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Abstract

Automated microscopy is currently the only method to non-invasively and label-free observe complex multi-cellular
processes, such as cell migration, cell cycle, and cell differentiation. Extracting biological information from a time-series of
micrographs requires each cell to be recognized and followed through sequential microscopic snapshots. Although recent
attempts to automatize this process resulted in ever improving cell detection rates, manual identification of identical cells is
still the most reliable technique. However, its tedious and subjective nature prevented tracking from becoming a
standardized tool for the investigation of cell cultures. Here, we present a novel method to accomplish automated cell
tracking with a reliability comparable to manual tracking. Previously, automated cell tracking could not rival the reliability of
manual tracking because, in contrast to the human way of solving this task, none of the algorithms had an independent
quality control mechanism; they missed validation. Thus, instead of trying to improve the cell detection or tracking rates, we
proceeded from the idea to automatically inspect the tracking results and accept only those of high trustworthiness, while
rejecting all other results. This validation algorithm works independently of the quality of cell detection and tracking
through a systematic search for tracking errors. It is based only on very general assumptions about the spatiotemporal
contiguity of cell paths. While traditional tracking often aims to yield genealogic information about single cells, the natural
outcome of a validated cell tracking algorithm turns out to be a set of complete, but often unconnected cell paths, i.e.
records of cells from mitosis to mitosis. This is a consequence of the fact that the validation algorithm takes complete paths
as the unit of rejection/acceptance. The resulting set of complete paths can be used to automatically extract important
biological parameters with high reliability and statistical significance. These include the distribution of life/cycle times and
cell areas, as well as of the symmetry of cell divisions and motion analyses. The new algorithm thus allows for the
quantification and parameterization of cell culture with unprecedented accuracy. To evaluate our validation algorithm, two
large reference data sets were manually created. These data sets comprise more than 320,000 unstained adult pancreatic
stem cells from rat, including 2592 mitotic events. The reference data sets specify every cell position and shape, and assign
each cell to the correct branch of its genealogic tree. We provide these reference data sets for free use by others as a
benchmark for the future improvement of automated tracking methods.
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Introduction

Cell tracking comprehends all techniques to monitor the

behaviour of single cells over time. This might include migration

behaviour, cell divisions and lineage tracking [1,2], as well as

transient cell-cell contacts, production of extracellular matrix,

movements of the cell skeleton and prediction of cell fates [3]. In

living organisms, such techniques have provided valuable insights

in complex multi-cellular processes, such as regeneration [4] and

ontogenesis [5,6]. An even broader field in which cell tracking can

be applied prospectively will be the standardized and automated

characterization of in vitro cell cultures. For example, the Large

Scale Digital Cell Analysis System (LSDCAS) [7] is one approach

to automatically create time series of cell cultures and has been

utilized to explore the dynamic behaviour of in vitro cell cultures

[8,9].

The basic apparative prerequisite for in vitro tracking is a

computerized, automated image acquisition system with a

sufficient spatiotemporal resolution (roughly 2mm lateral and 1–

15 min temporal resolution, depending on cell type and scientific

question). Often, such a system is accomplished by equipping a

conventional microscope with a motorized xyz-stage and a

climatization chamber. This time-lapse microscope produces

snapshots of the cells, normally at equidistant time points, resulting

in large image stacks. These are the raw data on which cell

tracking algorithms operate.

To date, most tracking algorithms consist of two separate, albeit

not completely independent parts: (1) Cell detection, i.e. finding
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every cell in every single image. (2) Cell tracking, i.e. identifying

and following every cell over time, thereby reconstructing their

temporal continuity.

Cell detection can be performed with a wide range of known

image processing methods, such as level set [10], wavelet [11] or

threshold segmentation methods [12] and contour-based methods

[8,13]. Ultimately, all these methods decide for each pixel of a

given image whether it belongs to a cell or not. Once the cells are

detected, the second step, cell tracking, involves search strategies,

by which a given cell is identified in subsequent images. Simple

tracking methods look for the nearest cell [14,15], while more

complex approaches use specific models to describe the similarity

of a cell with itself, such as image registration [16] or smooth shape

transitions (active contours [10,17,18,19,20]) and markov models

based on simultaneous changes of a variety of cell features [14].

These methods share the assumption that cell behaviour -

arguably with the exception of mitosis - is a smooth, continuous

temporal process.

Despite this considerable range of tracking algorithms, the most

reliable results are still achieved through manual tracking [1,5,6].

In contrast to human inspection, none of the automated tracking

approaches to date controls the reliability of its output. Yet, cell

tracking has a particularly fatal error propagation mechanism. A

small local error, like e.g. a single undetected cell, may lead to

large deviations of subsequent genealogic assignments and

genealogic tree topology. Consequently, even robust tracking

algorithms with very low error rates can produce substantial

amounts of false results, if their reliability is not assessed

independently.

In this work, we introduce and discuss two distinguished

concepts to asses, how ‘‘true’’ tracking results are: validation and

evaluation. The term validation refers to an error detection

strategy which scrutinizes the intrinsic structure and logic of

tracking results. Evaluation, on the other hand, relates to a

method for scoring tracking results with respect to a reference

data set.

Here, we have devised a novel validation algorithm to find,

classify and partially correct errors which may occur during

tracking. These errors involve detection as well as tracking errors

and the connection between them (error propagation). We give a

complete classification of all possible error scenarios, alongside

with a systematic strategy to find them. Turning this approach into

an algorithm rejects all untrustworthy paths, leading to reliabilities

of .95% (correct paths), resp. .96% (correct genealogic

assignments). This validation works independently of the tracking

algorithm itself and could in principle be used to validate the

results of any arbitrary tracking approach. In fact, we will

demonstrate that validation is mandatory to all cell tracking

approaches.

The high reliability of the validated tracking results allows for a

fully automated extraction of biological meaningful parameters.

We have e.g. automatically determined the life-time distribution of

pancreatic stem cell cultures and the life-time of sibling cells

(symmetry of cell divisions) with unprecedented statistical

accuracy.

A second point of this work pertains the fact that until now no

common benchmark system exists to test and compare the

different detection and tracking methods. In fact, many of the

published tracking methods have not been assessed for their

reliability on real cell images at all [7,21,22]. This makes it difficult

to decide which method is appropriate for a given tracking

problem. More general, comparability is a fundamental prereq-

uisite to establish a scientific discourse. We therefore provide two

large sets of real cell tracking data, from which a complete

reference set of detection and tracking results has been manually

derived by scientists. These data have been used to evaluate the

particular validation algorithm of this work. The reference data

sets can be freely used by the community to assess the strengths or

disadvantages of different tracking approaches or to extract and

try new descriptors for cell behaviour. Thereby, we hope to

establish a means for comparing and, ultimately, improving cell

tracking methods.

