
Review Article
Redox Regulation of Inflammatory Processes Is
Enzymatically Controlled

Inken Lorenzen,1 Lisa Mullen,2 Sander Bekeschus,3 and Eva-Maria Hanschmann4

1Department of Structural Biology, Institute of Zoology, Kiel University, Kiel, Germany
2Brighton and Sussex Medical School, Falmer, Brighton, UK
3Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis, Greifswald, Germany
4Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany

Correspondence should be addressed to Eva-Maria Hanschmann; eva-maria.hanschmann@med.uni-duesseldorf.de

Received 3 March 2017; Revised 6 July 2017; Accepted 25 July 2017; Published 8 October 2017

Academic Editor: Shane Thomas

Copyright © 2017 Inken Lorenzen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases,
superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide,
nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues
within different signaling cascades. Thioredoxin family proteins are key regulators of the redox state of proteins. They regulate
the formation and removal of oxidative modifications by specific thiol reduction and oxidation. All of these redox enzymes
affect inflammatory processes and the innate and adaptive immune response. Interestingly, this regulation involves different
mechanisms in different biological compartments and specialized cell types. The localization and activity of distinct proteins
including, for instance, the transcription factor NFκB and the immune mediator HMGB1 are redox-regulated. The
transmembrane protein ADAM17 releases proinflammatory mediators, such as TNFα, and is itself regulated by a thiol switch.
Moreover, extracellular redox enzymes were shown to modulate the activity and migration behavior of various types of immune
cells by acting as cytokines and/or chemokines. Within this review article, we will address the concept of redox signaling and the
functions of both redox enzymes and redox active molecules in innate and adaptive immune responses.

1. Concept of Redox Signaling

Cells can receive and respond to distinct signals and environ-
mental changes; they can send out signals in order to com-
municate with other cells. Signal transduction can depend
on intracellular or membrane-bound receptors that have
the ability to bind specific ligands that induce particular sig-
naling cascades involving second messengers and rapid,
reversible posttranslational modifications of transducer and
effector proteins. Some signaling molecules can pass the
plasma membrane and directly interact with specific targets.
In the case of redox regulation, we can distinguish between
different spatiotemporal modifications of cysteine residues,
such as the formation of inter- or intramolecular disulfide
bridges, S-glutathionylation by the formation of a mixed
disulfide with glutathione (GSH), S-nitrosylation in the pres-
ence of nitric oxide (NO), the formation of sulfenic acid, for

example, in the presence of hydrogen peroxide (H2O2), or the
formation of S-sulfhydration by hydrogen sulfide (H2S). All
these modifications modify the redox state of a particular
thiol group and can affect a protein in terms of structure,
localization, and/or activity [1] (Figure 1). These regulatory
thiol groups are known as thiol switches [2]. Interestingly,
redox modifications also affect other posttranslational modi-
fications, essential for signal transduction, for instance, phos-
phorylation. Redox signaling occurs upon specific stimuli and
is localized in specific compartments or confined areas within
a cellular compartment. The signal is sensed by a particular
receptor, inducing the production and release of second mes-
sengers such as H2O2, NO, and H2S. Interestingly, not all
reactive oxygen, nitrogen, and sulfur species are considered
signaling molecules. This is due to their high reactivity
towards a wide range of unspecific targets including various
biomolecules, such as DNA, lipids, and proteins, and the lack
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of regulation of their production and decay. The hydroxyl
radical, for instance, is nonenzymatically produced in the
Fenton reaction and reacts with basically any molecule due
to its high reactivity and lack of specificity [1]. Similarly, per-
oxynitrite is not considered a second messenger, because it is
spontaneously formed by the reaction of nitric oxide with
superoxide and a strong oxidizing agent with a second-
order rate constant of 1010M−1·s−1 that also oxidizes various
biomolecules (reviewed in [3, 4]). H2O2, NO, and H2S acti-
vate effector molecules that induce a certain biological
response via specific transducing molecules including redox
couples, for example, GSH and oxidized glutathione (GSSG)
and enzymes, for example, oxidoreductases of the thiore-
doxin (Trx) family. In the absence of the signal, the activated
signaling cascade becomes terminated and cysteinyl modifi-
cations are reversed. These thiol switches have been predicted
to play a role in almost every signaling cascade and are there-
fore essential for all biological processes. Obviously, physio-
logical redox signaling is highly regulated and depends on
the controlled oxidation as well as the specific reduction of
substrates [1, 5]. The dysregulation or even disruption of
redox signaling has been described as oxidative stress, a hall-
mark of various pathologies [6].

