Journal of Pathology Informatics 13 (2022) 100138

o
.
]

Contents lists available at ScienceDirect Journal of

= E’l Pathology
i Informatics

Journal of Pathology Informatics

journal homepage: www.elsevier.com/locate/jpi

Review Article

Artificial intelligence as a tool for diagnosis in digital pathology whole slide  m)

Check for

images: A systematic review wdies”

Joao Pedro Mazuco Rodriguez abk Rubens Rodriguez ©, Vitor Werneck Krauss Silva b Felipe Campos Kitamura®,

Gustavo Cesar Antonio Corradi®, Ana Carolina Bertoletti de Marchi?, Rafael Rieder®
@ University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil

® Dasalnova, Diagndsticos da América S.A., Sdo Paulo, Brazil
¢ Pathology Institute of Passo Fundo, Rio Grande do Sul, Brazil

ARTICLE INFO ABSTRACT

Keywords: Digital pathology had a recent growth, stimulated by the implementation of digital whole slide images (WSIs) in clin-
Artificial intelligence ical practice, and the pathology field faces shortage of pathologists in the last few years. This scenario created fronts of
Pathology research applying artificial intelligence (AI) to help pathologists. One of them is the automated diagnosis, helping in
Diagnosis

the clinical decision support, increasing efficiency and quality of diagnosis. However, the complexity nature of the
WSIs requires special treatments to create a reliable Al model for diagnosis. Therefore, we systematically reviewed
the literature to analyze and discuss all the methods and results in Al in digital pathology performed in WSIs on
H&E stain, investigating the capacity of Al as a diagnostic support tool for the pathologist in the routine real-world sce-
nario. This review analyzes 26 studies, reporting in detail all the best methods to apply Al as a diagnostic tool, as well as
the main limitations, and suggests new ideas to improve the Al field in digital pathology as a whole. We hope that this
study could lead to a better use of Al as a diagnostic tool in pathology, helping future researchers in the development of
new studies and projects.

Whole slide images
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Digital pathology has become more popular in the past few years mainly
due to the implementation of whole slide images (WSIs) scanners on a large
scale in clinical practice, which was approved by the FDA in 2017.'° The
use of these scanners allowed not only the adoption of remote work through
telepathology but also the creation of large digital databases of pathology
slide images.

Nowadays, the pathology field, as a medical specialty, faces the chal-
lenge of pathologist shortage due to lack of visibility of the profession,
both in medical schools and among physicians.*? In the US, for example,
there are around 21 000 active pathologists, and the trend is pessimistic:
there was a decrease of 18% of American and Canadian pathologists
between 2007 and 2017.%° However, pathology is an essential area for
patient care, providing diagnosis in most of the diseases, including all
types of cancers. This scenario also contributed to the need for growth of
digital pathology.

Thus, digital pathology today faces 3 major fronts (Analog®), which
must be solved with the growth of digitization and greater computational
capacity for artificial intelligence (AI) algorithms: (1) Laboratory opera-
tions, with increased efficiency, quality control, and image management;
(2) clinical decision support, with algorithms detecting areas of interest or
performing specific diagnosis; and (3) research and development, with
the discovery of new biomarkers,'® correlating image characteristics with
prognostics,*® or transcriptomics.®® This review will focus on the second
one, which is the main task of the pathologist in the clinical practice.

The support of clinical decisions by automated systems could lead to a
better quality of diagnosis. There are studies already reporting systems
that found cancer missed by pathologists,*® and increased performance
and efficiency in terms of time and costs of the whole diagnosis process
(e.g., with the possibility of systems discarding benign slides, as proposed
by Campanella et al.5).

Al in digital pathology has been already applied before the use of WSIs.
Older studies have demonstrated that Al and computer vision techniques
could discriminate diseases in pathology images.> However, these image
datasets were mainly composed by previously selected region of interests
(ROIs). This method requires pathologists selecting the areas of interest pre-
viously, making it very laborious and technically not possible to be imple-
mented in the clinical workflow at the laboratory.

The popularization of WSIs scanners created databases of real-world
scenario images in a pathology routine pipeline. Thus, the use of Al in
WSIs has quickly become the focus of new studies. Applying AI models in
WSIs is not easy and trivial compared with more common problems, such
as ImageNet,'? mainly because of the nature of these images, which has
millions of pixels due to the huge resolution needed to capture cellular
level structures.?”

Moreover, the understanding of the current best methods of Al and pre-
processing steps in pathology, which datasets are available and what are
the most common diseases that are being analyzed by the studies could
help a lot researchers to apply better techniques, improving accuracies,
and to decide the best diseases to apply in new studies.

Therefore, the aim of this study is to analyze and discuss all the methods
and results in Al in digital pathology performed in WSIs through a system-
atic review. In this study, we will focus only on systems that perform diag-
nosis in WSIs, investigating the capacity of artificial intelligence as a
diagnostic support tool for the pathologist in the routine real-world
scenario.

