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ABSTRACT
Background:Digital medicine and smartphone-enabled health technologies provide

a novel source of human health and human biology data. However, in part due to

its intricacies, few methods have been established to analyze and interpret data in

this domain. We previously conducted a six-month interventional trial examining

the efficacy of a comprehensive smartphone-based health monitoring program

for individuals with chronic disease. This included 38 individuals with hypertension

who recorded 6,290 blood pressure readings over the trial.

Methods: In the present study, we provide a hypothesis testing framework for

unstructured time series data, typical of patient-generated mobile device data.

We used a mixed model approach for unequally spaced repeated measures using

autoregressive and generalized autoregressive models, and applied this to the

blood pressure data generated in this trial.

Results: We were able to detect, roughly, a 2 mmHg decrease in both systolic and

diastolic blood pressure over the course of the trial despite considerable intra- and

inter-individual variation. Furthermore, by supplementing this finding by using a

sequential analysis approach, we observed this result over three months prior to

the official study end—highlighting the effectiveness of leveraging the digital nature

of this data source to form timely conclusions.

Conclusions: Health data generated through the use of smartphones and other

mobile devices allow individuals the opportunity to make informed health

decisions, and provide researchers the opportunity to address innovative health and

biology questions. The hypothesis testing framework we present can be applied in

future studies utilizing digital medicine technology or implemented in the

technology itself to support the quantified self.

Subjects Cardiology, Evidence BasedMedicine, Translational Medicine, Statistics, Computational

Science

Keywords Quantified self, Unequally spaced repeated measures, Digital medicine, Spatial power

law, Mobile blood pressure monitoring, Mixed models

INTRODUCTION
Empowered patients and health care consumers (Topol, 2015) have aligned with

health data tracking technologies to create the quantified self movement (Swan, 2013).

Quantified self involves the use of tracking one’s own health-related data to understand

trends and potentially alter behavior in order to achieve a health goal. The size and
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scope of health tracking has and continues to expand with the advent of digital

medicine and mobile health (mHealth) technologies enabled by smartphones and

connected device infrastructures (Steinhubl, Muse & Topol, 2015). For example, in

certain individuals traditional daily weight monitoring has been supplemented by

apps that track food intake and devices that monitor physical activity in order to

achieve this health goal—a part of the 58% of mobile phone users that have

downloaded a health-related mobile app (Krebs & Duncan, 2015). Researchers have

shown that in some cases interventions using this technology alone can improve health

outcomes, though this result is far from universal (see Free et al. (2013) for review)

with the disparity likely due to numerous factors including poor adherence and

fatigue (Shaw et al., 2016), and failure of the intervention to change behavior (Patel,

Asch & Volpp, 2015).

While new, better, more user-friendly technologies will continue to be developed, vying

for the appreciable forecasted growth of the industry (Statista, 2016), we and others

believe the future of the field is not simply in the devices and software themselves, but

in the data they generate (Gibbs, 2015). Such data can help guide individual health

decisions—the crux of the quantified self movement—but can also be used to address

novel human health and biology questions (Steinhubl et al., 2015). Yet there exists a sizable

gap between the data that is generated and the methods available to analyze and

interpreted such data (Fawcett, 2015). Indeed, most such devices and apps simply display

the data, leaving any inference up to the user and anyone the user wishes to share the

data with (e.g., their physician). However, even the most data experienced users and

health care providers may find identifying subtle trends in such complex data a daunting

task. These challenges also extend to researchers who may wish to examine data captured

from these technologies as, in addition to inherent technical obstacles such as data

collection and data security, few analytic methods are established and general software

packages are not readily available.

These technologies present the opportunity to examine health data in nontraditional

ways. Rather than large intermittent gaps in health measures between doctor or study

visits, data can be collected in relatively high resolution. Such high resolution data

allows users and researchers to detect unique trends and relationships that were never

before possible. For example, a diabetic patient using a continuous glucose monitor can

now assess their minute-to-minute health rather than rely on single, low resolution

measures such as hemoglobin A1c levels, which does not accurately assess health

variability (Virtue et al., 2004). Furthermore, access to such high-resolution human

health data in nontraditional settings (e.g., normal, at home environment) allows us to

evaluate “real world” health and not be relegated to artificial worlds created in clinical

trials that suffer from poor clinical practice adoption (Goss, Elmore & Lessler, 2003).