Material and Methods

I) Cell culture
Adult stem cells from exocrine parts of the pancreas of rattus

norwegicus were used throughout all tracking experiments. The

cells were isolated as described in Kruse et al [23]. These

pancreatic stem cells are characterized by a high proliferation

rate (doubling time of roughly 20 hours) and the propensity to

spontaneously give rise to cell types from different germ layers

[24]. They were cultured in polystyrene dishes (TPP, Switzerland)

using DMEM medium (Gibco, USA), with the addition of 10% (v/v)

fetal bovine serum (FBS "Gold", PAA, Germany) and 1% (v/v)

penicillin/streptomycin (PAA 100x,Penicillin 10.000 Units/ml,

Streptomycin 10 mg/ml). The cells were in passage 48 (data set A),

in passage 39 (data set B) and passage 31 (data set C, see Figure S1).

Additional experiments have been carried out with human

dermal fibroblasts in passage 7 (data set D, see Figure S2 and

Videos S15, S16, S17, S18). The in vitro cell population was

established through explant culture from the isolated dermis and

cultured similarly to the above described PSCs (DMEM,

10%FBS); the cells were in passage 7.

II) Soft- and Hardware
All time lapse experiments were carried out using an inverted

Olympus ix-81 microscope with integrated climatization control

and a motorized x/y stage. The z-stage is also motorized

and compensates automatically for slow drifts of the focal plane

(maximum contrast auto focus). The microscope is equipped

with a CCD-camera (F-View FireWire Camera, Olympus Soft

Imaging Solution) for image-acquisition and has an integrated

motorized condenser and light path changer. To control the

image-acquisition in long-term experiments Olympus’ CELL‘M

software was used. Cell-Culture dishes were placed in a

climate-controlled chamber at 37uC with 5% CO2 and

about 50% humidity to prevent evaporation of the culture

medium.

Computational parts of the experiments were done using an

Intel(R) Core(TM)2 Duo machine at 3GHz with 8GB RAM. For

software-development MATLAB R2008b was used. Tracking and

validating our reference data set A (209 images containing

.244.000 cells) takes less than 1.5 hours on this machine. Thus,

if the image acquisition rate does not exceed 2images/minute, the

algorithm can be used in real time on a regular desktop computer

(order of 1000cells/image;). The algorithm scales roughly linear

with the number of tracked cells.

The source code of the tracking and validation algorithms is

provided in the supplemental material (Link).

III) Image Acquisition
Images were acquired using an Olympus UPLFLN4XPH 4x

phase-contrast objective. The raw image data consist of 12bit gray

scale images with a size of 137661038 pixels (pixel resolution

1.6mm) recorded every 10 minutes (data set B) or 15 minutes (data

set A) over several days.

Automated Tracking Turns Cell Culture into Numbers
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IV) Tracking
Overview: The flow chart in figure 1 depicts an outline of our

tracking method. After conversion to 8bit PNG-file format, the

images are pre-processed to provide a consistent input for the

subsequent cell detection. Then, a set of descriptive features is

computed for each cell. These features are used by both, the

mitosis detector and the path validation methods. The novel

aspect of our tracking method is the continuous validation of each

cell path. These path validation methods aim to only return paths

of very high trustworthiness. If in doubt, the path is excluded from

the final description of the cell behaviour.

Pre-processing. First, uneven illumination is reduced using a

high-pass filter by subtracting a Gauss filtered image from the

raw image. Second, the grey values are linearly mapped to 8bit

dynamic range using a global image-normalization. The preceding

careful adjustment of the microscope for high contrast raw data

made these two pre-processing steps sufficient for subsequent cell

tracking.

Cell-Detection / Segmentation. To detect the cells in our

image data I a threshold based segmentation is used. Each pixel

xi[I is classified as foreground or background with

xi~
foreground if B xð Þwh,

background else,

�
:

where B xið Þ is the grey value and h is the global threshold for

image I , i.e. all pixels brighter than h are belonging to the

foreground. To calculate h we use the very robust method of Otsu

[25]. The result of this operation is a binary image with

background labelled 0 (no cell) and foreground labelled 1 (cell;

see figure 2).

The binary data are further refined by morphological filters

[26,27]: First, an erosion operator is used to separate tiny false

connections between cell areas. Then, a dilatation operation is

used to fill holes. Finally, all areas smaller than a minimum size are

deleted in order to remove small particles and cell debris.

Now, each cell is represented as a connected pixel region with

foreground value. This binary representation of the raw images

will be termed "cell mask" throughout this paper.
Finding a cell in subsequent images (tracking). Using the

cell mask, the cell tracking problem for a cell in frame t is to

determine its successor cell in frame t+1. To map the cells, the

intersection between adjacent cell masks is used. The ratio

between the intersection and the area of the cell mask, called

cell area At and Atz1in frame t and t+1, is defined as forward

overlap =
At\Atz1

Atz1
and backward overlap =

At\Atz1

At

, respectively

(see figure 2).

To identify a unique successor cell, we choose the cell pair with

the largest overlap provided, both, the forward and backward

overlap, exceed the thresholds and with. A large threshold (,1)

results in many short, but trustworthy path fragments, whereas a

low threshold (,0) results in longer initial path fragments with a

lower trustworthiness. The values of depend on a variety of factors,

such as cell type, time-interval between the frames and the speed

of the cells. For our data, values of and have shown to be a good

compromise between number of path fragments and trustworthi-

ness.
Path fragments. First, highly trustworthy path fragments are

calculated using the rigorous criterion for each cell to have one and

only one successor/predecessor. If this condition is met, the new cell is

added to the path fragment, else the cell path construction is

aborted and new paths are started at this point.

After this initial construction of path fragments each cell mask

belongs to exactly one path pi or in other words: each path

fragment follows a cell over a definite time period. The path

fragments are consecutively numbered p1,p2,:::,pN . Usually, the

construction of path fragments is terminated because more than

one overlap between adjacent cell masks occurs. These concurrent

overlaps indicate the possibility of different path continuations. We

store these possible connections between adjacent path fragments

in a symmetrical adjacency matrix. In its initial form, the

adjacency matrix does not aim to represent the true cell paths

or lineage but serves only as a starting hypothesis for the

subsequent path validation process. After several rounds of

refinement, false connections become removed.
Cell features. For each cell, a set of instructive features is

computed analogous to Al-Kofahi et al [28] and stored in a cell

assigned feature vector f ~ fx, fy, fA, fB, fC

� �
. These features

include the mean grey value fB of the cell, which is calculated

using the cell mask and the image data. Other features can be

derived using the cell mask only:

* fx and fy, which represent the x- and y-position of the cell-

centroid,

* fA denotes the cell-size (area) as the number of pixels stored in

a cell mask,

* the compactness fC§1 as a measure for the circularity of the

cell. It is calculated as fC~
P2

4pA
where P is the perimeter and

A~fA is the cell-area. A compactness of 1 means that a cell is

perfectly circular.