This study will analyze the main techniques used in classification prob-
lems, the most used image preprocessing steps, which tissues and diseases

final whole slide-level diagnosis, and, finally, how well these systems per-
form in terms of precision.

This study is organized as follows: Section 'Material and Methods' high-
lights the method applied for the systematic literature review; section 'Re-
sults' shows the results obtained from the selected studies; section
'Discussion' discusses and analyses paths regarding the digital pathology
field in AI; finally, section 'Conclusion' presents the conclusions and
future work.

Material and methods

This research presents a systematic literature review (SLR) following
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines.®’ The search was conducted through August
14, 2020.

This research had 5 key questions as follows:

(1) What are the most common diseases and tissues evaluated?

(2) What are the most common public datasets used?

(3) What are the most used techniques of artificial intelligence
in WSI?

(4) What are the most accurate techniques and models used?

(5) How were the final slide-level diagnosis performed?

Search terms
Databases and criteria

The search expression was constructed to apply the most ranged search
of Al (including the most used terms such as machine learning and deep
learning) that were applied to pathology in whole slide images. The string
was as follows: ("machine learning" OR "deep learning" OR "artificial intel-
ligence") AND (pathology OR histopathology OR histopathological) AND
(wsi OR "whole slide").

The study used multidisciplinary databases, from Computer Science and
Health Sciences: Association for Computing Machinery (ACM), Institute of
Electrical and Electronics Engineers (IEEE), PubMed, ScienceDirect, and
Springer.

The search expression was limited by 8 terms because of a recent restric-
tion of the Science Direct database and it was unmodified for all databases.
The research considered all primary studies published until August 2020.
All the studies that were not reviews were considered. Short papers were in-
cluded because they are widely used in studies that describe new artificial
intelligence algorithms due to the large use of annotated images of public
datasets and challenges.>*>>3%48

Eligibility criteria for result inclusion in the final analysis are described
below:

- EC1: Artificial Intelligence techniques applied as a diagnostic tool in
pathology.*

- EC2: Validation of the model applied in whole slide images.

- EC3: Hematoxylin and Eosin (H&E) stained slides.

- EC4: Paraffin sections stained.

- ECS5: Final slide-level diagnosis was performed.

Therefore, the exclusion criteria were as follows:

- EXC1: Algorithms that validated the models in ROIs or patches, and
not in the WSL.**

- EXC2: Studies that applied models in frozen sections or Tissue Micro-
arrays (TMA).***

- EXC3: Studies applied to cytology (smear slides).



J.P.M. Rodriguez et al.

- EXC4: Immunohistochemistry (IHC).

- EXCS5: Other stains (such as Giemsa, Gram, and Warthin-Starry).

- EXC6: Studies that were not a diagnosis itself, such as tumor segmen-
tation or detection without subtype classification or tumor-infiltrating lym-
phocytes (TILs) detection.

*Artificial Intelligence was considered as a computer system that can
perform a task that normally would require human intelligence. Thus, we
considered any computational algorithm or technique that performed the
task, regarding the other criteria.

**Studies that performed only a heatmap without using the patch-level
classification to perform a final slide-level diagnosis were not included.

***Tissue microarrays were excluded even if they were in H&E stain
and paraffin sections because it is not used for diagnosis, but for study or
comparisons with IHC.'®

Patch-level classification and tumor segmentations or detections with-
out specific subtypes can be very useful in pathologist’s routine, assisting
them to perform a more accurate and faster diagnosis. However, these ap-
proaches have not replicated a real-world scenario of a pathologist routine.
The main objective of this review is to analyze the capability of Al to per-
form a final diagnosis, using a scanned whole slide image, as pathologists
do. An Al capable of a high performance in these tasks can generate reliable
final reports (in addition to creating heatmaps), which is a convenient way
to improve the workflow.

Selection process

The selection process was structured in 4 stages: Identification of stud-
ies, applying our search term in all databases; exclusion of duplicated stud-
ies and screening of studies by title and abstract as a preliminary
application of the eligibility criteria; and evaluation with a full reading of
the studies, applying all the criteria thoroughly.

Two researchers applied the selection process simultaneously and inde-
pendently. Moreover, 3 other experts supervised the process, helping in the
final evaluation of the studies and assisting in final decisions in divergent
evaluations.

Results

The SLR identified 803 studies in the surveyed databases using the search
term adopted. At first, 142 duplicated studies were excluded. Another 513
studies were excluded by a screening of title and abstract, not presenting af-
finity with our eligibility criteria. Most of the oldest studies applied their val-
idation on patches or ROI and another relevant part of the recent ones were
studies in immunohistochemistry analysis, which both did not meet our eligi-
bility criteria. Finally, a full reading and a careful evaluation of the remaining
studies were performed. Another 122 studies were excluded, mainly because
the vast majority either performed the final assessment in patches or
performed detection/segmentation of cancer without the subtyping that is
required in the pathologist's routine. Fig. 1 summarizes the pipeline.

