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Background. The competing endogenous RNA (CeRNA) network plays important roles in the occurrence and development of
colon cancer. This research is aimed at constructing a miRNA-mRNA network associated with exosomes in colon cancer.
Methods. We explored the GEO database and then analyzed the RNAs of 722 samples to obtain differentially expressed
miRNAs (DEMs) and mRNAs (DEGs) alongside the progress of colon cancer. Next, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of DEM target genes and DEGs were performed. In addition, a
miRNA-mRNA network related to exosomes in colon cancer was constructed based on DEMs and DEGs. Finally, the
expression of miRNA and mRNA in the network was verified by GEPIA2 on the base of TCGA database. Results. Through our
analysis, 19 DEMs (17 up and 2 down) and 1672 DEGs (954 up and 718 down) were screened. The GO and KEGG results
show that these DEGs were mainly enriched in ribonucleoprotein complex biogenesis, noncoding RNA metabolic process, cell-
substrate junction, cadherin binding, transcription coregulator activity, and regulation of the human T-cell leukemia virus 1
infection-related pathway. Besides, a miRNA-mRNA network, including 4 miRNAs (hsa-miR-623, hsa-miR-320c, hsa-miR-
486-5p, and hsa-miR-1290) and 7 mRNAs (GNAI1, CADM1, PGRMC2, etc.), was constructed. Three of these seven mRNAs
were downregulated in colon cancer. Ultimately, the GNAI1, CADM1, and PGRMC2 expression levels were verified by TCGA
database. Conclusions. This study reveals the network relationship between colon cancer exosome-derived miRNA and targeted
mRNA. It deepens our understanding of new molecular mechanisms and pathways that may play a role in the occurrence and
metastasis of colon cancer.

1. Introduction

Colon cancer is one of the most frequent malignant tumors
of the digestive system, and its global incidence is as high as
10.2%, second only to lung cancer and breast cancer [1]. Pre-
vious studies have shown that the risk of colon cancer
increased with age, but in recent years, it has been found that
the incidence of colon cancer in patients over 50 years old
has decreased and the incidence of early-onset colon cancer
has significantly increased. The incidence of colon cancer in
patients aged 20–34 in the United States is expected to
increase by more than 90% compared with 2010 by 2030
[2–4]. The mortality rate of colon cancer is affected by many
factors, such as different countries, different dietary habits,
and the timing of cancer screening programs [5], among
which the disease stage is the major determinant. Therefore,

it is especially important to detect paracancerous infiltration
and related mechanisms early to reduce the risk of colon
cancer metastasis [6, 7].

In recent years, numerous studies have documented that
the risk of early local invasion and distant metastasis of
colon cancer is related to exosomes secreted by primary
tumor cells [8]. Most scholars believe that the formation
process of exosomes is the endocytosis of the cell membrane
to form endosomes, which are further fused into multivesi-
cular bodies (MVB), and MVB forms vesicles through mem-
brane invagination [9, 10]. The intraluminal vesicles (ILV)
load a variety of substances (such as miRNA and mRNA)
into it. After MVB fuses with the cell membrane, ILV is
released outside of the cell by exocytosis through the cell
membrane, forming extracellular vesicles of about 30–
200 nm in size [11–13] that are exosomes. Exosomes mainly
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bind to the corresponding receptors on the surrounding or
distant cell membranes through autocrine and paracrine
[14, 15], thereby playing the role of material transmission
and signal transduction. In the development of colon cancer,
tumor-derived exosomes can mediate this process through a
variety of ways, such as targeting thioesterase superfamily
member 4- (THEM4-) mediated PI3K/AKT and NF-κB
pathways [16], targeting programmed cell death protein 4
(PDCD4) [17]. Teng et al. found that exosomes derived from
primary colon tumors in mice promote oncogenesis and
tumor progression of colon cancer by interacting with the
major vault protein (MVP) [18]. Ma et al. experimentally
confirmed that M2 macrophage-derived exosomes can tar-
get the ZC3H12B protein of the ZC3H12 protein family by
transferring miR-155-5p to tumor cells and participate in
the upregulation of IL-6 expression, thereby promoting the
immune escape of colon cancer and accelerating tumor pro-
gression [19]. Bigagli et al. found through in vitro experi-
ments that the exosomes secreted by human colon cancer
cells affect the adhesion of adjacent tumor metastatic cells
by regulating epithelial-mesenchymal transition, thereby
preserving the microenvironment for tumor growth and
ultimately promoting the metastasis of colon cancer [20].
However, it is not clear how the expression of miRNA tar-
gets and related characteristics in the exosomes secreted by
colon cancer cells regulates the process of metastasis.