As mentioned above, the production and release of redox
active molecules are regulated by enzymes that are located in
various cellular compartments and also in the extracellular
space (Figure 2). Complexes I and III of the respiratory chain
and enzymes such as nicotinamide adenine dinucleotide
phosphate- (NADPH-) oxidases (NOX) and xanthine oxi-
dase produce superoxide (O2

•−). Superoxide dismutases
(SOD) convert O2

•− into H2O2. Different peroxidases, includ-
ing catalase and the Trx family members peroxiredoxins
(Prxs) and glutathione peroxidases (Gpx), reduce H2O2 to
water. NO is synthesized by one of the three isoforms of
nitric oxide synthase (NOS), that is, neuronal nNOS, induc-
ible iNOS, and endothelial eNOS. H2S is produced by cysta-
thionine β-synthase, cystathionine γ-lyase, L-cysteine
desulfhydrase, and 3-mercaptopyruvate sulfurtransferase
(for an overview see [1] and references within). In addition
to the production, the degradation of these molecules is also
enzymatically regulated (Figure 2). Contrary to previous
understanding, free oxygen and nitrogen species cannot

generally oxidize thiol groups directly. The reaction rate of
H2O2 with the highly abundant peroxidases of the Trx fam-
ily, Prxs, ranges from 106 to 108M−1·s−1. The reaction rate
of other reactive protein thiols and free Cys is significantly
lower in a range of approximately 101M−1·s−1 [7, 8]. Due to
high protein expression and reactivity, a molecule of H2O2
is more prone to oxidize a Prx molecule than the thiol group
of any other protein. Prxs are peroxidases that can function
in cellular signaling as peroxide sensors. Moreover, H2O2 sig-
naling can be conducted via GPxs and GSH [9]. Trx family
proteins are key regulators of redox signaling by regulating
the redox state of particular substrate proteins. They catalyze
disulfide reduction and isomerisation reactions and regulate
deglutathionylation, as well as denitrosylation and depersul-
fidation. Moreover, they are also involved in the oxidation
of thiols, for example, by catalyzing S-glutathionylation,
transnitrosylation, and S-sulfhydration. Trx proteins contain
the structural Trx fold and an active site motif that contains
one or two cysteinyl residues and is essential for the cata-
lytic monothiol and dithiol mechanisms. Substrates of Trx
family proteins include enzymes such as ribonucleotide
reductase [10, 11] Sirtuin-1 [12], caspase-3 [13], the
mitogen-activated protein (MAP) kinase apoptosis signal-
regulating kinase 1 (ASK1) [14] and mercaptopyruvate sulfur
transferase (MST) [15], transcription factors such as nuclear
factor kappa B (NFκB) [16], and signal transducer and acti-
vator of transcription 3 (STAT3) [17]. Moreover, compo-
nents of the Wnt signaling pathway (dishevelled [18]),
cytoskeletal dynamics (e.g., collapsin response mediator pro-
tein 2 [19, 20]), and innate immunity (e.g., myeloid differen-
tiation primary response 88 (Myd88) [21] and a disintegrin
and metalloproteinase 17 (ADAM17) [22]) are regulated by
Trx proteins. So far, not much is known about the specificity
of substrate recognition. However, it is known that not every
surface-exposed Cys residue is involved in redox regulation.
Lillig and Berndt have shown that the reactivity of a cysteinyl
residue depends on the surrounding amino acids creating the
electrostatic and hydrophobic environment of the thiol
group [23]. Recently, it was demonstrated that substrate rec-
ognition depends on kinetic constraints, complementary
molecular geometries, and the electrostatic surface potential
of the oxidoreductase and the target protein [8, 24].
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Figure 1: Concept of redox signaling. A signal is sensed by its receptor, inducing the enzymatic catalyzed production and release of second
messengers (e.g., H2O2, NO, and H2S). These activate a cascade of transducing proteins via specific oxidative modifications at Cys residues
(e.g., disulfide formation, nitrosylation, and sulfhydration). The effector molecule induces the biological response. A signal can also induce
the reduction of distinct Cys residues. The activated signaling cascade becomes terminated, and cysteinyl modifications are reversed. The
involved thiol groups are known as thiol switches. Their reduction (green), as well as their oxidation (red) are regulated by different enzymes.
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2. Redox Regulation of the
Inflammatory Response