To analyze changes of the cell or its shape, the difference values

of the feature vectors f of two overlapping cells are calculated:

speed dV , changes in size dA, brightness dB and compactness dC .

For each step in a path, these values are stored in the difference

vector d~ dV ,dA,dB,dC½ �, analogous to the cell feature vector.

The difference vector d enables us to compute the similarity of

two cells [28]. The similarity is given as the probability of the

multidimensional normal distribution

Figure 1. Diagram of the tracking algorithm. Each functional
block is explained in section M&M IV. The novel aspects of the
algorithm pertain the path validation and error correction parts
(coloured in red).
doi:10.1371/journal.pone.0027315.g001
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equation 1: Prob(d)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pNdet Sð Þ
q e

{ d{mð ÞT S{1 d{mð Þ
2 ,

where N denotes the size of the feature difference vector d , S
denotes the covariance matrix and m the mean vector. Values for

S and m are calculated using the reference data. This multi-

factorial measure turned out to be a strong criterion for

determining the identity of a cell in adjacent cell masks. In fact,

it could be used to track cells independently of the overlap

criterion as well as for a detailed description of individual cell

behaviour.

Mitosis detection. Mitoses are the single most important

events for extracting genealogical nexus from time-lapse data,

because they mark the regular start/end points of a cells life. A

dedicated mitosis detector is therefore an essential tool for

constructing correct genealogic trees and assessing the validity of

a particular tracking result [20,26]. Here, we use two main criteria

to identify mitoses: A path, entering mitosis must have a Y-shape,

i.e. a mitotic cell has two daughter cells. Second, a mitosis displays

a characteristic spatiotemporal pattern (figure 3), which can be

searched for. In particular, a mitotic cell:

* contracts and becomes smaller and rounder;

* appears brighter in phase contrast.

This pattern can be detected using the feature and difference

vector f and d of each cell path. In contrast to the tracking problem,

where the change of the feature vector needs to be smaller than a

given threshold, it must be greater than a threshold for mitosis

detection: a cell path is mitotic, if the probability Prob(d) from

equation 1 exceeds a given threshold: Prob(d) . hM . The value for

hM is estimated using the mitoses in the reference data set A.

Path classification. Ideally, a path connects two mitoses, i.e.

the whole life span of a cell. In reality, however, most paths start

and end at less desirable points; paths can be classified according

to the nature of these end points. These path classifications are

necessary for later analysis (error classification, validation,

statistics); they are stored in a flag-vector (see table 1).

"Naive Tracking". To assess the improvement which is

achieved with our novel validation method, we needed a very

similar tracking approach, but without the validation part.

Throughout this paper, we will call this unvalidated brute force

tracking approach "naive tracking". It is accomplished through

backward tracking by simply choosing the predecessor cell with

the greatest overlap. If the naive assumption that all cells were

correctly detected was true with a time resolution high enough,

repeated use of this operation should in principle reconstruct the

whole lineage of all cells.

Figure 2. Cell detection and overlap tracking. Cells in the raw data (grey value pictures, A) are detected using a global threshold operation. The
resulting binary representation is called cell mask (B). It contains all detected cells as connected, consecutively numbered pixel regions. Overlap
tracking (C): Movement of a detected cell through different time points in an image stack (left). On the right, a graphical representation of the
resulting overlap in adjacent images is given (dark areas in the overlap images); it is apparent that forward and backward overlap are numerically
different because the cell area changes over time.
doi:10.1371/journal.pone.0027315.g002

Figure 3. Typical spatiotemporal pattern of a mitosis in vitro. The spindle apparatus forces the cell to become spherical (i.e. the circularity
rises) and partly detach from the growth surface (area decreases); also, the brightness rises temporarily as a consequence of the increased thickness.
doi:10.1371/journal.pone.0027315.g003
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Results and Discussion

I) Analysis of tracking errors
Validation algorithms are basically error detection strategies.

We will therefore first analyze the errors, which may emerge in cell

tracking. It turned out that many errors do not occur in cell

detection only, but also in reconstructing their temporal

continuity. Therefore, we give a description of typical error

scenarios that we have encountered while inspecting our tracking

results. In fact, the error scenarios given below constitute a

complete classification of all possible tracking errors. This allows us

to assemble them in an error classification tree which in turn

has been translated into an algorithm to automatically validate

tracking results.

Scenario 1: Cells at the image border. Cells in close

vicinity to the image border may either leave or enter the observed

area (see fig. 4a). Likewise, when most of the cell body lies outside

the image, the visible part could become too small to be noticed by

the cell detector. Since the identity of these cells cannot be

determined with sufficient reliability, they are excluded from the

tracking evaluation. That is, all paths with either a set border-

begin or border-end flag cannot be taken into account for further

cell tracking. This error scenario only reduces the number of paths

that can be evaluated. Its impact can be minimized by observing

larger areas, because the number of cells scales linearly with the

area, whereas the number of border cells scales with the square

root of the observed area only.

Scenario 2: Undetected cells. The tracking algorithm may

overlook "invisible" cells, i.e. cells, whose features do not meet the

requirements of the detector. In our case this would happen, if a

cell appeared too dark or too small with respect to the image

threshold values (see fig. 4b). This detection error can only be

corrected if the "invisible" cell itself, or its ancestor/successor is

detected at some point. If otherwise, a cell (and its whole progeny)

would pass unnoticed in all images, its consequence is the removal

of the overlooked path/tree from the overall tracking results.

Scenario 3: Merged cells. Two or more cells, which are

located in very close proximity to one another may optically merge

and appear as only one cell (see fig. 4c). This is the most critical

error in cell tracking, as it appears to occur rather often and

cannot be resolved trough optimized detection. Not only do

merged cells cause falsely terminated paths, but they may also

Table 1. Status flags for path classification and lineage
construction.

begin The path begins in the first frame of the image series.

end The path ends in the last frame of the image series.

border begin Path without predecessor starting near the image border*.

border end Path without successor ending near the image border*.

mitosis The path ends with a mitosis.

cell death The path ends with an apoptosis/cell death.

lost begin No predecessor but neither status "begin" nor "border begin".

lost end No successor but neither status "end" nor "border end".

merged Two or more cells are not separable and detected as one.