In eukaryotes, microRNA (miRNA) is a class of noncod-
ing single-stranded small RNA with a length of 19–25 nucle-
otides, which is formed by the transformation of 300 to 1000
bases of endogenous primitive RNA into the cytoplasm
through the process of intranuclear processing and digestion
by enzymes and the transfer of exportin-5 (XPO5) [21]. The
miRNA in the cytoplasm is loaded by Argonaute paralog 2
(AGO2) into the RNA-induced silencing complex (RISC),
which plays an important role in regulating expression and
silencing after complementary pairing with the base of the
target mRNA [22, 23]. The information regulatory network
composed of miRNA-mRNA is involved in the development
of many diseases. For example, miR_21 promotes the
growth of hepatocellular carcinoma by regulating the
expression of tumor suppressor gene PTEN, PTENp1 gene
[24], and miR_665 promotes breast cancer invasion and
metastasis by activating the MAPK/ERK kinase (MEK) sig-
nal pathway [25]. Exosomes with low levels of miR-34c-3p
accelerate the metastasis of non-small cell lung cancer by
upregulating the level of synthase α 2 β 1 [26]. miR-182 is
highly expressed in exosomes derived from gallbladder can-
cer, which can increase the expression level of N-cadherin
and MMP2 by targeted inhibition of reversion-inducing-cys-
teine-rich protein with kazal motifs (RECK) and, finally, sig-
nificantly promote the metastasis and invasion of gallbladder
cancer cells [27]. Song et al. found that miR-9-5p was over-
expressed in the exosomes derived from renal cancer and
miR-9-5p targeted to the complementary sequence of the
suppressor of cytokine signaling 4/5 mRNA (SOCS4/5), thus
inhibiting translation and finally promoting the proliferation
and invasion of human renal cancer cell line A-704 [28].

Previous studies have shown that circulating miRNAs
from sources such as blood are mainly involved in the devel-

opment of colon cancer by regulating target genes and acting
as oncogene or tumor suppressor gene. In contrast, it is not
clear how the exosomes derived from colon cancer tissues,
which carry miRNAs, regulate the whole disease process of
colon cancer. In this paper, we analyzed the miRNAs of
colon cancer exosomes and their corresponding target genes.
We further investigated the potential signaling regulatory
pathways of DEM target genes, as well as those of DEGs.
Finally, a miRNA-mRNA interaction network was con-
structed. Through our study, we elucidated the possible inter-
actions and regulatory relationships between exosome-derived
miRNAs and colon cancer, throughout the developmental
process. This provides new ideas for our understanding of
colon cancer as a disease and its subsequent diagnosis and
treatment. The workflow of this study is illustrated in
Figure 1.

2. Materials & Methods

2.1. Data Download. Firstly, we searched the GEO database
(Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geoprofiles) for datasets related to colon cancer and exo-
somes by using the keywords “colon cancer” and “exo-
somes.” Finally, seven GEO datasets were obtained that
met the requirements. We summarized the data sources
and attributes of the datasets (Table 1). For miRNA expres-
sion profiling related to exosomes in colon cancer, 6 exo-
some samples from colon cancer cell lines and 3 exosome
samples from normal colon-derived epithelial cells were
enrolled in GSE39814, while exosomal miRNAs in sera of
colon cancer patients (n = 88) and healthy controls (n = 11)
were enrolled in GSE39833.

Then, for gene/mRNA expression profiling in colon
cancer, we included the datasets GSE41258, GSE44076,
GSE74602, GSE10972, and GSE41328. These datasets con-
tain colon cancer tissue samples and the corresponding nor-
mal tissues, respectively.