Upon tissue damage and infection, the inflammatory
response is induced. This highly regulated and protective
process facilitates the removal of foreign and/or damaged
components, as well as tissue repair and is terminated when
a return to physiological conditions is achieved. The inflam-
matory response is composed of distinct receptor proteins,

inflammatory mediators, and specialized cell types, as well
as changes in tissue homeostasis and blood flow. Initiation
of inflammation is reliant on the production of a number of
cytokines which are produced by activated cells of the innate
immune system in response to a range of stimuli. Proinflam-
matory cytokines are essential for the activation of the adap-
tive immunity, that is, B- and T-lymphocytes. In some
circumstances, the production of these proinflammatory
cytokines is maintained beyond that required to facilitate
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Figure 2: Redox regulation is enzymatically controlled. Illustration of cellular and extracellular enzymes that (i) generate redox active species
(red), (ii) decompose reactive species, and are classified as antioxidants (yellow) or (iii) participate in redox signaling (blue). In the cytosol,
superoxide (O2

−) and hydrogen peroxide (H2O2) can be produced by specific enzymes; the cytosolic SOD1 can convert O2
− to H2O2.

Moreover, the NADPH and oxygen-dependent membrane protein NADPH-oxidase (NOX) can produce O2
− that is converted to H2O2 by

extracellular SOD3. The latter can cross the membrane via simple diffusion and aquaporins. H2O2 can participate in cell signaling as a
second messenger via the action of the thioredoxin family members peroxiredoxin (Prx), thioredoxin (Trx), glutaredoxin (Grx), and
glutathione peroxidases. These enzymes are NADPH- and mostly glutathione- (GSH-) dependent. H2O2 can also be reduced to water by
the peroxidase catalase, which is mainly located in peroxisomes. However, in the presence of free iron, the highly reactive and damaging
hydroxyl radical (OH•) is formed from H2O2 via the Fenton reaction. Nitric oxide (NO) is generated by cytosolic NO-synthase (NOS) and
hydrogen sulfite (H2S) by the enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). Both constitute second
messengers that can participate in redox signaling via the action of Trx. Note that peroxynitrite (ONOO−) can spontaneously form in the
presence of O2

− and NO, inducing irreversible modifications of various biomolecules and thus not participating in redox signaling. In
mitochondria, complexes I and III of the mitochondrial respiratory chain produce superoxide (O2

−•). Superoxide dismutase 2 (SOD2)
converts O2

− to H2O2. Mitochondrial NOS and 3-mercaptopyruvate sulfurtransferase (MST) produce NO and H2S, respectively.
Mitochondrial H2O2, NO, and H2S can participate in redox signaling. Similar to the cytosol, ONOO− and OH• can also be formed in the
mitochondria. In the extracellular environment, NOX and SOD3 produce O2

− and H2O2 and the intracellularly produced NO and H2S can
cross the plasma membrane. Members of the Trx family of proteins are found extracellular. Therefore, the intracellular concept of redox
signaling might also occur in the microenvironment of the cell.
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microbial destruction and tissue repair, resulting in a chronic
inflammatory response where both innate and adaptive
immune cells are chronically activated, inducing tissue dam-
age and subsequent autoimmune disease. Even though the
exact redox signaling cascades are not fully understood, it is
well known that the production of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) is essential for
the onset, progression, and also the termination of inflamma-
tory processes. Redox-regulated processes involve the innate,
as well as the adaptive immunity, for example, the oxidative
burst of immune cells and pathogen killing, cellular signal
transduction, and regulation of gene transcription, cytokine
release, and antigen presentation as well as the regulation of
the activation, differentiation, and migration of immune cells
and wound healing [1, 25–27]. Particularly, not only NO and
H2O2 are essential during inflammation but also H2S has
been shown to possess anti- and proinflammatory functions
[28, 29]. Production of NO as a signaling molecule with
microbicidal, antiviral, and antiparasital as well as immuno-
modulatory functions is essential for inflammatory processes
(reviewed in [30, 31]). NO constitutes an important second
messenger in the inflammatory response with various func-
tions in the classical activation during the onset of the inflam-
mation, signal transduction, revascularisation, and tissue
repair [32].