The first 6 flags (bold) determine terminal starting / end points of paths. The
next 2 flags indicate starting / end points which are in need for completion
through either connection, correction, or removal from the tracking evaluation.
Although the last flag ("merged") is not used to classify the ends of a path, it
implies both a set "lost start" and "lost end" flag.
*) The vicinity of the border is defined such that the distance between the
centroid of the cell and the image border is smaller than a minimum distance
(typically about 25–40 pixel, corresponding roughly to 50 mm).
doi:10.1371/journal.pone.0027315.t001

Figure 4. Error scenarios. A: Cells at the image border. Two cells first leave the observed area (image border at the right) and subsequently re-
enter. An unambiguous temporal assignment is not possible. B: Undetected cell A cell may pass unnoticed, when its properties do not meet the
requirements of the cell detector. In the depicted case, cells become too dark (arrows). Such "vanishing" or re-appearing cells result in a "lost cellpath"
flag. C: Merged Cells Two cells appear to merge into one. It is not possible to tell the merged cells apart by detection alone; the error can only be
noticed by taking into account the temporal nexus. D: Debris A non-cell/dead-cell object moves fast through the observed area.
doi:10.1371/journal.pone.0027315.g004
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propagate through time and, when the cells later depart from each

other, may lead to false mitosis events and/or transposition of cells.

Fortunately, merged cell errors can be identified swiftly through

the reversed Y-shape in the path representation (two paths ending

in a common successor). But, though the error is easy to detect, it

can be hard to unwind, because the single cells loose their unique

identity. One way to solve this problem would be to map in- and

output cells of the merged-cell-scenario by comparing their feature

vectors and choosing pairs with the smallest difference. However,

such an algorithm must be used with caution, because it may

introduce additional errors.

Scenario 4: Debris. Sometimes, non-cell objects, such as cell

debris or other particles will be falsely detected as cells; also we

categorize dead cells as debris. These objects usually move in a

different manner than adherently growing cells. They tend to drift

rather fast and linearly (see fig. 4d). In our case, the fast movement

causes the overlap tracking to fail; therefore, debris often manifests

as paths, which appear suddenly ("lost begin"-flag set) and span

one frame only. In our tracking experiments, debris did not appear

in significant amounts (we counted four dead (detaching) cell

events, two in each reference data set). In general, dead cells may

pose a serious challenge to cell tracking when occurring more

frequently than in the cell populations used here.

Error classification / error decision tree. Figure 5

summarizes all error scenarios and assembles them in a

complete decision tree to categorize possible tracking errors. The

error decision tree puts all possible error scenarios in a hierarchy,

such that it advances from simple scenarios, like cells at the image

border, to less conclusive situations, like debris or vanishing cells.

Validation algorithm, based on the error decision

tree. Many errors can be detected using the path classification

flags. First, all "border begin" and "border end" paths are removed

from the output. Second, merged cell events and mitoses are

specifically looked for through their unique connection patterns

("merged" flag, "mitosis" flag). At this point, the ambiguous "lost

end" and "lost begin" flags can only indicate a vanishing/re-

appearing cell or cell debris/cell death. Vanished cells may

become detectable with a local cell detector, e.g. using a local

threshold instead of a global. Due to its unspecific nature, debris is

the last candidate in the decision tree of error analysis (see figure 5).

We have chosen to construct the validation algorithm such that

after error classification/correction it returns complete paths only,

i.e. whole cell lifes from mitosis to mitosis; path fragments are not

accepted. Complete paths can be seen as the natural unit of

validation, because most of the biological measures are based on

statistical measures of whole cells (e.g. life time distributions,

sibling symmetry, genealogic nexus).

Although the correct classification of an error leads in most

cases to its rectification, there are exceptions, when the validation

process remains inconclusive even if all errors are correctly

classified. This is particularly the case, if combinations of errors

occur and multiple cells are involved. In such cases, either human

intervention would be required or - in case of a fully automated

validation - all involved paths must be removed from the tracking

output.

II) Reference data set
Two different raw image stacks were analyzed thoroughly to

construct the reference data set: The first (see Video S1) comprises

209 images, recorded every 15 minutes (i.e. 52 hours real time)

and displays a total of 244.580 single cells. This reference data set

will be analyzed throughout the paper; sample images at different

time points are shown in figure 6. Set B (see Video S2, S3, S4, S5)

consists of 399 images, taken at a time interval of 10 minutes (i.e.

66.5 hours real time) contains a total of only 80.500 single cells

(cells were observed at lower densities). Set B was acquired in two

different contrast modes (phase contrast and oblique illumination),

which makes it particularly suitable for testing more specialised cell

Figure 5. Complete classification of tracking errors. All possible tracking errors can be arranged in a decision tree; each decision/pink square
belongs to an error scenario (details see text). If an error can be detected and classified, it can be corrected in most cases (green exclamation marks).
Only, if all attempts to classify an error fail, the local tracking problem can be not solved by the validation algorithm and may require human
intervention (red question marks).
doi:10.1371/journal.pone.0027315.g005
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detectors. Both data sets, alongside with a detailed description of

the data-structures, are downloadable in the supplemental

material section for free use by scientists or companies (Creative

Commons license, Link to the data sets).

Cell detection and tracking of the reference data was carried out

manually but with the assistance of our tracking software. A user

interface was implemented which enabled the scientists to

manually correct the initial tracking results, obtained by the

unsupervised tracker. The program also monitors the (bio)logical

consistency of the manually corrected tracking results and

adjacency matrix (i.e. no duplicate cells and paths; uninterrupted

paths; no overlapping cell masks in one frame; mitotic cells with

exactly two successors). Using this approach, the cell detection and

tracking results were incrementally corrected by three different

scientists, i.e. each scientist corrected and improved the result of

the previous. The last correction left only very few, if any errors.

The final reference data not only specify the correct cell positions

and shapes but each single cell is also assigned to the correct

branch of its genealogic tree.

III) Evaluation of tracking algorithms
Comparing different tracking algorithms requires not only a

sufficiently large and freely accessible reference data set, but also

common criteria to evaluate tracking algorithms. The intent of this

section is to propose and discuss general criteria for evaluating

tracking algorithms and to illustrate them with our particular

tracking data. Below, we introduce three such criteria: (1) cell

detection rates; (2) path classification counts; (3) genealogical

assignments.