2.2. DEM and DEG Screening. Firstly, the differentially
expressed miRNAs between exosome samples from colon
cancer and matched normal colon-derived epithelial cells
screened by GEO2R online software [29] (https://www.ncbi
.nlm.nih.gov/geo/geo2r/), which is dependent on the R pro-
gramming “LIMMA” package, were utilized to recognize
DEMs and DEGs between colon cancer samples and normal
examples [30]. During the period, the expression data was
normalized by “normalizeBetweenArrays” function in
“limma” package from R software [31]. For GSE39814, a P
value < 0.05 and jlogFCj ≥ 1:5 were selected as the threshold.
For GSE39833, a P value < 0.05 and jlogFCj ≥ 1 were consid-
ered as the threshold. At the same time, the differentially
expressed mRNAs in colon cancer samples and normal
colonic tissues were also screened by GEO2R online software.
These differentially expressed mRNAs with a P value < 0.05
were selected for further analysis. Next, the overlapped differ-
entially expressed miRNAs in GSE39814 and GSE39833 were
selected as DEMs; the overlapped differentially miRNAs
expressed in GSE41258, GSE44076, GSE74602, GSE10972,
and GSE41328 were selected as DEGs. The Venn diagrams
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of all overlapping DEMs and DEGs were created using the
website http://bioinformatics.psb.ugent.be/webtools/Venn/.

2.3. GO and KEGG Enrichment Analysis of DEM Target
Genes and DEGs. In order to forecast the possible functions
and sum up a more overall signal pathway of many DEM

target genes and DEGs that look messy and to further judge
the significance of the genes of concern, the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway and Gene
ontology (GO) analysis were conducted by the clusterProfiler
R package [32]. In this study, GO analysis was conducted
from three distinguished aspects: biological process (BP),
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Figure 1: Workflow of this study. Analyzed the RNAs to obtain DEMs and DEGs alongside the progress of colon cancer. GO and KEGG
analyses were then performed on the DEM target genes and DEGs. Ultimately, a miRNA-mRNA network associated with colon cancer
exosomes was constructed.

Table 1: Data sources and attributes.

GEO accession
Sample size

Platform Experiment type
Normal samples CC samples

GSE39814 [33] 3 6
Agilent-021827 Human miRNA Microarray

G4470C (feature number version)
Noncoding RNA profiling by array

GSE39833 [33] 11 88
Agilent-021827 Human miRNA Microarray

G4470C (feature number version)
Noncoding RNA profiling by array

GSE41258 [34] 54 186
[HG-U133A] Affymetrix Human Genome

U133A Array
Expression profiling by array

GSE44076 [35] 148 98 [HG-U219] Affymetrix Human Genome U219 Array Expression profiling by array

GSE74602 30 30 Illumina humanRef-8 v2.0 expression beadchip Expression profiling by array

GSE10972 [36] 24 24 Illumina humanRef-8 v2.0 expression beadchip Expression profiling by array

GSE41328 [37] 10 10
[HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array
Expression profiling by array

CC: colon cancer.
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cellular component (CC), and molecular function (MF). P
value < 0.05 was considered statistically significant.

2.4. miRNA-mRNA Network Construction. As we know,
miRNA can bind to targeted mRNA to promote the degra-
dation of mRNA. Herein, target genes of these miRNA sig-
natures were obtained by using miRDB, miRTarBase, and
TargetScan databases. Genes present in all three databases
were regarded as target genes of these miRNAs. Comparing
predicted target genes with DEGs, only the remaining over-
lapped genes and their interaction pairs were used for con-
structing the miRNA-mRNA pairs. Therefore, the miRNA-
mRNA network was related to exosomes in colon cancer.

2.5. Validation of the miRNA-mRNA Network. The expres-
sion levels of miRNA in the miRNA-mRNA network were
verified by CancerMIRNome (http://bioinfo.jialab-ucr.org/
CancerMIRNome) on the base of the TCGA database. The

expression levels of mRNA in the miRNA-mRNA network
were verified by Gene Expression Profiling Interactive Anal-
ysis (GEPIA2; http://gepia2.cancer-pku.cn/index) on the
base of the TCGA database.