Reactive species are produced by phagocytic cells of the
innate immune system, such as monocytes, macrophages,
neutrophils, and dendritic cells, during the oxidative burst
in order to kill pathogens as well as during tissue repair [33,
34]. Myeloperoxidase (MPO) catalyzes the reaction of H2O2
to highly oxidizing and microbicidal hypochlorous acid
(HOCl) and hypobromous acid. This reaction can also be
catalyzed by the eosinophil peroxidase. Another bactericidal
and fungicidal enzyme that acts in the innate immune
defence is the heme protein lactoperoxidase (LPO) generat-
ing hypothiocyanite (−OSCN) from thiocyanate (SCN−)
and H2O2. The latter is a downstream metabolite of superox-
ide that is enzymatically produced by the NOX enzymes
Duox1 and particularly Duox2 [35, 36]. In addition, NO
and further RNS have been shown to be present in the phago-
some and participate in eradication of pathogens [32]. Acti-
vation of NOX and the oxidative burst occurs only upon
full activation of neutrophils in the presence of pathogens.
Their antimicrobial activity can be primed by inflammatory
cytokines, chemokines, anaphylatoxins, or pathogen-
associated molecular pattern (PAMPs), for example, com-
pounds of bacterial cell walls such as lipopolysaccharides
(LPS) and lipoteichoic acid, flagellin, and bacterial DNA that
are recognized by pathogen recognition receptors such as
Toll-like receptors (TLRs) and cytoplasmic NOD-like recep-
tors (NLRs) [37]. The latter are also part of the inflamma-
some that facilitates the cytosolic, caspase-1-mediated
maturation of inflammatory cytokines and that has been
shown to be redox-regulated [38], (reviewed in [26]). Both,
NLRs and TLRs also recognize endogenous damage-
associated molecular patterns (DAMPs), such as the redox-
regulated high mobility group protein 1 (HMGB1) or metab-
olites like ATP, which are also known as danger signals [39].
TLRs are not exclusively expressed in phagocytic cells and are

present in the first barriers of defence, such as the skin, air-
way, blood vessels, and colon. TLRs are involved in ROS pro-
duction. Interestingly, LPS-activated neutrophils produce
H2O2 that induces the TLR2 expression in endothelial cells
promoting the immune defence via redox-regulated signaling
events [40]. The cytosolic Toll/IL-1 receptor (TIR) domain of
TLRs associates with the signal transduction adaptor protein
Myd88 that recruits and activates a set of proteins, inducing
downstream Map kinases (e.g., JNK and p38) and the phos-
phorylation and degradation of IκB, NFκB activation, and
expression of target genes (Figure 3) [41]. Various compo-
nents of this pathway are susceptible to redox regulation
and were shown to interact with Trx family proteins, includ-
ing NFκB, the transcription factor that controls, for example,
the expression of proinflammatory cytokines, chemokines,
growth factors, prostaglandins, adhesion molecules, and
NOX2 as well as iNOS and also nNOS [1, 42, 43], promoting
leukocyte recruitment and activation of the surrounding tis-
sue. Interestingly, cytokines can be expressed as cytosolic or
membrane-bound “precursors” and are activated and
released by redox-regulated, proteolytical cleavage via cyto-
solic multiprotein complexes called inflammasomes or spe-
cific proteases such as ADAM17 [26, 44–47]. Cytokines are
not the only proteins that are secreted upon inflammation.
A large number of proteins secreted from innate immune
cells in response to inflammatory stimuli have been shown
to be glutathionylated [48]. Recent studies have seen the
refinement of redox proteomic techniques to interrogate
those proteins, identifying a substantial number of glutathio-
nylated proteins, both intracellular and secreted [49, 50].
Among the secreted proteins, Trx1, Trx80, Prx1, and Prx2
were detected that have cytokine and/or chemokine-like
functions [1, 51]. Secreted, glutathionylated Prx2 was
recently described to function as danger signal [52]. And also,
the related macrophage-inhibitory factor (MIF-1) has immu-
nomodulatory functions [1].