Evaluation of Cell detection (I): Cell detection rates. To

measure the performance of the proposed cell detection algorithm,

the false acceptance rate (FAR) and the false rejection rate (FRR)

are used. The FAR is defined by FAR~1{
#TN

#TNz#FP

~
#FP

#TNz#FP
and the FRR by FAR~1{

#TP

#TPz#FN

~
#FN

#TNz#FP
. TP and TN describe correct decisions of the

algorithm (TP = true positive and TN = true negative), while FP

and FN describe false decisions (FP = false positive and FN =

false negative). Figure 7 displays the false rejection rate (FRR,

missed cells) and the false acceptance rate (FAR, false cells) of our

cell detector for each image of reference data set A. False

acceptance/rejection errors are detected analogous to overlap

tracking: The intersection between a detected cell and the reference

cell mask is calculated. A cell is categorized as correctly detected, if it

overlaps with one and only one cell in the reference cell mask and

both overlaps (between true and detected cell masks and vice versa)

exceed a threshold of 30% (cf. figure 7, inset).

On average, our global threshold detector finds 95% of the cells.

This number compares well with other detection methods

[20,22,29,30]. Figure 7 also reveals that FRR and FAR appear

to be significantly correlated; high FRRs are often coupled with

high FARs and vice versa. This correlation is a consequence of the

fact, that a cell, which is detected with insufficient accuracy (e.g.

one overlap ,30%) is counted both, as a false positive and a false

negative cell (figure 7, inset).

Figure 6. Reference data set A. The first image (t = 0) shows the reference data set in its initial configuration with 282 cells. After 23 h and 31 h,
the observed area contained 957, respectively 1297 cells. The last micrograph (t = 48 h) displays 2211 single cells. The blue cells belong to complete
paths wich have been accepted by the validation algorithm.
doi:10.1371/journal.pone.0027315.g006
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Evaluation of cell tracking (II): Complete path detection

rate. To evaluate the tracking method, i.e. the algorithm which

connects the detected cells through time, we found the number of

correct complete paths to be an instructive measure (cf. table 2).

However, it would be misleading to equate a high number of

correct complete paths with a high quality of the tracking

algorithm. In fact, algorithms, which return high numbers of

correct complete paths are often afflicted with returning equally

high numbers of wrong complete paths; valuable tracking results,

on the other hand, require the correct paths to be of high "purity".

Therefore, to evaluate a tracking algorithm, we relate the number

of correct complete paths to the total number of complete paths;

the quotient
#correct complete paths

#complete paths
can be called "tracking

trustworthiness".

Table 2 compares different path classification counts. Our first

path construction algorithm (cf. section IV: First validation/path

fragments) returns a four times higher number of short path

fragments than the true number of paths is. This number can be

reduced by a factor of two using an unvalidated, naive tracking

approach to connect/elongate path fragments (3 rd column); the

trustworthiness of these paths, however, is extremely low (56.4%).

In contrast, our conservative validation algorithm leaves many

path fragments unconnected, but the returned complete paths are

Figure 7. Reliability of the threshold based cell detection. False Rejection Rate (FRR), False Acceptance Rate (FAR, left axis) and distribution of
mitotic events (right axis). Inset: Counting false rejection (FR) and false acceptance (FA) errors; detected cells are displayed in red, reference (true) cells
in blue. It is apparent from the schematic scenarios, that FA and FR errors often occur interrelated.
doi:10.1371/journal.pone.0027315.g007

Table 2. Path classification count for different tracking approaches.

Number of: reference initial path fragments + initial adjacency naive tracking without validation with validation

paths 4684 17932 8704 11455

detected mitoses 2019 1012 3299 1283

correctly detected mitoses 2019 865 1644 1114

mitosis detection trustworthiness 100% 85.5% 49.8% 86.8%

complete paths (mitosis-mitosis) 1635 268 1400 377

correctly detected complete paths 1635 253 789 360

tracking trustworthiness 100% 94.9% 56.4% 95.5%

The first column shows the reference data, i.e. the manually determined number of paths and mitoses. Next, the number of path fragments is given (cf. section IV: first
validation/path fragments). Connecting path fragments with naive tracking results in the numbers, displayed in the 3 rd column (cf. section IV: naive tracking).
Validating the path continuations leads to significantly less complete paths, the reliability of which is, however, much higher (rightmost column).
doi:10.1371/journal.pone.0027315.t002
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of high validity; the tracking trustworthiness of the validated

complete paths exceeds 95%.

A second important measure for cell tracking algorithms are

mitosis detection rates. The initial adjacency matrix (path

fragments) contains 865 correct mitoses (43%). This number can

be increased to 1114 (55%) using our dedicated mitosis detector

in conjunction with the validation algorithm (table 2). The

trustworthiness of the validated mitosis detection amounts to

86.8% (calculated analogous to tracking trustworthiness as
#correct mitoses

#detected mitoses
). Errors occur to a large part due to complex

scenarios of simultaneously occurring merged cell events / mitoses.

Naive tracking, i.e. tracking without validation, yields large

numbers of false mitotic events (mainly merged cells, which

depart later, thereby producing a false Y-shape); the trustworthi-

ness of these unvalidated mitoses lies below 50%.

Evaluation of cell tracking (III): Genealogical

assignments. The degree of relation between cells also turns

out to be a rigorous parameter to evaluate tracking algorithms. If

two cells are related to one another, they share a common

ancestor at some point; the degree of relation can then be

defined as the number of mitoses, by which the two cells are

connected (see figure 8). If two cells are not related at all,

their degree of relation is zero. This definition can be used

to evaluate the fraction of correct genealogical trees. False

rejection errors are those relations, which have not been

detected (i.e. got erroneously the degree zero assigned to); false

acceptance errors are those relations to which a wrong degree of

relation (.0) has been assigned. Both errors are expressed as a

fraction of the total number of relations found in reference data

set A.

Figure 8 displays the false rejection rate and false acceptance

rate for the genealogical assignments in each frame. Since the

validation algorithm rejects a high number of paths, the number of

cells that could be automatically related to one another is rather

small: the last frame of reference dataset A contains 2343 cells

which are related through 7828 genealogical assignments, where

our automated algorithm detects 600 assignments only (7.7% of all

possible relations in the last frame).

However, the trustworthiness of these genealogic relations is

extremely high (96.3%). The low number of correct detected

assignments is a result of the exponential error propagation within

the binary lineage tree structures (cf. fig. 8c).

IV) A parameterized cell culture: Automated extraction of
biological parameters from cell tracking data

In this section we demonstrate how validated cell tracking can be

used to automatically derive a multitude of biologically important

measures, some of which are not obtainable by other methods.

Apart from conventional characteristics, like growth curves and

confluency, we also introduce more complex figures, like life time

distributions, and the distribution of symmetric and asymmetric

cell divisions. Still, we only present a fraction of the information

about cell behaviour, which can be gained from validated cell

tracking; for instance, we will not touch upon the large field of

migration analysis or conditional measures (e.g. life times as a

function of local cell densities etc.).