3. Results

3.1. DEM and DEG Screening. Data were separately analyzed
(Table 1). 19 DEMs (17 up and 2 down) and 1672 DEGs
(954 up and 718 down) were screened (Figure 2). As for
DEMs (Figure 3), there were 42 differentially expressed miR-
NAs (40 up and 2 down) in GSE39814, while there were 584
differentially expressed miRNAs (376 up and 208 down) in
GSE39833. 19 overlapped miRNAs were screened. As for
DEGs, 9609 were differentially expressed mRNAs (5330 up
and 4279 down) in GSE41258, 16340 were differentially
expressed mRNAs (7642 up and 8698 down) in GSE44076,
13897 were differentially expressed mRNAs (3481 up and
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Figure 2: Venn of DEMs and DEGs. (a) Exo_DEMs screening. Datasets GSE39814 and GSE39833 were screened by Venn diagrams for 17
upregulated EXO-DEMs and 2 downregulated EXO-DEMs, respectively. (b, c) DEGs of colon cancer screening. The datasets GSE41258,
GSE44076, GSE74602, GSE10972, and GSE41328 were screened by the Venn diagram to identify 954 upregulated DEGs and 718
downregulated DEGs in colon cancer patients.
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10416 down) in GSE74602, 6908 were differentially
expressed mRNAs (3960 up and 3218 down) in GSE10972,
and 9517 were differentially expressed mRNAs (5013 up
and 4504 down) in GSE41328. 1672 overlapped mRNAs
were screened. Next, the DEMs and DEGs were used to
the next analysis.

3.2. GO and KEGG Enrichment Analysis of DEM Target
Genes and DEGs. As depicted in Figure 4(a), GO describes
DEM target genes in terms of biological processes (BP), cel-
lular components (CC), and molecular functions (MF). In
the BP group, the differential genes were mainly enriched
in cell cycle regulatory processes such as “DNA replication”
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Figure 3: Volcano plot of DEMs and DEGs. Volcano map of the differentially expressed miRNAs (DEMs) and genes (DEGs). Blue spots
represent downregulated expression, gray spots represent nonsignificant expression, and red spots represent upregulated expression. (a,
b) The distribution of DEMs between exosome samples from colon cancer and matched normal colon-derived epithelial cell; the samples
come from the datasets GSE39814 and GSE39833 (DEMs of GSE39814 were selected with thresholds of fold change > 1:5 and P < 0:05;
DEMs of GSE39833 were selected with thresholds of fold change > 1 and P < 0:05); (c–g) the distribution of DEGs between colon cancer
samples and normal colonic tissues; the samples come from the datasets GSE41258, GSE44076, GSE74602, GSE10972, and GSE41328
(these DEGs with a P value < 0.05 were selected).

5Disease Markers



and “negative regulation of cell cycle process.” In the CC
group, the differential genes were mainly enriched in “trans-
ferase complex, transferring phosphorus-containing” and
other mitotic spindle and enzyme components. In the MF
group, the differential genes were mainly enriched in
enzymes and molecular activities such as “histone kinase
activity,” as well as binding and movement of various
factors.

As shown in Figure 4(b), in the BP group, the differential
genes were mainly enriched in “ribonucleoprotein complex
biogenesis,” “ncRNA metabolic process,” “ncRNA process-
ing,” “ribosome biogenesis,” “nuclear transport,” and so on.
In the CC group, the differential genes were mainly based
on “cell-substrate junction,” “nuclear envelope,” “focal adhe-
sion,” “transferase complex, transferring,” “phosphorus-
containing groups,” and so on. In the MF group, the
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Figure 4: GO and KEGG analysis. GO and KEGG pathway enrichment analysis of DEM target genes and DEGs. (a) GO analysis of target
genes corresponding to DEMs. Biological process (BP), cellular component (CC), and molecular function (MF). (b) GO and KEGG analysis
of DEGs. KEGG pathway enrichment analysis based on identified DEGs (a P value < 0.05 was considered statistically significant).
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Figure 5: Continued.
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Figure 5: Continued.
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differential genes were mainly based on “transcription core-
gulator activity,” “cadherin binding,” “catalytic activity, act-
ing on RNA,” “transcription coactivator activity,” “lyase
activity.” In KEGG pathway enrichment analysis, the differ-
ential genes are mainly based on “infection,” “material
metabolism,” “cell cycle,” “signal pathway,” and “tumor.”