Table 1 shows the final 26 studies that were selected. All of them
performed a slide-level diagnosis, using the full WSI to perform the
final inference. Also, all of them used H&E stain in paraffin-embedded
sections. Detailed information of many columns of Table 1 can be accessed
in Supplementary File 1.

Samples and diseases

Notably, the majority of the studies performed Al in cancer (88.46%, n
= 23). Only 3 studies focused on non-cancer problems, 2 of them in celiac
disease,*>® and 1 in colorectal polyps.?® Prostate cancer (n = 7) is the
highest focus in pathology and Al, followed by skin cancer (n = 4).

Datasets

Regarding data sources, most of the studies used their own datasets,
even with public datasets being common.?*2>3%48 The most used public
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dataset was from TCGA,>® which has a large variety of cancers, with over
1.2 petabyte of data, including pathology slides. However, most of the pub-
lic datasets are not in WSIs, or do not have a pixel level annotation by
pathologists.?>*® Other datasets, such as Camelyon,®* have 1399 WSIs
with tumor marking in metastasis, without subtyping, not configuring a di-
agnosis. Thus, it is expected that there would be greater use of own datasets.

In terms of dataset size for training, the largest one was undoubtedly
from Campanella et al.,® which used almost 10 000 WSIs in a weakly super-
vised approach of skin basal cell carcinoma detection. Ianni et al.>° per-
formed the evaluation on the largest external test size, with 13 537 WSIs.
Some studies that performed weakly supervised learning, which requires
only the slide-level diagnosis and does not need manual annotations from
pathologists also showed large datasets. For example, Adnan et al.' and
Wang et al.>” used 1026 WSIs and 939 WSIs, respectively.

In supervised learning approaches, large datasets were also found,
such as those from Ianni et al.?° and lizuka et al.,?! with 18 607 WSIs
and 9164 WSIs, respectively. Other approaches, such as semi-automatic
annotation,” and training in ROI areas, and performing inference in the
WSIs,> were also used.

Preprocessing

On preprocessing approaches, the only one that was used in all studies,
was to divide the WSI into smaller patches. This approach was already well
discussed by Komura and Ishikawa,?” and is a gold-standard method,
mainly because of the low computational capacity of GPUs in terms of
memory. Images that can have more than 10 billion pixels, cannot be
used fully as an input of a neural network without overflowing memory.
Therefore, all of the studies divided the WSIs into smaller patches (such
as 256x256 pixels), using overlap or not as data augmentation, to feed
their models.

Tissue segmentation was largely used as well (n = 14), mainly to avoid
useless data. The most used technique was a simple threshold (n = 9).
Other complex approaches, such as from Pantanowitz et al.,** that used a
Gradient Boosting to detect the background and blurry areas, or even as
an output class of the classification model”° were also used.

Another technique that seems crucial in pathology is color normaliza-
tion due to the high variability of the tissue staining process and scanners.
Color normalization was used in 6 studies and was approached with differ-
ent techniques, such as color deconvolution®® (n = 1) and normalization
using the mean and standard deviation of the entire training set (n = 5).

Data augmentation was used in 15 studies, and the most common aug-
mentations were rotations (n = 11) and flipping (n = 10), followed by
color augmentations (n = 7) (e.g., color jitterings, random brightness,
and contrasts, etc), Gaussian blurring (n = 2), resizes (n = 2), and transla-
tion (n = 1). Campanella et al.® affirmed that in their large size dataset data
augmentation did not seem to help in accuracy improvement in training
evaluations.

Some studies used features extracted from the images (n = 4), mainly
with nuclei segmentation techniques,*>*%! but it seems to be obsolete
machine learning approaches, that it may to be not ideal as deep learning
to solve problems, which extracts the best features by itself.>* To corrobo-
rate this statement, some studies used machine learning models as feature
extractors,>°° tending to be a more practical and efficient method.

Models and training approaches

In the pathology field, it is common to have 2 steps of classification, due
to the patch-based approach to handling the gigantic size of the WSIs: one
for the patch-level classification and another for the slide-level classifica-
tion, using the patch-based classification as an input parameter.

In patch-level classification, deep learning models were largely used (n
= 22), followed by a few older studies that used classical feature-based ma-
chine learning models (n = 4). In the classical machine learning approach,
with manual feature extractions being done before model training, the most
used feature extractors were described in the previous sections. Automated
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Fig. 1. Selection process of the studies.

feature extractors, using CNNs, were also used in some studies. For final
classification, SVMs,>*%6! GCNs," and even regression models were used.*

In deep learning, the most used models were the ResNets versions
(n=7) (mainly the Resnet50) and the Inceptions (n = 5) (mainly the
Inceptionv3). Many own proposed convolutional neural networks (CNNs)
were also used (n = 4), or even modified versions from state-of-the-art
models (n = 3). Notably, most parts of the studies did not present detailed
comparisons of different models' accuracy during training or test.