Yet in order to form scientific conclusions in this new frontier, novel methods and

adaptations of existing approaches must be developed to account for the intricacies of

patient-generated data.

While numerous digital medicine biosensors, devices, and applications have been

manufactured to measure various aspects of human physiology and exposome, perhaps
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no metric epitomizes both the contemporary challenge and opportunity of this field

more than blood pressure. Heart disease is the leading cause of death in the United States,

with hypertension being the leading contributor of disease (National Center for Health

Statistics, 2012). With proper management, hypertension can be controlled and the

health consequences of uncontrolled hypertension can largely be avoided. Nevertheless,

in the United States only 48% of individuals with hypertension have their condition

under control (Farley et al., 2010). It is unsurprising that hypertension has been a

target for patient-centric, mHealth disease management (Logan, 2013). Yet the

technology to continuously monitor blood pressure in the outpatient setting is still

developing as manufacturers have not entirely solved the technical aspects of

truly passive monitoring. Thus, the current state of the field largely includes mobile

blood pressure cuffs in which readings are initiated by the user. As users may take a

reading at any time, evaluating temporal trends in this data requires added

consideration.

In this study, we present a hypothesis testing framework in which we examined blood

pressure readings taken at variable, uncontrolled time points in individuals enrolled in a

smartphone-based health monitoring intervention trial—though the approach we present

can be adapted to other similarly structured data. In total, 38 study participants recorded

and provided us with blood pressure data on 6,290 occasions. We find that by leveraging

all data across individuals we were able to detect an approximately 2 mmHg decrease

in blood pressure over a six month trial, despite considerable intra- and inter-individual

variation. We then discuss how this and other techniques can be implemented in data

analyses of the quantified self and in future study designs.

METHODS
Study participants
The present investigation is a sub-analysis of a study conducted by the Scripps

Translational Science Institute named the Wired for Health (WFH) study (Bloss

et al., 2016). In brief, the WFH study was a six month, randomized-controlled trial

investigating the practice of a smartphone-based health monitoring program in

individuals with chronic disease, and was accompanied by an online and mobile tracking

infrastructure. Eligible participants were over the age of 18 who were insured by

Scripps Health and had submitted at least one health insurance claim for hypertension,

diabetes, or cardiac arrhythmia in 2012. Participants were equally randomized to the

control or monitoring arms (details below). In total, 160 participants enrolled in

the WFH study, with the majority (51.3%) being in the top quartile of health insurance

claims in 2012. Only individuals with hypertension (n = 135) were considered in the

present study. Among those, 112 completed the study, including 53 in the control and

59 in the monitoring group. After screening device readings data for technical limitations

(n = 19) and study noncompliance (n = 2), 38 hypertensive individuals from the

monitor group had complete readings data. This study focuses on these 38 individuals.

This study was approved by the Scripps Institutional Review Board (IRB-12-6019), and all

study participants provided informed consent.
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Monitoring intervention arm
Hypertensive study participants in the monitoring group were provided with

comprehensive mobile blood pressure monitoring system: a Withings Blood Pressure

Monitor, an iPhone 4 or 4s with linked applications, iPhone applications, and an online

and mobile HealthyCircles account. HealthyCircles is a Qualcomm Life health care

coordination and management platform with an integrated suite of management and

consumer portals that can deliver chronic disease education and connect users to their

families, caregivers, and health care professionals. Individuals were instructed to measure

their blood pressure using this system twice a day, three days a week, with the first

measurement in the morning. If participant measurements dropped below a desired level

of compliance (less than three measurements a week for two consecutive weeks) the

participant was sent an email through their HealthyCircles account reiterating the

measurement schedule. Participants were also encouraged to take extra measurements

if deemed appropriate. Device readings data was collected using Qualcomm Life’s cloud-

to-cloud data integration capability.

Variables of interest
The primary outcome of the present study was device-collected blood pressure

measurements in the 38 individuals with complete readings data in the monitoring group.

The primary independent variable is time since the beginning of enrollment in the study.

The hour during the day the measurement was taken was considered as a covariate.