Combined with GO and KEGG enrichment results, we
compared and further analyzed that there are relatively
many studies on DNA replication and cell cycle, such as
CDK4, MYC, and MCM. However, in the GO enrichment
analysis of differential genes in colon cancer, we also
enriched some genes that are less studied or even never stud-
ied in colon cancer, such as POLD2, CDC16, PRIM2, etc. At
the same time, some of the pathways of KEGG enrichment
are relatively rare in colon cancer, such as the AGE-RAGE

signal pathway in diabetic complications, oxytocin signal
pathway, and coronavirus disease COVID-19. Whether
these less studied pathways and genes play an important role
in the pathogenesis of colon cancer remains to be further
investigated.

3.3. miRNA-mRNA Network. As illustrated in Figure 5, a
miRNA-mRNA network, including 4 miRNAs (hsa-miR-
623, hsa-miR-320c, hsa-miR-486-5p, and hsa-miR-1290)
and 7 mRNAs (GNAI1, CADM1, PGRMC2 etc.), was con-
structed. Those 4 miRNAs were upregulated and 3 mRNAs
were downregulated in colon cancer. Of those, the expres-
sions of hsa-miR-623, hsa-miR-320c, and hsa-miR-486-5p
were upregulated while their corresponding target genes
PGRMC2, GNAI1, and CADM1 were downregulated. We
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Figure 5: miRNA-mRNA network and heatmap. The color bar above the heat map represents the sample group, light-red represents
normal samples, and light-blue represents tumor samples. (a) miRNA-mRNA network. The triangle represents the miRNA, and the
ellipse represents mRNA. The red color refers to an upregulation, while the green color refers to a downregulation. 4 miRNAs were
upregulated and 3 mRNAs were downregulated in colon cancer. (b, c) Heatmap of miRNA in the miRNA-mRNA network. Heat map of
hierarchical clustering of colon cancer samples based on the 4 differentially expressed miRNAs. (d–h) Heatmap of mRNA in the
miRNA-mRNA network. Heat map of hierarchical clustering of colon cancer samples based on the 7 differentially expressed mRNAs.
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further analyzed the Pearson correlation analysis of these 4
differential miRNAs and their corresponding target genes,
as shown in Figure 6.

3.4. Validation of the miRNAs in the miRNA-mRNA
Network. As showcased in Figure 7, the CancerMIRNome
database (http://bioinfo.jialab-ucr.org/CancerMIRNome) was
used to verify the expression levels of the 4 miRNAs in colon
cancer samples and normal tissues. The expression levels of
hsa-miR-320c and hsa-miR-486-5p in colon cancer and nor-
mal specimens were statistically different.

As showcased in Figure 8, the GEPIA2 database was
used to verify the expression levels of the 7 mRNAs in colon
cancer samples and normal tissues. The expression levels of
the 3 mRNAs were downregulated, and 4 mRNAs were
upregulated in colon cancer samples on the basis of gene
expression profiles from The Cancer Genome Atlas (TCGA)
and the genotype-tissue expression (GTEx) projects. The
results of these 7 mRNA expression trends in colon cancer

patients and healthy people based on the GEPIA2 database
were in accordance with those based on the GEO datasets.