In slide-level classification, many different approaches appeared, from
using the most frequent class>**® to using a second deep learning model
with the features of the previous model as an input®?’ to output a slide-
level prediction. Unlike from the patch level, it is not clear what is the
most accurate and most used method for classification. Using a model to
final classification is the most common method to a final slide classification
(n = 17), but arbitrary values and thresholds using the prediction values of
each patch had good results as well. In this topic, Ianni et al.>° showed
a much better result using arbitrary values of threshold in final slide
prediction.

Moreover, one of the methods that are certainly a peculiarity of digital
pathology and Al is that almost half of the studies use weakly supervised
learning to train their models (n = 10). This approach works around the
problem created by patch-based classification because it does not need

fine annotation by experts, which gives a class for each patch extracted
from the WSL. In this way, the most common method was authors using
only the label from the report in a slide level as the output of their network,
as the same way from classic classification in other fields, such as radiology.
There were also studies that also used coarse labelling in supervised
approaches, with selection of ROIs to represent the slide diagnosis*®>°
and even using the WSI viewer logs of pathologists during the diagnosis.>*

Evaluation metrics and limitations

In terms of results, great metrics were shown by many studies with
different complexities. In binary tasks, Campanella et al.,® Chuang et al.,’
and Syrykh et al.>" reported AUC values of 0.994, 0.985, and 0.99, respec-
tively, and Olsen et al.,*® and Barker et al.” reported all accuracy values
over 99%. In multi-class tasks, Sali et al.** reported 100% of accuracy,
and Kappa values of several studies showed greater or even metrics of Al
compared to pathologists.”*”->%4°

Pantanowitz et al.** also reported the first missed cancer by pathologists
that was detected by their algorithm. Some studies*®°° showed small
test sets, and only a few studies®?%>"*>5! used external test sets, which
shows major limitations in pathology studies, meaning that most studies



Table 1
Summary of the studies in all aspects analyzed in this review.
Author Year Sample Number Diagnosis® Dataset® Training Testset  External Pre-processing® Model (Patch Model (Slide leveD)? Transfer Training Results® Results of
of classes set® test set level)? learning  approach the external
test set®
Lucas et al.*®> 2019 Prostate 4 Cancer Private 268 000 89 000 - Data Augmentation InceptionV3 + Percentages of GPs No Supervised Kappa: -
patches  patches SVM used for final Gleason 0.70
grade
Pantanowitz 2020 Prostate 18 Cancer Private 549 WSIs 2501 1627 Tissue segmentation and InceptionV1, Maximum score Yes Supervised AUC: AUC: 0.991,
et al.*® WSIs WSIs data augmentation InceptionV3 and 0.9978 0.941,
ResNet101 0.971, and
0.957"
Strém et al.** 2020 Prostate 2 and 4% Cancer Private 1069 246 WSIs 73 WSIs  Tissue segmentation and 30 InceptionV3 Boosted tree Yes Supervised Kappa: Kappa: 0.70
WSIs data augmentation models 0.83
BenTaieb et al.® 2017 Ovary 5 Cancer Public 68 WSIs 65 WSIs - - K-means LSVM Yes Weakly Kappa: -
Supervised 0.89
Barker et al.* 2016 Central nervous 2 Cancer Public 302WSIs 45WSIs 302 WSIs  Tissue segmentation, - Feature Extraction + No Weakly Accuracy:  Accuracy:
system color deconvolution and Elastic Net supervised 1.0 0.93
nuclei segmentation (Regression)
Xu et al.®® 2017 Central nervous 2 Cancer Public 55 WSIs 40 WSIs - Tissue segmentation, Customized Feature Pooling + Yes Supervised Accuracy: -
system resize and data AlexNet SVM 0.975
augmentation
Bultenet al.” 2020 Prostate 7 Cancer Private 933 WSIS 210 WSIs - Tissue segmentation and Own CNN to Normalized percentage No Supervised (with ~ Kappa: -
data augmentation detect tumor and  of the volume of each asemi-automatic  0.819 on
U-Net to final label class annotation) Gleason
score
Geceret al.'” 2018 Breast 5 Cancer Private 180 WSIs 60 WSIs - Color Normalization Rol detector and Majority voting No Weakly Accuracy: -
an own proposed supervised 0.55
CNN
Silva-Rodriguez 2020 Prostate 4and 17 Cancer Public 155 WSIs 2122 - Tissue segmentation and Own CNN MLP No and Supervised Kappa: -
et al.*® patches data augmentation yes® 0.732
Tokunaga 2019 Gastric 4 Cancer - 29 WSIs - - Data augmentation AWMF-CNN Aggregating CNN No Supervised ToU -
et al.>® (Mean):
0.536
Sali et al.*® 2019 Small intestine 4 Celiac Private 336 WSIs 120 WSIs - Tissue segmentation, Customized Sum of all labels and No Weakly Accuracy: -
disease color normalization, Resnet50 majority Supervised 1.0
resize and data
augmentation
Xu et al.®! 2020 Prostate 3 Cancer Public 312WSIs 49,883 - Grayscale and tissue Feature extractor PCA and SVM No Weakly Accuracy: -
patches segmentation Supervised 0.771
Mercan et al.>* 2018 Breast 14 Cancer Private 240 WSIs 60 WSIs - - Feature extractor PCA and SVM No Weakly Average -
+ Linear classifier supervised precision:
0.737
Adnanet al.' 2020 Lung 2 Cancer Public 1026 - - Rol selection Feature extractor GCN No and Weakly 0.89 AUC! -
WSIs yes® supervised
van Zon et al.>® 2020 Skin 3 Cancer Private 232 WSIs 331 WSIs - Tissue segmentation and U-Net Own CNN No Supervised 0.954 -
data augmentation Accuracy?
Wang et al.>” 2019 Lung 4 Cancer Private 754 WSIs 185 WSIs - Tissue segmentation, ScanNet Aggregation of patch No Weakly Accuracy: -
resize and data preditcions values + supervised 0.973
augmentation Random forest”
Syrykh et al.°! 2020  Lymph node 2 Cancer Private  75% of 25% of 48 Cases Tissue segmentation CNN?* Average of patch - Weakly AUC: 0.99 AUC: 0.69
378 WSIs 378 WSIs inferences supervised
Wei et al.>® 2019 Small intestine 3 Celiac Private 1,018 212 WSIs - Data augmentation and ResNet50 Threshold to discard Yes - Average -
disease WSIs color normalization low confidence + Most F1 score:
frequent predicted 0.872
class
(continued on next page)