Proliferation curve. Frequently required characteristics of in

vitro cell cultures are proliferation curves, i.e. the progression of

the overall cell number. This measure can be easily calculated

from time lapse data, provided the observed area is representative

for the whole growth area (culture dish). Figure 9 displays the

proliferation curve for the adult stem cell population of reference

set A. The typical sigmoidal shape has been recorded almost

completely; parts of the initial lag phase and the final contact

inhibition phase can be seen. Automatic cell detection yields

growth curves with an overall error below 5%, a precision, which

is currently unattainable with any other non-invasive method (e.g.

impedance based measurements as described by Ke et. al [31]).

The exponential part of the proliferation curve has been recorded

en detail; it corresponds well with the number of detected mitoses

(bar graph in figure 9). From these data, the probability for each

cell to divide within a given time span can be calculated as
#Mitoses

#Cell
(red curve in fig. 9, time span has been chosen as

2hours); it is not evenly distributed over time and spans from less

than 0.4 to more than 1.6 percent.

Cell area/confluency. Another basic cell culture charac-

teristics which can be readily extracted from cell detection data, is

the mean cell area as a function of cell density. Figure 10 shows that

in case of contact inhibited adult stem cells, the average cell area

scales inversely linear with the cell density. Such curves are

particularly useful for impedance based observation systems in

automated cell cultures for e.g. cell based screening systems [32,33].

The confluency (red curve) is calculated as the sum of all cell mask

areas divided by the total observed area. Note, that this measure will

always be significantly smaller than the really occupied fraction of

Figure 8. Genealogical assignments. (A) shows a cell mask and its genealogical tree with an example for the degree of relationship. (B) displays
the trustworthiness of the genealogic assignments for each frame as false acceptance (FAR) and false rejection rate (FRR). (C)illustrates the
exponential error propagation within binary tree structures. It is apparent that a very small number of errors can lead to a large number of false/
unsure genealogical assignments
doi:10.1371/journal.pone.0027315.g008

Automated Tracking Turns Cell Culture into Numbers

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e27315



the growth area, because the threshold based detector finds only the

cell body while chopping off all fine details of the cells (e.g. podia).

When compared with the reference data, our fully automated cell

detection delivers very accurate figures (error ,2%).

Life/Cycle time distribution. One particularly telling

parameter to characterize stem cell populations is the distribution

of life times, i.e. the time span between two mitoses (length of

complete paths). In the ideal case that all cells behaved the same,

their life time would be fairly identical. Thus, the shape and width of

life time-distributions can be used as a parameter to assess the

heterogeneity of a cell population. This is of specific importance for

adult stem cell cultures: It is a commonly held believe, that stem cells

proliferate rather slow, but give rise to faster expanding progenitor

cells; these progenitor cells would then - after some generations -

produce terminally differentiated cells, which are believed to be not

proliferative at all (e.g. Watt et al. [34] or Dingli et al [35]). Such cell

fractions - short living progenitors, longer living stem cells and

"everliving" terminally differentiated cells - should appear in the life

time distribution figures. Depending on their difference in life time

and frequency, they would either give rise to isolated peaks in the

distribution function or at least broaden it.

Figure 11a displays the life time distribution of reference data

set A, calculated from 1635 complete paths. Although the

distribution function features only one distinctive peak, one might

reason from its asymmetric shape, i.e. the pronounced tail towards

longer life times, that the pancreatic stem cell population is not

very homogeneous and contains various subpopulations. This

conclusion, however, would erroneously neglect the effect of

contact inhibition. Therefore, figure 11b gives a more detailed

account of life time distributions; here, each life time (path length)

is plotted at the time-point, when the path ends. This figure reveals

that after about 36 hours, the average life time starts to increase

from about 12 hours (subconfluency) to roughly 20 hours (con-

fluency). Still, life time distributions seem to be rather broad, even

within the two distinct growth regimes (see fitted distributions in

fig 11a), indicating diverse cell types or different stages of

differentiation.

Cellular genealogies. True single cell information about in

vitro culture can only be gained if the whole connectivity matrix,

i.e. the genealogical nexus of each cell, is taken into account.

Several advanced measures have been proposed to compare and

identify different cell fates based on the topological features of

Figure 9. Proliferation curve of stem cells from the exocrine pancreas of rattus norwegicus. The cell count increases roughly tenfold during
the time-lapse observation. Reference data are shown as a solid line; automatically detected cells are displayed as a dotted line. The automatically
calculated curve displays a very low error (mostly ,5%). The cell number correlates well with the number of mitotic events (histogram bars).
doi:10.1371/journal.pone.0027315.g009
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Figure 10. Cell density dependent cell area. The solid line shows the decrease of cell area with increasing cell density; the stained area depicts
the distribution (standard deviation) of cell area. The solid line is calculated using the reference data, the dotted line using the threshold based cell
detection algorithm described in this work. The confluency (red) is calculated in percent, i.e. the sum of all cell-pixels divided by the pixelsize of the
overall observed area.
doi:10.1371/journal.pone.0027315.g010

Figure 11. Life time distribution. (A) displays the histogram data of the life time distribution (time between consecutive mitoses) and a fitted
normal distribution for all path lengths before and after t = 36 h (onset of contact inhibition, cf. figs 10 & 11); (B) illustrates the prolongation and
distribution of the life time when reaching confluency.
doi:10.1371/journal.pone.0027315.g011
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genealogical trees [28,36,37,38]. Most of these measures require

rather large, highly branched trees (at least 7 or 8 generations;

order of hundred or more leaves). However, cell culture often deals

with a large number of smaller trees, spanning a few generations

only; typically, a confluent cell layer is splitted into 2 to 10 new

dishes to overcome contact inhibition and to give the cells new

area to grow. This ratio of 1:2 to 1:10 corresponds to 2–4

generations only (one doubling per generation). It would be

therefore inappropriate to apply the aforementioned topological

measures to our data. Instead, we use a simple measure, which we

term "sibling symmetry"; it is defined as the life time difference of

two sibling cells.

Figure 12c displays the sibling symmetry distributions of both,

reference data sets A and B; the closer to zero the value, the more

symmetrical the siblings behave. Contrary, to what might be

expected from stem cell cultures, sibling cells divide in a

surprisingly symmetrical manner (figs. 12b and 12c). This

behaviour can be observed irrespective of the cell passage, as

can be inferred from comparing the sibling symmetry figures of

both data sets (set A is in passage 48; set B in passage 39, fig. 12c).

We take this as a hint, that asymmetrical cell division, as

accomplished e.g. in ontogenesis and tissue homeostasis, is not

maintained in adult stem cell in vitro cultures. Together with the

reported spontaneous differentiation behaviour of pancreatic stem

cells [23,24], these observations somewhat challenge the idea, that

the state of differentiation is necessarily reflected in cell cycle times.