Statistical analyses
Device readings data was analyzed using two approaches: (1) a multiple N-of-1 approach

in which the data from each study participant was analyzed individually; and (2) a

mixed model approach combining all individuals for analysis. Specific details on each

model are available in Appendix S1.

In the multiple N-of-1 approach, blood pressure measures were regressed on time

enrolled in the study using linear regression, accounting for the time of day at which the

measurements were taken. Alternative covariance structures were modeled, but results

were consistent with those obtained from simple linear regression. In all cases, the effect of

blood pressure over time (i.e. slope) was recorded. Slope averages, inverse variance

weighted averages, and bootstrapped confidence intervals were calculated.

Alternatively, repeated measures mixed models were constructed to assess blood

pressure over time across all individuals. The general structure of the model is:

Y ¼ Xbþ Zuþ e

where Y is the vector of blood pressure measures, X is a matrix of independent variables

(i.e. intercept, time, and covariates) with fixed effectsb, Z is a matrix indicating the structure

of the between subject random effects uwith covariance matrixG, and e is the random error

with covariance matrix R. It follows that Var(Y|u) = R and Var(Y) = V = ZGZT + R.

In the present study, R represents the potential time-dependency of measures within

subjects. It follows that R and subsequently V are block diagonal. Below we refer to the
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block diagonal elements of V as S, and the elements of R as SR. The primary hypothesis

tested was H0: btime = 0. That it, was there a linear change in blood pressure measures

in the study population after accounting for individual variation and potential time-

dependency between measures? Time of day (in hours) was modeled as a fixed

effect covariate with 24 levels. We do note that that random effects component of this

model indirectly accounts for static individual-specific covariates (e.g., baseline BMI).

Thus, no other covariates were modeled.

Three distinct covariance structures were modeled that were appropriate for the

source of the data and minimally complex on account of the large dimensions of

V: (1) compound symmetric structure S (i.e. random effects only); (2) a first-order

autoregressive structure with random effects; and (3) a spatial power law/generalized

autoregressive structure with random effects. Model fit was assessed using AIC

and BIC.

Finally, a sequential analysis approach was implemented using the mixed model

approach described above. Study device readings data was collected over a roughly ten

and one-half month period from the middle of August 2013–July 2014. Data was

partitioned into eleven cumulative monthly periods. For example, one data partition

included all device readings data from the first month of the study, another included

device readings data from the first two months of the study, and so on. A mixed model

with spatial power law covariance structure with random effects was applied to each of

the data partitions. Additionally, a sequential analysis approach was implemented in an

N-of-1 framework where readings from each individual alone were partitioned into

monthly blocks similar to that described above. Among individuals who did demonstrate

a significant increase or decrease in blood pressure at six months, the goal was determine

if changes in blood pressure could be observed prior to the conclusion of the individual’s

study participation (e.g., if an individuals demonstrated a decrease in blood pressure

over six months, would we have observed that result after five months). Likewise, a spatial

power law covariance structure was assumed.

RESULTS
Demographic information on study participants is presented in Table S1. Among the

59 original study participants assigned to the monitoring intervention arm that completed

the study, 38 had complete device readings data. This cohort was predominantly

Caucasian (87%) and largely female (74%) with an average age of 57. A number of

participants did not own a smartphone prior to enrollment in the study (21%) with half

owning an iPhone. Responses to health-related survey questions are presented in Table S2.

We saw a general increase in overall health by the end of the study. There was notable

decrease in smoking frequency and increase in exercise frequency. However, we note that

these health improvements were also observed in the control arm of the original study

(data not presented), suggesting that the monitoring intervention itself had no discernible

impact on these traits.

The implied goal of individuals participating in the study is better management of

their condition. In this regard, we considered observed blood pressure device readings
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collected over the course of the study as outcomes of interest. Single blood pressure

readings taken at, for example, the enrollment and end of study visit can provide some

level of inference on blood pressure changes. However, this approach ignores all data

that could be generated between these time points and is vulnerable to biases and natural

variation. Rather, we feel approaches which leverage the entirety of the data are

preferential. By utilizing Qualcomm’s cloud-to-cloud data integration capability, we

were able to capture the measure and time recorded of each blood pressure reading

on 38 individuals in the monitoring group. While our inference is based on these

38 individuals and is limited, we present our mathematical framework and modeling

below in attempt to answer the seemingly simple question: was blood pressure changing

over the course of the study?