0 32 Zon3Upoy Wd'T

8E1001 (2Z0Z) €1 soupuLiofu] A&30j01apd fo pwmor



Table 1 (continued)

Author Year Sample Number Diagnosis® Dataset” Training Testset  External Pre-processing® Model (Patch Model (Slide level)* Transfer Training Results® Results of
of classes set” test set leveD)?® learning  approach the external
test set”
Korbar et al.?® 2017  Small intestine 6 Colorectal Private 458 WSIs 239 WSIs - Data augmentation, ResNet-D At least 5 positive class No Supervised Overall F1 -
polyps color normalization and patches with 70% of score:
resize confidence 0.888
Nagpal et al.>” 2019 Prostate 4 Cancer Public 1,226 331 WSIs - Data augmentation Customized K-nearest neighbor No Supervised Gleason -
and WSIs inception V3 model from patch Score
private prediction Accuracy:
0.70
Olsenet al.*® 2018 Skin 3 models  Cancer Private  Study 1:  Study 1: - Tissue segmentation Derivative VGG + Classification model No Supervised Study 1 -
with 2 300 WSIs 126 WSIs Rule-based trained with the Accuracy:
classes discriminator segmented areas” 0.9945
Study 2:  Study 2: Study 2
225 WSIs 114 WSIs Accuracy:
0.994
Study 3:  Study 3: Study 3
225 WSIs 123 WSIs Accuracy:
1.0
Wei et al.>® 2019 Lung 6 Cancer Private Rols from 143 WSIs - Tissue segmentation, ResNet18 Threshold to discard Yes Supervised Kappa -
279 WSIs data augmentation and low confidence + Most Score:
color normalization frequent predicted 0.525
class
lanni et al.?° 2020 Skin 4 Cancer Private ~ 85% of 15% of 13,537 - Own Own CNN No Supervised - Accuracy:
5070 5,070 WSIs Enconder-Decoder (Patch) and 0.98
WSIs WSIs CNN + U-Net Weakly
Supervised
(Slide)
lizuka et al.2! 2020 Stomach & 2models  Cancer Private Stomach: Stomach Stomach Tissue segmentation and Customized RNN using the last but No Supervised AUC © AUC*®
Small intestine ~ with 3 3,628 & Colon: & Colon: data augmentation Inception V3 one layer from the
classes WSIs 500 WSIs 500 WSIs previous model as
input Stomach: Stomach:
0.97 and 0.98 and
0.99 0.93
Colon: Colon: Colon: 0.97
3,536 0.96 and and 0.96
WSIs 0.99
Campanella 2019 Skin 2 Cancer Private 8387 1575 - - ResNet34 RNN using the last but No Weakly AUC: -
et al.® WSIs© WSIs© one layer from the supervised 0.994
previous model as
input
Chuang et al.” 2020 Larynx, lip and 3 Cancer Private 626 100 - - ResNetXt ResNet using the Yes Supervised AUC: -
oral cavity, Cases Cases probability map as 0.985
esophagus, input
pharynx

Captions — Not mentioned or not performed

a

Details can be found in the Supplementary Table

" Training and validation set used during training was considered as training set in this column

¢ AUC of adenocarcinoma and adenoma compared to benign, respectively

f This study used the same model in 2 different tasks of lung carcinoma, one in a private set with 4 classes, and another in the TCGA differentiating 2 classes. We considered the most complex task.
Authors performed only the Benign vs. Cancer AUC in the internal test set.