4. Discussion

Although colon cancer conditions had a high prevalence,
about 39% of new patients in the United States are diag-
nosed with localized lesions that can be operated on [7].
Therefore, how to detect and diagnose colon cancer early
and accurately is an urgent problem to get a better prognosis
and a longer survival time. With the continual advance-
ments in biomedicine, gene therapy has attracted more and
more attention as a precise, efficient, and new cutting-edge
technology for colon cancer. Researchers have achieved effi-
cacy in a series of in vitro and in vivo studies through gene
regulation [38, 39] and delivery system improvement [40,
41]. Therefore, how to accurately identify colon cancer-
related genes has become the key to effective treatment.
Studies have shown that many types of cells, including stem
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Figure 6: Pearson correlation analysis of the miRNA and its target genes. The red dots are tumor samples and the blue dots are normal
samples. Statistical significance was defined as ∗P < 0:05. R > 0:2 was defined as miRNA, and target genes were correlated between them.
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cells, nerve cells, and tumor cells, can release exosomes. Exo-
somes contain large amounts of nucleic acids and their
metabolites, proteins, and lipids [42], while colon cancer
exosome-derived miRNA exchange information with nor-
mal cells by them to promote tumor angiogenesis and induce
tumor metastasis [43]. Our study is aimed at finding out the
interaction of the miRNA-mRNA network in the progression
of colon cancer, thus providing new ideas and methods for the
early diagnosis and treatment of colon cancer.

To further clarify the interrelationship between miRNAs
in colon cancer-derived exosomes and the process of colon
cancer development and progression, we performed a com-
prehensive analysis of exosome-derived miRNAs and gene
expression profiles of colon cancer in the GEO database.19
DEMs (17 upregulated and 2 downregulated) and 1672
DEGs (954 upregulated and 718 downregulated) were iso-
lated. GO and KEGG enrichment analysis of these DEGs

was carried out. At the same time, the DEMs in the exosome
were conservatively predicted by multiple databases after the
intersection of DEMs and the predicted mRNA was inter-
sected with DEGs again to form a final miRNA-mRNA net-
work, which consisted of 4 miRNAs and 7 mRNAs (4
upregulated and 3 downregulated). The expression trend of
these 7 mRNAs based on the GEPIA2 database in colon can-
cer patients and healthy people was consistent with the
results that we obtained. As miRNAs that intersect with
DEGs of colon cancer patients, its data come from two data-
sets GSE39814 and GSE3988. Among them, GSE39814 uses
the exosomes of human colonic adenocarcinoma epithelial
cells (HCT116 and SW480), compared with the exosomes
of normal colonic epithelial cells. GSE39833 uses tumor
sample exosomes from colon cancer patients with different
TNM stages to compare the peripheral serum exosomes of
patients after colon cancer surgery. As the data source of
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Figure 7: The expression level of miRNA in the miRNA-mRNA network. The expression levels of hsa-miR-623, hsa-miR-320c, hsa-miR-
486-5p, and hsa-miR-1290 in colon cancer and normal sample based on the TCGA database analyzed by CancerMIRNome (http://bioinfo
.jialab-ucr.org/CancerMIRNome). The red plot represents the tumor sample, and the blue plot represents the normal sample. ∗P < 0:05 was
considered statistically significant. The expression levels of hsa-miR-320c and hsa-miR-486-5p in colon cancer and normal specimens were
statistically different.
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DEGs, GSE41258 and other datasets took colon cancer tis-
sues compared with the surrounding normal tissues. In this
screening process, the miRNA carried by exosomes not only
originated from different cell lines but also encompasses
samples from colon cancer patients with different TNM
stages but the final predicted DEMs and DEGs were involved
in the occurrence and development of various types of tumors,
which also reinforces the biological significance of the research
results. The deficiency is that it is just a process of data analysis
and the association between its target gene and colon cancer
needs to be confirmed by more data. However, it is precisely
due to the lack of exocrine data sources of primary colon can-
cer and the relationship between miRNA and colorectal onco-
genes and signal pathways remains elusive, which is precisely
our potential research direction in the future.