In total, we collected 6,290 systolic and 6,265 diastolic blood pressure readings from

these individuals (Data S1 and S2). Device readings were recorded roughly uniform

over the course of the study (Fig. S1). The number of readings taken varied between

individuals, with an average of 165 readings per person (sd = 70, min = 61, max = 416).

The time of day that readings were taken was also variable, with a large proportion of

measurements taken in the early morning and afternoon. Few readings were taken in

the late morning and at night, though this was not necessarily surprising given

we asked participants to use the device in the morning, presumably before day time

activities (Fig. S2).

Multiple N-of-1 approach
We first assessed the effect of time on blood pressure on each study participant

individually (Figs. 1 and S3). Among the 38 participants, 18 had nominally statistically

significant (p < 0.05) changes in systolic blood pressure and 21 had significant changes in

diastolic blood pressure. However, the number of participants with a significant decrease

in systolic blood pressure (n = 9) was equal to the number with an increase (n = 9), and

was similarly true for diastolic blood pressure (decrease: n = 12, increase: n = 7; p = 0.36).

This result also held when we examined the estimated effects from all participants,

regardless of p-value. There were 20 individuals with a decrease (i.e. negative slope) in

systolic blood pressure against 18 with an increase (p = 0.87), and 21 with a decrease and

17 with an increase in diastolic blood pressure (p = 0.62). In efforts to summarize

these results across individuals, we calculated the mean slope and mean slope weighted by

the square root of the number of readings each participant recorded. We found no

evidence towards an overall decrease in systolic or diastolic blood pressure. The weighted

mean change in systolic blood pressure was -1.7 mmHg (95% CI: -4.7, 1.4) and diastolic

blood pressure was -1.9 mmHg (95% CI: -4.0, 0.1). Results from the unweighted

calculations were similar.

Mixed model approach
We then pooled device readings data from all study participants, and assessed the effect

of time on blood pressure using the mixed model framework described previously with

three possible covariance structures of R, where SR was: (1) compound symmetric;
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Figure 1 Normalized diastolic blood pressure readings. Each box is one study individual. Points are arranged along the x-axis which represents

the time in days from the beginning of the study, and along the y-axis which represents the normalized diastolic blood pressure reading recorded at

that time. The red line is the least squares regression line. Individuals are ordered left to right, top to bottom according to the number of readings

recorded.
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(2) first-order autoregressive; or (3) generalized autoregressive for unequally spaced data

(i.e. spatial power law).

We encountered one issue when applying the spatial power law structure mixed model.

As opposed to the first-order autoregressive model in which

X
R
¼ �2

1 � �2

� 1 � � � �
�2 � 1

..

. . .
.

0
BBB@

1
CCCA

where � is the correlation between two successive measures on the same subject, the

spatial power law structure is a generalized form of the first-order autoregressive model

in which

X
R
¼ �2

1 �t2�t1 �t3�t1

�t2�t1 1 �t3�t2 � � �
�t3�t1 �t3�t2 1

..

. . .
.

0
BBB@

1
CCCA

where tk is the time of the kth measurement, and the difference ti - tj is the lag between

the ith and jth measure. When measurements are equally spaced, the spatial power law

models simplifies to a first-order autoregressive model as the lag between measures is

constant. Though we instructed study participants to measure their blood pressure at

certain intervals, the time individuals chose to take these readings, and thus the lag

between measures, varied considerably. In this context, we expected the spatial power

law structure to be appropriate for the data collected. However, while the majority of

consecutive measures had lags of six hours or more (Fig. 2), we discovered a small

number of consecutive measures with short lag that led to issue we alluded to above.

To demonstrate this issue between consecutive measurements with short lag, consider

the following example: three measurements are recorded at times labeled t1, t2, and t3.

