: 28602448

10. Lawson RP, Mathys C, Rees G. Adults with autism overestimate the volatility of the sensory environ-

ment. Nat Neurosci. 2017; 20: nn.4615. https://doi.org/10.1038/nn.4615 PMID: 28758996

11. Manning C, Tibber MS, Charman T, Dakin SC, Pellicano E. Enhanced Integration of Motion Information

in Children With Autism. J Neurosci. 2015; 35: 6979–6986. https://doi.org/10.1523/JNEUROSCI.4645-

14.2015 PMID: 25948250

12. Palmer CJ, Paton B, Kirkovski M, Enticott PG, Hohwy J. Context sensitivity in action decreases along

the autism spectrum: a predictive processing perspective. Proc R Soc Lond B Biol Sci. 2015; 282:

20141557. https://doi.org/10.1098/rspb.2014.1557 PMID: 25631989

13. Turi M, Burr DC, Igliozzi R, Aagten-Murphy D, Muratori F, Pellicano E. Children with autism spectrum

disorder show reduced adaptation to number. Proc Natl Acad Sci U S A. 2015; 112: 7868–7872. https://

doi.org/10.1073/pnas.1504099112 PMID: 26056294

14. Lawson RP, Rees G, Friston KJ. An aberrant precision account of autism. Front Hum Neurosci. 2014;

8. https://doi.org/10.3389/fnhum.2014.00302 PMID: 24860482

15. Pellicano E, Burr D. When the world becomes ‘too real’: a Bayesian explanation of autistic perception.

Trends Cogn Sci. 2012; 16: 504–510. https://doi.org/10.1016/j.tics.2012.08.009 PMID: 22959875

16. van Boxtel JJA, Lu H. A predictive coding perspective on autism spectrum disorders. Front Psychol.

2013; 4. https://doi.org/10.3389/fpsyg.2013.00019 PMID: 23372559

17. van de Cruys S, Evers K, van der Hallen R, van Eylen L, Boets B, de-Wit L, et al. Precise minds in uncer-

tain worlds: Predictive coding in autism. Psychol Rev. 2014; 121: 649–675. https://doi.org/10.1037/

a0037665 PMID: 25347312

18. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ):

Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathe-

maticians. J Autism Dev Disord. 2001; 31: 5–17. https://doi.org/10.1023/a:1005653411471 PMID:

11439754

19. Hoekstra RA, Bartels M, Verweij CJH, Boomsma DI. Heritability of Autistic Traits in the General Popula-

tion. Arch Pediatr Adolesc Med. 2007; 161: 372–377. https://doi.org/10.1001/archpedi.161.4.372

PMID: 17404134

20. Lundström S, Chang Z, Råstam M, Gillberg C, Larsson H, Anckarsäter H, et al. Autism Spectrum Disor-
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