The 4 obtained miRNAs were hsa-miR-623, hsa-miR-
320 C, hsa-miR-486-5P, and hsa-miR-1290, and 7 mRNAs

were NUPL2, RANBP 1, SRPX2, STAU1, PGRMC2,
CADM1, and GNAI1. It is worth mentioning that the differ-
entially expressed exosomal miRNAs that we predicted were
mainly involved in cGMP-PKG and chemokine signaling
pathways. As the second messenger of intracellular informa-
tion transmission, the cyclic guanosine monophosphate-
(cGMP-) related signal pathway plays an important role in
the treatment of colon [44]; the cGMP-PKG dimer and
related pathways formed by cGMP-dependent protein
kinase G (PKG) enhance the role of the original cGMP-
monomer as a second messenger for intracellular communi-
cation, which plays an important role in inhibiting the pro-
gression of colon cancer [45, 46]. The chemokine family of
small molecular and protein components can stimulate
migration in various cell types, and chemokines are involved
in many kinds of tumor progression [47, 48]. These data
show that the screened exosome mi-RNA is reliable and

5

6

0

1

2

3

4

7

Ex
pr

es
sio

n 
lo

g 2 (
TP

M
+1

) CADM1

COAD
(num(T) = 275; num(N) = 349)

⁎

(a)

0

1

2

3

4

5

6

Ex
pr

es
sio

n 
lo

g 2 (
TP

M
+1

)

GNAI1

COAD
(num(T) = 275; num(N) = 349)

⁎

(b)

0

1

2

3

4

5

6

2

Ex
pr

es
sio

n 
lo

g 2 (
TP

M
+1

)

NUPL2

COAD
(num(T) = 275; num(N) = 349)

(c)

0

2

4

6

Ex
pr

es
sio

n 
lo

g 2 (
TP

M
+1

)

PGRMC2

COAD
(num(T) = 275; num(N) = 349)

(d)

0

2

4

6

Ex
pr

es
sio

n 
lo

g 2 (
TP

M
+1

)

RANBP1

COAD
(num(T) = 275; num(N) = 349)

⁎

(e)

0

1

2

3

4

5

6

Ex
pr

es
sio

n 
lo

g 2 (
TP

M
+1

)
SRPX2

COAD
(num(T) = 275; num(N) = 349)

⁎

(f)

2

0

4

6

8

Ex
pr

es
sio

n 
lo

g 2 (
TP

M
+1

)

STAU1

COAD
(num(T) = 275; num(N) = 349)

(g)

Figure 8: The expression level of mRNA in the miRNA-mRNA network. The expression levels of CADM1, GNAI1, NUPL2, PGRMC2,
RANBP1, SRPX2, and STAU1 in colon cancer and normal sample based on the TCGA database analyzed by GEPIA. The red plot
represents the tumor sample, and the grey plot represents the normal sample. ∗P < 0:05 was considered statistically significant. The
expression levels of CADM1, GNAI1, and PGRMC2 in colon cancer and normal specimens were statistically different. CADM1: cell
adhesion molecule 1; GNAI1: G protein subunit alpha i1; NUPL2: nucleoporin like 2; PGRMC2: progesterone receptor membrane
component 2; RANBP1: RAN-binding protein 1; SRPX2: sushi repeat containing protein X-linked 2; STAU1: staufen double-stranded
RNA-binding protein 1.
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may affect tumor genesis and development. Then, we further
completed the Pearson correlation analysis of DEMs with
target genes. Although the correlation was not very statisti-
cally significant, we observed that it was a result of the small
sample size in the normal group, but overall, it also reflected
some degree of variation in the trend.