In this case,

X
R
¼ �2

1 �t2�t1 �t3�t1

�t2�t1 1 �t3�t2

�t3�t1 �t3�t2 1

0
@

1
A

However, when two measurements are taken relatively close together, say at t1 and

t2 compared to t3, then t2 - t1 is relatively close to zero and t3 - t1 ≈ t3 - t2. The result

on SR is:

X
R
� �2

1 1 �t3�t1

1 1 �t3�t1

�t3�t1 �t3�t2 1

0
@

1
A

As can be seen, the first and second columns and rows are roughly equivalent, leading

to singularity in this matrix, non-convergence, and inestimable effects. It should be

noted that this issue does not manifest in the compound symmetric and first-order

autoregressive models.
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In order to solve this issue, we merged data readings taken within short periods of each

other by taking the average over that time. We found that merging readings within a

one hour period of each other eliminated the singularity of SR while minimizing the

number of readings manipulated. We still ran into singularity issues when using shorter

time intervals (e.g., 15 and 30 min minimums). In total, we merged 826 systolic and

801 diastolic blood pressure readings within an hour of each other, with most merging

(61%) being two readings recorded within an hour. The subsequent dataset resulted in

5,464 systolic and diastolic readings.

Mixed model results from the one-hour merged dataset are presented in Table 1.

For each model assessed, there was an approximately 2 mmHg decrease in systolic and

diastolic blood pressure across the sample over the study period (p < 0.001 in all cases).

While both the first-order autoregressive and spatial power lawmodels with random effects

had better model fit than the random effects model alone, the first-order autoregressive

model had slightly better model fit (the estimate of � was near 0.2 regardless of the

approach). It should be noted that when we tested various merging strategies to eliminate

the singularity in the spatial power law Smatrix (e.g., averaging blood pressure across the

Figure 2 Histogram of the lag between consecutive measures. Measures recorded near each other

relative to others can lead to singularity in SR.
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entire day) sometimes the spatial power law model had the better fit. This suggests that

while accounting for time dependencies was important, the precise structure appeared to

be less so. This was true even though the spatial power law model appeared to be more

appropriate, given the readings were generally unequally spaced.

Sequential analysis approach

We next implemented a sequential analysis approach in which we modeled a spatial power

law structure with random effects on sequential subsets of the one-hour merged datasets.

The goal of this approach was to determine if and when we could have arrived at our

primary conclusion (i.e. systolic and diastolic blood pressure decrease 2 mmHg over the

study) prior to the end of the study. While the device readings data across all study

participants was collected over ten and a half months, after the first seven months of the

study we would have arrived at a similar conclusion (Figs. 3 and S4). Though all 38

participants had completed the study or were enrolled by that time, and 4,686 blood

pressure measures (86%) had taken place by then, the prospect of arriving at a conclusion

prior to the designed end of the study has some benefit—particularly so when data is

collected using digital medicine devices as we discuss below. Furthermore, when applying

a sequential analysis approach in an N-of-1 framework, we were able to determine

that 13 of the 15 individuals with nominally significant systolic blood pressure changes,

and 14 of the 18 individuals with diastolic blood pressure changes over six months

demonstrated this trend (p < 0.05) by the fifth month of their study enrollment.

DISCUSSION
As digital, smartphone-enabled, and other patient-centric medical and health

technologies have the potential to improve individual health and the overall health

care system, the quest to develop the “best” technologies will remain ongoing. However,

we and others feel the future of this field is not simply in the devices, sensors, software,

and wearables per se (Gibbs, 2015), but in what the data generated from these tools

can tell us about human health and biology. Above, we present a framework for hypothesis

testing on unequally spaced time series data—a common feature of data generated

from these technologies. Applied to a subset of hypertensive individuals enrolled in an

interventional trial, we discovered that individuals participating had, on the whole,

a roughly 2 mmHg decrease of systolic and diastolic blood pressure over a six month

Table 1 Mixed model results.

S AIC BIC Estimate (CI) p

Systolic RE 41,604 41,608 -2.11 (-3.13, -1.09) 5.19 � 10-5

RE + AR(1) 41,495 41,500 -2.11 (-3.29, -0.93) 4.45 � 10-4

RE + SP 41,546 41,550 -2.04 (-3.11, -0.98) 1.80 � 10-4

Diastolic RE 36,725 36,729 -2.04 (-2.69, -1.39) 9.41 � 10-10

RE + AR(1) 36,620 36,624 -2.06 (-2.81, -1.31) 8.17 � 10-8

RE + SP 36,705 36,710 -2.05 (-2.72, -1.37) 2.83 � 10-9

Note:
RE, random effects only (compound symmetric SR); RE + AR(1), first-order autoregressive model with random effects;
RE + SP, spatial power law with random effects.
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period. Using the methods presented we were able to observe this distinction despite

considerable intra- and inter-individual variation in blood pressure measures, and

without a rigorously structured readings schedule.