Not clearly specified, only the test set size and the whole dataset size, this number was estimated with these 2 information
No metrics were performed by the authors in terms of final diagnosis, we calculated this metric using the table of misclassifcation comparison

Metrics representing: Benign vs Cancer, Gleason score 6 or ASAP vs Gleason score 7-10, ASAP or Gleason pattern 3 or 4 vs Gleason pattern 5, Cancer without vs with perineural invasion, respectively
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in this review are no longer following the CLAIM guideline,* which reports
the best practices needed for Al studies in health.

There was a high variability of metrics used in the studies. The most
common were AUC, accuracy, Fl-score, and kappa correlation. There
have not been many studies that have reported ground-truth annotated
by multiple pathologists over the same dataset, which is a known problem
in healthcare and pathology as well.>®

Discussion

In this section, we will discuss all the same subsections reported in the
results. We aim to create a complete discussion of all topics described pre-
viously and also bring attention to some limitations and possible paths to
the future that could help the digital pathology field in AL

Samples and diseases

Regarding the choice of tissues and diseases for studies, there is a nota-
ble preference for cancers, with a much lower coexistence for other dis-
eases. The choice is very understandable: cancer today affects a large part
of the population, with the increasing need for accuracy and speed in diag-
nosis. In the healthcare field, being able to analyze biopsy characteristics
with genetic predisposition or prognosis can be very useful in saving pa-
tients' lives and boosting cancer science.

In addition, in the field of computer science and machine learning,
the use of extremely difficult cases and high intellectual capacity also
drive and motivate machine learning researchers. The test of the
capacity of finding patterns and learning of machines and models are
evaluated.

However, it is important to emphasize that the vast majority of the vol-
ume of pathology laboratories is not oncology. In the majority, laboratories
report many more cases of diseases such as gastritis, appendicitis, and
cholecystitis. Thus, the lack of studies in easier and more common cases
is a curious fact within digital pathology, after all, diagnoses that are easier
to be distinguished in the image by humans must be perceived in the same
way by the machine.

Assuming that accuracy in less difficult cases should be greater, releas-
ing most of the pathologists' reporting volume in an area that is increasingly
lacking physicians® can be a fantastic solution for artificial intelligence in
digital pathology, allowing experts to focus time and effort on difficult
cases.

Datasets

The use of proprietary datasets, at the expense of public datasets, is
possibly caused by a lack of medical annotation and the only recent pop-
ularization of WSI scanners. Many public datasets are not in WSIs,>**%8
and most of the TCGA data®® has no medical annotation. Partnerships
with pathology labs can help with image annotation and offer fully
scanned slides.

However, with the popularization of award-winning competitions plat-
forms in the field of data science (e.g., Kaggle,?® DrivenData'*) recent
datasets have been with WSIs and medical notes.?*?>32 These methods
may become popular, as everyone benefits: researchers and data scientists
get free data to work with, and laboratories and entities receive the best
possible solution among thousands of participants.

Moreover, competitions seem to have an important role in the medical
field. In radiology, this topic was already discussed by Prevedello et al.*!
which highlighted as the main contributions of the competitions the attrac-
tion of data scientists to the medical field, the sharing of new techniques
and ideas, and, finally, a possible correlation between problems solved by
competitions and the creation of commercial products in the real world. Pa-
thology has fewer competitions, mainly due to the recent use of Al in pa-
thology in general, but the creation of new competitions could lead to
new problems being solved.
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Preprocessing

It is well known, and also a consensus, that one of the biggest challenges
of digital pathology is the use of gigantic images (Komura, D., Ishikawa, S.,
2018). In this case, this review points to what seems to be a global and
unique solution: the division of images into small patches, with or without
overlapping. It is important to note, however, that this limitation is purely
due to the high computational demand of WSIs and machine learning
models.

The patch division, in fact, tends to lag the analysis by the models, since
the image is being “looked at” by the model only by a fragment of the
whole. To get around this problem, some studies proposed the analysis by
LSTMs,’? passing several fragments together, models with inputs with sev-
eral different zooms,>* or initial search for ROIs (BenTaieb et al., 2019). An-
other common approach was to aggregate the results of each patch in a final
slide-level diagnosis, using diverse approaches.

Data augmentation methods were very common. Unlike models for traf-
fic resolution (detection of cars, license plates, pedestrians, etc.) for exam-
ple, which will hardly have inverted data (car or pedestrian upside
down), pathology cases can easily be rotated or inverted without loss or
major change of information, due to the fact that cut and positioning of
the biopsy on the slide is always random. Thus, the use of data augmenta-
tion techniques, especially with flipping, rotation, and overlapping, is
easy to understand.

However, Campanella et al.® reported in their comparison that the use
of data augmentation techniques showed no relevant increase in perfor-
mance. It is important to emphasize that Campanella et al.® used the largest
dataset, from many different countries, with high variability and huge size
(dozens of times larger than ImageNet dataset'?).

Thus, it seems that data augmentation has an important role in Al
models in pathology when the scientists do not have a great variability
and a huge amount of data and can help to address dataset problems such
as variability in stain and scanners, sections out of focus, excess of paraffin,
pen markings, etc.