Then, we found that in previous cancer studies, the miR-
NAs carried by the four key exosomes that we identified
have all been reported but they were poorly studied in colon
cancer and some of them had not even been carried out.
Studies have shown that the role of hsa-miR-623 as a tumor
suppressor has been confirmed, such as targeting the effect
of XRCC5 to inhibit the proliferation and metastasis of can-
cer cells such as breast cancer and liver cancer [49], inhibit
the proliferation of gastric cancer cells, and increase the drug
sensitivity of 5-fluorouracil by targeting cyclin D1 [50]. At
the same time, hsa-miR-623 may be used as a predictor of
the poor prognosis of breast cancer [51]. What attracts our
particular attention is that the interaction between hsa-
miR-623 and colon cancer has never been reported and the
exosomes, as the source of hsa-miR-623, have never been
studied. hsa-miR-320c is a biomarker for early detection in
some studies, for example, it has a high detection rate in
early-stage esophageal squamous cell carcinoma [52]. In
terms of colon cancer, there is a significant correlation
between miR-320c levels in plasma exosomes and nerve
invasion [53]. Wang et al. found that exosomes of colon can-
cer cells promoted the progression of colon cancer by inhi-
biting the expression level of interferon regulatory factor 4
(IRF4) in regulatory T cells (Tregs) by transferring miR-
320c [54]. Overall, there is a paucity of studies on miR-
320c and further in vitro and in vivo studies are needed to
confirm its association with colon cancer. hsa-miR-486-5p
has been confirmed as a high-quality biomarker for the diag-
nosis of non-small cell lung cancer [55, 56]. In terms of
colon cancer, Kelley et al. found that it is differentially
expressed in early and advanced colon cancer samples and
its downregulation may indicate the occurrence of primary
colon cancer [57]. Ye et al. found that hsa-miR-1290 was
positively correlated with the state of different mismatch
repair (dMMR). By inhibiting the expression of hsa-miR-
1290, the sensitivity of the samples to 5-fluorouracil was
improved [58]. Ma et al. demonstrated that miR-1290 tar-
geting inositol polyphosphate 4-phosphatase B (INPP4B)
induces proliferation of colorectal cancer cells [59].

The exosome secreted by tumor cells may regulate tumor
progression by releasing the information that it carries [60],
in which the miRNA-mRNAnetwork plays an important role.
Our enrichment analysis of DEM target genes and DEGs
revealed that many of them are associated with molecules
and pathways in tumor metabolism and cell cycle. We further
analyzed the seven mRNA associated with the four key
miRNA and learned that NUPL2 in the four upregulated
genes predicted response to radiation and chemotherapy in
patients with locally advanced rectal cancer [61]. RANBP1
inhibits the proliferation of colorectal tumors [62], which neg-
atively correlated with the paclitaxel sensitivity of colorectal
cancer cells [63]. SRPX2 promotes glycolysis in colon cancer
cells [64]. STAU1 influences colon cancer expression by regu-

lating RNA subset localization during mitosis [65]. We specu-
late that among the three downregulated genes more closely
related to colon cancer, PGRMC2 is associated with the pro-
gression of a variety of tumors [66, 67] but no related reports
have been found in colon cancer. Tsuboi et al. found that
CADM1 could interfere with carcinogenic signal transduction
and inhibit the occurrence of colon cancer by binding to Csk-
binding protein (Cbp) [68].More studies suggest that CADM1
is involved in the occurrence of cervical cancer [69], breast
cancer [70], and liver cancer. Li et al. found that GNAI1
inhibits the occurrence of colon cancer by blocking signal
transduction and downregulating the level of GNAI2 [71].

Based on the abovementioned literature and analysis, we
speculate that exosomes secreted by colon cancer tissue have
multiple regulatory axes in mediating the tumorigenesis and
metastasis of colon cancer. In our predicted miRNA-mRNA
network, some miRNAs, such as hsa-miR-320 c, are poorly
studied in colon cancer. In addition, what is more worthy
of our attention is that some miRNAs have not been
reported in colon cancer according to the data that we have,
such as hsa-miR-623. As the source of hsa-miR-623, the
interaction between exosomes and colon cancer is not clear.
Therefore, we predicted that the pathways composed of
highly expressed miRNA and downregulated target genes,
such as hsa-miR-320c/GNAI1, hsa-miR-623/PGRMC2, and
hsa-miR-486-5p/CADM1 are worthy of further exploration.

5. Conclusions

We have constructed a potential miRNA-mRNA regulatory
network, and several candidate targets were identified to be
effectively (hsa-miR-623, has-miR-320C, has-miR-486-5p,
has-miR-1290, NUPL2, RANBP1, SRPX2, STAU1,
PGRMC2, CADM1, and GNAI1) involved in the pathogene-
sis of colon cancer, which provides a new direction and
potential therapeutic targets for colon cancer research. In
the future, we may improve the therapeutic effect and prog-
nosis of colon cancer patients by targeting the existing
miRNA-mRNA network but more data needed for deriva-
tion and further verification in vivo and in vitro experiments.
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