The context of this discovery should, however, be considered. As stated above, we

detected a statistical increase in systolic (n = 9) and diastolic blood pressure (n = 7) in

some study participants, while device readings were (unsurprisingly) quite variable even

among study participants that clearly showed a trend towards lowering blood pressure.

We have recently demonstrated some explanation for this heterogeneity in study

outcomes (Kim, Wineinger & Steinhubl, 2016). But this observation demonstrates the

advantage, yet caution, needed when performing analyses and interrupting results

that leverage large amounts of high-dimensional patient-generated data. On one hand,

this presents an opportunity to identify subtle trends in health data that might otherwise

be difficult to observe—such as single measurements intermittently collected during a

physician visit. On the other hand, large amounts of data can make it possible to detect

Figure 3 Parameter estimate and corresponding 95% confidence interval assessing change in

diastolic blood pressure over the course of the study. By March 2014, three months prior to the

conclusion of the study, the primary study outcome (roughly 2 mmHg decrease) was observable.
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any trend even if this trend does not substantially contribute to our knowledge of human

health and biology. For these reasons we find it more informative to reflect on the

magnitude of the effect and less on the magnitude of the p-value. Complementary

approaches which specify the ‘null’ model as a minimally meaningful effect (i.e., non-zero

contrast matrix) may be more appropriate in such cases.

Importantly, while we focused on time enrolled in the study as the independent variable

of interest, the framework we present can also be adapted to examine other temporal

relationships in similarly generated data. For example, this framework can be used to

compare data captured between discrete conditions such as intervention versus control, or

to differentiate based on other quantitative measures. In these cases, the Xmatrix presented

above can be remodeled to reflect the desired design matrix. Additionally, while our mixed

model approach modeled data across all 38 study participants collectively, this framework

can be also adapted to examine temporal trends on a single individual, such as that of an

N-of-1 crossover design or how we examined individual trends in the N-of-1 sequential

analysis approach above. In this case, the Zmatrix can be omitted on account of no between

subject effects, while R would remain.

One of the more intriguing aspects of this technology as a tool to enhance individual

health is that data is collected, stored, and presented digitally without the need for

direct interaction between the user and (as traditional) health professional. Likewise,

we feel the processes of data inference can also be built into the technology to bypass

the need for data interpretation by a professional data analyst. Certainly many

technologies have such tools. Yet as new methods and extension of existing approaches,

such as the framework we presented, are developed, these will need to be implemented

into the technology in order to provide users with the best opportunity to make informed

health decisions based on this data. The most immediate way this can be accomplished is

by coding these methods directly on the device or software, or accessible to a cloud server

where computations can be performed. However, other options include crowd-sourced

initiatives such as an app store, where the public can design specialized software which

provides automated analyses and interpretation of data back to the user.

Alternatively, the digital nature of data obtained from this technology opens up a

number of interesting possibilities for researchers. Again, because data can be

continuously collected without the need for personnel (e.g., study coordinators) to

interact with users/study participants, approaches which benefit from data analyses

over the course of the study may prove beneficial. We attempted to show this in the

sequential analysis approaches above in which we were able to arrive at the primary

study result over three months prior to the end of the study. Methods like this can be

implemented directly into the study design, such as those in adaptive clinical trials.

Moreover, because data on individuals can be recorded, collected, analyzed, and

interpreted in real time, concepts such as early stoppage due to success or futility can apply

not only to the study itself, but study participants as well—thereby minimizing risks,

reducing costs, and forming conclusions earlier.

Data collected from digital medicine and smartphone-enabled health technologies

offers tremendous potential to learn more about human health and biology. We applaud
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manufacturers for striving towards more comprehensive monitoring technologies, and

when applicable encourage researchers to use this data source to help address research

questions of interest.
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