Another technique that was well described with great results by Chen
et al.’ is the use of synthetic data as data augmentation in healthcare, in-
cluding pathology. They used synthetic images generated by GANs within
real images to train their model with a good improvement of accuracy
avoiding the need of more manual annotation. This approach was not
used in any article in this review and could be a good strategy in future stud-
ies. However, it is important to be careful with the use of synthetic genera-
tion of medical data, as something that does not correspond to reality can
be generated. Real-world data, it might to be the best approach if a good
size of data is available.

Regarding stains, few studies performed the change from color images
to grayscale.**>* In this sense, the choice is not so logical, after all, nuclei
and cytoplasms are still distinct in black and white images. Talo et al.> per-
formed comparisons between architectures and input colorations and did
not notice much difference in identical architectures with color and black
and white images, despite a slight advantage for color. Notably, RGB im-
ages can also use transfer learning from many models that were pre-
trained on ImageNET,'? which uses colored images.

However, it appears that using grayscale shifting can be useful: it does
not overly impact accuracy, but it does decrease the size of a model's param-
eters, making it lighter. This can lead to greater use of inference with good
accuracy, especially in pathology huge images, which requires a lot more
computational cost during inference.

In relation to tissue segmentation, complex techniques do not seem to
be very useful: the use of thresholds of segmentation (thresholding)
shows high performance, as the background is usually white, and the tis-
sues are predominantly pink (hematoxylin) and purple (eosin). Neverthe-
less, Pantanowitz et al.** showed good use of a complex technique in
detecting background: using it as an out-of-focus detector as well.

Another problem faced by histopathological slides is the high color di-
vergence, whether due to the application of stains, due to the physical-
chemical process being carried out by a human, or due to the use of
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different scanners with different optical lenses. This problem was over-
come with color normalization, using common techniques, such as
normalization by histograms, or more elaborate techniques, such as color
deconvolution.®® Color normalization is an important step in the process,
and has been widely used in studies.

Models and training approaches

The comparison of architecture and results in this review is actually
limited by one topic that will be discussed in section 2.5.6: most of the
studies in this review that used state-of-the-art models have not presented
comparisons. Thus, comparative studies bring an advantage to new studies,
as they compare architectures with the same learning rate parameters, the
same database, and the same medical note, indicating the best architectures
to use in similar diseases and tissues.

Another limitation on comparing architectures in a better way is due to
the huge variability of datasets, in tissues, the complexity of diagnosis, and,
mainly, in size. Studies that trained their models in larger datasets showed
the best results of this review, which is expected in deep learning that is
becoming more and more data-centric.

Firstly, the classical machine learning approach was observed in older
studies (2*3% Xu, et al., 2020). The use of manual feature extraction before
the model training had good results in these older studies, at least for the
problems that were aimed to be solved by them. This indicates that the
use of classical features that pathologists pay attention to, such as nuclei
formats, size, and shapes, was a good discriminator for those diseases.

However, the use of manual feature extractions can be useful for a
model, but it is not guaranteed. Deep learning models are better in selecting
the most discriminant features for each problem and in pathology are not
different, with some studies using deep learning to discover new biomark-
ers that can be used to discriminate diseases.'® Also, the use of deep learn-
ing models was always the top-performing in classical image classifications
problems, and the same occurs in pathology when we analyze the top
models in Kaggle’s pathology problems.***®

In turn, deep learning models bias the use of state-of-the-art. These
models have pre-trained parameters, making training much faster and ligh-
ter and they also have proof of effectiveness in giant general-purpose
datasets like ImageNET."? They also do not entail the need for modeling
and engineering to create your own architectures.

Moreover, the use of state-of-the-art models seems to be effective with a
large database, as the studies with the highest accuracy in this review used
Inceptions and ResNets to a great extent.®*>1*%4° This is possibly due to
the possibility of using pre-trained weights, greatly reducing training time
and computational cost.

However, studies that performed comparisons between state-of-the-art
and proprietary models indicate that this is not necessarily the best
approach.'**4¢ Even more curious: simple models with a notoriously
smaller number of layers and parameters showed good accuracy and
precision. This was also noted even in comparative studies between state-
of-the-art models, with models with smaller parameters showing better
precision.>>°

Moreover, it seems that this is not an exclusive result for smaller
datasets. Campanella et al.® also showed better results with architecture
with fewer parameters (ResNet34) compared to architectures like
DenseNet101, VGG11BN, AlexNet, and ResNet101. Nevertheless, it is im-
portant to emphasize that newer architectures contain more complex struc-
tures, such as Inceptions and EfficientNets. The EfficientNet architecture,
for example, had a surprising result in ImageNET"? because of their high
accuracy with a lower number of parameters and might be a good architec-
ture to be tested in future studies.