However, answering the question how, and to which degree in vitro

differentiation of adult stem cells is tied to proliferation, will

require many additional experiments. The results presented in this

paper are meant to substantiate that validated cell tracking will be

among the most powerful techniques to answer such questions.

Discussion

In recent cell tracking work, the main emphasis was put on the

different methods of cell detection and cell tracking. This work

addresses dedicatedly two other equally important aspects of cell

tracking: validation and evaluation. Validation refers to the

independent automated determination of the reliability of the

tracking results. We will argue, that validation is an imperative

part of every tracking method. Evaluation, on the other hand,

refers to methods for scoring different tracking algorithms. Here,

we propose various performance benchmarks and provide two

large, manually tracked data sets to facilitate and standardize

future evaluation procedures.

I) Validation
To achieve fully automated cell tracking, validation is

mandatory. Our argument can be derived from the fact that no

measurement or detection strategy is error-free. The particular

difficulty in cell tracking is the fatal error propagation mechanism;

errors do not remain confined to a particular spatiotemporal

vicinity but effect the entire genealogy. A small local error, like e.g.

a merged cell event, may lead to large deviations, e.g. of life time

determinations, tree topologies and single cell genealogy.

The particularly severe error propagation in cell tracking can be

illustrated by a simple estimation: Assume a fairly good cell

detection rate of 95%; assume further, that the detection errors are

evenly distributed in space and time. A complete path of 50 frames

length could then be tracked with a probability of 7.7% only

(0.95‘50). Though in reality, the errors are not evenly distributed

and other than detection errors may occur as well, it is for this

specific reason that even ideally high detection rates of nearly

100% will lead to many erroneous paths when tracking is

performed without validation.

Indeed, it can be noted from table 2 that our detection rate of

95% yields 1400 paths, 44% of which are wrong, when using a

"naive", i.e. unvalidated tracking algorithm. Tracking results of

such a low trustworthiness must be regarded as meaningless.

Biologically meaningful information and method-related artefacts

appear in equal amounts and are virtually indistinguishable.

Figure 12. Genealogic trees and their symmetry. Reference sets A/B contain 386/85 trees with an average size of 3.5/3.8 generations, i.e. 11.3/
14.2 connected paths. (A) shows a 3D-xyt-representation of the largest tree encountered; it consists of 65 paths (tree number 7 in data set B).
(B) displays the same genealogy as a binary tree; the tree appears very balanced. The high symmetry is confirmed statistically by the histograms in
(C), which depicts the distribution of the sibling symmetry for both data sets A and B.
doi:10.1371/journal.pone.0027315.g012
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Validation solves this issue by providing a means to distinguish

between artefacts and true cell behaviour.

Increasing the trustworthiness of tracking results requires a

conservative validation strategy. It must not aim to maximize the

success rate (i.e. the number of complete paths and genealogic

trees), but to minimize the risk of erroneous results, even at the

expense of losing many paths. The detection of errors is more

important than their rectification, as this may introduce new

errors. Table 2 shows that our validation method rejects the

majority of paths as untrustworthy; only 377 complete paths (23%)

out of 1635 are returned as tracking results. However, the

trustworthiness of these paths exceeds 95%, which is a huge

improvement over our unvalidated tracking data (naive tracking)

with a trustworthiness of 56.4% only (see table 2)and therefore

an indispensable precondition for the subsequent derivation of

statistical measures.

The argument could be raised, that validation may introduce a

bias by accepting specific cell types only. In fact, every detection

strategy, be it cell or error detection, relies on basic assumptions

about the detected subject and thus, is generally threated by the

danger of being biased. However, our validation algorithm implies

only very general assumptions about the spatiotemporal contiguity

of cell paths. In particular, we expect that cells do neither emerge

‘‘out of nothing’’ nor vanish (cf. fig 5). Compared to the

assumptions, which need to be made e.g. for cell detection – e.g.

about cell shape and cell behaviour – our validation algorithm

appears to be much less critical and less prone to introduce bias.

The only cellular event, which might be erroneously not taken into

account, is cell fusion. Putting aside that cell fusion appears to be

rather rare in vitro, the validation algorithm could be easily

adjusted to include those as well: The already existing merged-cell

detection would have be augmented with the condition that – in

contrast to merged cells – fused cells are not allowed to depart

later.

Besides this reasoning, we have also experimentally checked,

whether the validation algorithm introduces a bias. Comparing the

validated tracking results with the manually created reference data

reveals that the validated/accepted paths do not constitute a

particularly selected subset, but instead represent the true

distribution of properties (comparison of life time distributions,

see fig. 13a). In contrast, waiving validation heavily distorts the

distribution function (green data points in fig 13a). Also, we have

tested the reproducibility of our validated tracking through an

additional experiment, in which we observed pancreatic stem cells

in passage 31 at 10 different coordinates, i.e. we made 10 movies

by manually selecting different positions in one cell dish (see Figure

S1 and Video S5, S6, S7, S8, S9, S10, S11, S12, S13, S14).

Afterwards, we compared those to one another (Figure 13b) and to

the reference data sets (Figure 13c). It is apparent that the

variances are in both cases small. Additionally, we have tested our

tracking/validation approach with another cell type (human

dermal fibroblasts in passage 7, data set D). These cells, although

quite different from pancreatic stem cells (e.g. more elongated

form, much slower doubling time), can be handled equally well by

our algorithm (see Figure S2 and Video S15, S16, S17, S18).

One important result of of validation in automated cell tracking

is the fact that complete paths and statistical distributions of cell

properties are the natural outcome of such an algorithm, rather

than single cell information and genealogic trees. This is a

consequence of the conservative validation approach, which

accepts only error-free, complete, but often non-connected paths.

In our case, we found 23% of all complete paths and less than 8%

of all possible genealogic assignments in the last frame. However,

the statistical parameters that can be derived from validated

tracking data are highly significant and a logical way to describe

the properties of large cell populations. Should the validation

process leave too small a sample size, the number of paths entering

the analysis can always be increased by enlarging the observed

area.

Thus, validation turns the qualitative problem of achieving

reliable tracking results into a quantitative problem of data

acquisition and computing power. This turn substantially extends

the possible applications of cell tracking techniques, because it

allows for the non-invasive, quantitative description of cell cultures

in a fully automated manner. Figures like life-time distributions,

growth curves, sibling symmetry, motion analyses etc. can be used

to parameterize the conventional cell culture, i.e. turn its

qualitative nature into biologically meaningful numbers.

In particular, it may become possible to assess the heterogeneity

of a cell population merely by "looking at the cells" through its life

time distribution. To the best of our knowledge, single cell tracking

is the only method in existence to non-invasively analyze life time

distributions and sibling symmetries. Every other method, e.g.

genetically engineered reporter systems, BrdU or EdU assembly,

immunofluorescence etc. either kills or at least heavily disturbs the

cells.

II) Evaluation
Although quite a number of methodical work on cell tracking

has been published within recent years, most papers stood rather

isolated and could not relate to one another in a constructive

scientific discourse. This was mainly due to a lack of both,

common evaluation criteria and common reference data. Among

the methods previously used to construct reference data were

manual lineage construction from real time-lapse data

[8,12,14,28], often performed on smaller subsets [10,19,20],

artificially created data [16,22] as well as manual mitosis detection

[39]. Unfortunately, these reference data are all afflicted with one

or another disadvantage; they are either not publicly available, too

small for statistical measures, contain too few mitoses, or are based

on labelling/life staining. Here, we publish a data set with a

significantly increased number of tracked cells (.240.000 cell in

reference set A, .80.000 cells in set B; 6120/573 paths; 2019/573

mitoses); for unlabeled cells this increase amounts to roughly two

orders of magnitude (for a comparison of different tracking work

refer to Table S1). These numbers along with their ‘‘real life

nature’’ make the reference data sets suitable as a benchmark for

testing future cell tracking algorithms.

Diversity can be also found among the previous evaluation

criteria; mostly, they have been adapted to the particular tracking

approach and are not generally suitable for comparing different

tracking algorithms. A notable exception is the work of Hand

et al., who undertook the effort of comparing six different tracking

methods [16]. For this purpose, they used criteria, which are very

similar to ours (cell detection rates, complete path detection rates).

Yet, they have worked with an artificially created data set only,

which contained no mitoses. This prevented them from deriving

measures for evaluating the genealogic nexus of the data. For the

evaluation of real world data (with mitoses, imaging errors etc), we

therefore propose to use our enhancement to their evaluation

criteria as a starting point for scoring and comparing different

tracking approaches.

Conclusions

Based on the notion that no measurement is error-free, and

error propagation in cell-tracking is particularly bad, we

demonstrate, that validation is obligatory to achieve fully
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automated cell tracking. This also encompasses a mitosis detector,

which has been shown to be an important prerequisite for the

validation methods. Using automated validation we could

demonstrate that even a rather basic tracking approach can lead

to very trustworthy results. These results can be used to

automatically derive biologically meaningful parameters for the

quantitative description of cell culture.

To date, cell tracking was regarded to be a powerful, but rather

specialized method to investigate specific questions in develop-

mental biology [5,6] or to find and explore rare events in cell

culture [1,40]. However, being able to unsupervisedly track large

cell populations and to derive statistical distributions of their

biological properties shifts the method from being peripheral and

laborious to being descriptive and automatable. The automatically

Figure 13. Reliability/robustness of the validation algorithm. (A) displays the life time distribution of reference data set A (blue). Red and
green data points display the results of automatic tracking with and without validation, respectively. It can be inferred from the similarity of
distributions that our validation algorithm does not select for specific cells, whereas unvalidated tracking produces many artefacts. (B) An experiment
showing the robustness of the method. Proliferation curves were recorded at 10 different positions (pancreatic stem cells in passage 31); the
variances between them are small. (C) Life time distributions of different experiments. Dark and light blue data points are taken from data sets A and
B respectively, while the yellow data points display the outcome of the validation algorithm for the 10 different positions shown in (B). Cell behaviour
and the output of the validation algorithm appears to be very reproducible, even when comparing different passages and cell densities.
doi:10.1371/journal.pone.0027315.g013
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derived information may lead to a parameterized cell culture, far

exceeding the limits of present non-invasive cellular analysis in

both, accuracy and biological relevance. Ultimately, validated cell

tracking will prove to be an important advancement in the

standardization of therapeutical and industrial cell culture.

Finally, we provide the scientific community with two large

reference data sets, which have been fully tracked and corrected by

hand. These sets are supposed to be freely used as a benchmark

system for tracking algorithms or other image based cell analyses.

We sincerely hope that these data will help to establish a scientific

discourse and that they may contribute to improve cell tracking

within near future.

Supporting Information

Figure S1 Pancreatic stem cells (PSCs, data set C) in passage

31 were cultured and observed over a time period of three days

and imaged at 10 different positions. The proliferation curves are

shown in (A), the changes of confluency in (B,C). The last

subfigure (D) displays the change of mean cell area of these

different positions. The variances between the 10 curves are small.

(TIFF)

Figure S2 Human dermal fibroblast (HDF) (data set D) were

cultured over more than 10 days and imaged at four positions. Anal-

ogous to the figure S1, the proliferation curves are shown in (A), the

changes of confluency in (B,C) and the change of mean cell area in (D).

(TIFF)

Table S1 Selected previous tracking work, compared to one

another with respect to important technical details. The tracking

tasks and the methods of evaluation are very diverse, making a

direct comparison rather difficult.

(DOC)

Video S1 A culture of proliferating PSCs is shown during a time

lapse experiment using oblique illumination. This image sequence

was used to create reference data set A.

(AVI)

Video S2 A culture of proliferating PSCs is shown during a time

lapse experiment using oblique illumination. This image sequence

was used to create reference data set B.

(AVI)

Video S3 A culture of proliferating PSCs is shown during a time

lapse experiment using phase contrast microscopy. This image

sequence belongs to reference data set B.

(AVI)

Video S4 The complete genealogical tree for one cell is shown.

This tree was reconstructed using the reference data set B.

(AVI)

Video S5 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 1 / 10 is shown.

(AVI)

Video S6 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 2 / 10 is shown.

(AVI)

Video S7 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 3 / 10 is shown.

(AVI)

Video S8 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 4 / 10 is shown.

(AVI)

Video S9 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 5 / 10 is shown.

(AVI)

Video S10 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 6 / 10 is shown.

(AVI)

Video S11 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 7 / 10 is shown.

(AVI)

Video S12 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 8 / 10 is shown.

(AVI)

Video S13 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 9 / 10 of data set D is

shown.

(AVI)

Video S14 This video shows the proliferation of PSCs during a

timelapse experiment. Video / position 10 / 10 is shown.

(AVI)

Video S15 This videos shows the proliferation of HDFs during a

time lapse experiment. Video / Position 1 / 4 is shown.

(AVI)

Video S16 This videos shows the proliferation of HDFs during a

time lapse experiment. Video / Position 2 / 4 is shown.

(AVI)

Video S17 This videos shows the proliferation of HDFs during a

time lapse experiment. Video / Position 3 / 4 is shown.

(AVI)

Video S18 This videos shows the proliferation of HDFs during a

time lapse experiment. Video / Position 4 / 4 is shown.

(AVI)
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