Another important factor that has gained the attention of researchers for
increasing the performance of machine learning models is the use of model
ensembles.” The model ensemble is the multiple uses of inference models
on the same data, using the same architecture, or different architectures,
with different weights. This technique allows the machine to have different
“looks” on the same data, and the average of its inference generates a much
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greater accuracy in the test data. This technique was rarely used in the
studies of this review, appearing in both with high performance.***°

Regarding the use of the training approach, supervised and weakly
supervised methods were used equally. Supervised methods provide a
more accurate look at the machine in areas of interest, however, they
require expert notes, making it costly and leading to other problems, mainly
the discrepancies between pathologists annotations and the diagnosis itself.
In the studies by Bulten et al.” and Strom et al.* the Kappa correlation
among the pathologists themselves was around 0.7.

One way to get around this, mainly in terms of cost, was the use of
weakly supervised training, mostly with the technique of learning multiples
by instances. In this technique, it is not necessary to annotate areas with the
disease within the respective diagnosis, but only the final diagnosis of the
slide. Thus, the fragments are all designated with the diagnosis class of
the entire slide. The results were very promising with this technique,
especially in the study by Campanella et al..®

The main difference between the 2 techniques is the volume of data.
While the supervised one achieves optimal results with about 500 WSIs
for training,*® in the supervised weaker optimal results were obtained
with about 10 000 slides.® Weakly supervised methods have the cost and
time advantage of pathologists, with a higher computational cost for train-
ing due to a larger database, and supervised methods allow for a smaller
database with greater accuracy, in theory. In practice, the divergence
between pathologists in an annotation can be a problem for this methodol-
ogy as well, although the same occurs between diagnoses of WSIs.

Results and limitations

In the results, it is noticeable that the amount of data and the anno-
tation quality is highly correlated to model precision. While the best
results®2%:21:4949 applied training in bases of more than 500 slides,
less satisfactory results'”>° are obtained from not-so-large datasets.

Howard et al.'? alleges that the use of big datasets with high variability
from multiple labs can lead to better results, allowing models to better dis-
criminate the diseases, which cannot be true in site-specific studies, due to
overfitting problems. Besides, the use of the same medical staff to annotate
the training and test set can also overfit the models and bias the results.

In terms of the results with different training approaches, it is clear that
the use of a supervised approach leads to better results with fewer
data.>*°%°0 However, the use of a weakly supervised approach also showed
great results in huge datasets.® The main problem with the weakly super-
vised approach was the need for huge datasets, which can be provided
more easily, not requiring pathologist annotations, and binary problems
to be solved, but Mercan et al.>* proposed a multi-class weakly supervised
method with reasonable precision with an average size dataset.

Despite that, it is difficult to make comparisons between studies with
such different methodologies. Therefore, it would be ideal for large studies
to demonstrate the comparison of several architectures on top of the same
database to provide support and evidence of why the methodology was
chosen. It is noticeable, however, that this is not a simple task, given that
the computational cost to analyze so much data can take days or even
weeks.® In any case, it would be ideal if a comparison was made on at
least a portion of the data used.

This can be solved with a greater popularization of public challenges of
deep learning in pathology, where the same dataset can receive several
different methodologies and compare them in the results, besides being
already demonstrably useful for a real scenario.*!

In terms of limitations, few studies used external test sets, possibly bias-
ing their results. This is a significant issue in the studies, since the models
created can be overfitted in training data, stains, scanners, and population.
The CLAIM guideline®® have a specific item for external test sets, consider-
ing as an essential practice for studies with reliable results.

Syrykh et al.>" for example, reported a huge drop of AUC in the external
test set (0.99-0.69). This issue also could be solved with popularizations of
public datasets from different labs and different countries. Of course, this
requires great attention to ethical problems as well discussed by van der
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Laak et al.>® Errors in calculation of AUC metric were also found, where the
authors used the binary prediction to generate the ROC curve.!

Moreover, despite an academic consensus on certain approaches to
color treatment or data augmentation,*” many studies did not perform
color normalization or data augmentation, for example, and most did not
use model ensembles for inference, probably due to the high computational
cost during inference when using multiple models.

To solve this problem, the method just proposed by Allen-Zhu and Li?
with self-distillation, which appears to bring the same ensemble results in
the inference, may also be an outlet for new studies, especially for digital
pathology, where the cost of both training and inference is a problem to
be faced.

Conclusion

This study aimed to present results of a systematic review of the litera-
ture on studies that applied artificial intelligence techniques for histopa-
thology diagnoses in whole slides images. In this study, we sought to
analyze, compare, and discuss the main points that involve the methodolog-
ical process (database, image preprocessing, Al models, and training tech-
niques) and also the results and limitations.

Furthermore, we proposed great attention to some studies limitations,
such the poor use of external test sets and the lack of model comparisons.
We also draw attention for the need for growing public datasets and compe-
titions, as well as the use of self-distillation techniques to lead better results
and fast inferences.

We hope that this study could lead to a better use of Al models for pa-
thology as a diagnostic tool and help future researchers in the development
of new studies. In addition, this review opens up new avenues of research
for other diseases and allows summarized access to different techniques
in different approaches, in different tissues, and different diseases.
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