Redox regulation of inflammation and of immune
responses is not restricted to the activation and subsequent
activity of innate immune cells. Generation of both humoral
and cell-mediated adaptive immunity depends on activation
of T helper cells, a process heavily reliant on the redox poten-
tial of the microenvironment of these cells [53, 54]. A reduc-
ing environment is necessary for both optimal activation of
T-cells [55, 56] and for the downstream proliferation of these
cells [57, 58] that is essential for generating an adaptive
immune response. As these effector CD4+ T-cells are essen-
tial for inducing full activation and class switching in acti-
vated B lymphocytes, the effects of changes in the redox
environment also extend to the humoral arm of the adaptive
immune response. It is perhaps unsurprising that redox
changes in antigen-presenting cells can also help to deter-
mine whether T-cells develop into Th1 or Th2 cells [59, 60]
given the importance of the interactions between T-cells
and their antigen-presenting cells in T-cell activation.
Increases in cellular ROS levels have been shown to be essen-
tial, for example, during T-cell activation, antigen presenta-
tion, and receptor-mediated cell signaling. Interestingly,
administration of antioxidants such as the seleno-compound
ebselen inhibits and impairs these functions [1, 61]. This
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may help to explain observations that autoimmune diseases
such as rheumatoid arthritis [62] and multiple sclerosis [63]
are associated with increased levels of oxidative stress. Like
many autoimmune diseases and chronic inflammatory dis-
eases, it is still unclear whether oxidative stress is a cause or

effect of these conditions.However, for these particular condi-
tions, treatment with antioxidants does actually ameliorate
disease, at least in animal models [64], suggesting that oxida-
tive stress does indeed play a role. Furthermore, one of the
frontline treatments for people with multiple sclerosis,
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dimethyl fumarate, exerts its therapeutic effects by upregu-
lating antioxidant enzyme synthesis [65]. One possible
mechanism by which oxidative stress could impact these
conditions is via effects on T-cells that infiltrate the sites
of disease, a recognized phenomenon in these pathologies
[66]. If these cells then encounter relatively oxidizing condi-
tions, this could influence their activation into the more
inflammatory phenotypes such as Th1 and Th17 phenotypes,
thereby exacerbating disease. Indeed, it has been suggested
that exposure of T-cells to increased oxidative stress in
rheumatoid arthritis causes them to become refractory to
apoptosis leading to a perpetual immune response [67].

Within the next chapter, we will introduce distinct thiol
switches and their impact on cell signaling and inflammatory
processes (Table 1).

3. Thiol Switches in the Inflammatory Response

3.1. TLR Signaling. In terms of redox signaling, the produc-
tion of the second messenger H2O2 is closely linked to the
transmembrane multidomain NOX complexes. These trans-
port electrons via NADPH, flavin-adenine dinucleotide
(FAD), and heme from the cytoplasmic side of the plasma
membrane to the extracellular part, where they are trans-
ferred to oxygen. By the action of extracellular SOD3, the

produced superoxide is converted to H2O2, which passes
the membrane by diffusion or via aquaporins (Figure 2).
Superoxide/H2O2 production occurs in close proximity to
the receptor complex, potentially in specific signaling plat-
forms within lipid rafts, caveolae, or endosomes [68]. The
NOX family comprises seven members, NOX1 to NOX5
and Duox1 and Duox2. The structure and regulation of the
different NOXs have been extensively reviewed previously
[69–72]. NOX-dependent ROS production can depend on
endocytosis of activated receptor NOX complexes in redox-
active endosomes, the redoxosomes. The formation of
redoxosomes occurs out of lipid rafts, which contain inactive
NOX as well as ligand-bound receptors that initiate NOX
activity and require activated Rac1. Inhibition of endocytosis
and formation of redoxosomes reduces superoxide formation
and downstream activation of NFκB. For proper signaling,
SOD activity and chloride channels are required, which are
believed to export superoxide into the cytoplasm and import
protons that stabilize the pH within the redoxosomes
(reviewed in [73, 74]). Interestingly, this was demonstrated
for IL-1β- and TNFα-induced signaling, but not for
thrombin-activated NOX1 [74–77]. NOX1 is expressed in
the colon and the vascular system and can be triggered by
flagellin, via TLR5 [78], by LPS via TLR4 [79], and by CpG
oligonucleotides via TLR9 [80] and is sensitive to IFNγ

Table 1: Thiol switches in inflammatory signaling processes.

Protein Thiol/modification Function Regulation Reference

ADAM17
C600, C630, C635, C640:
intermolecular disulfides

Linear order of disulfides
(C600–630; C635–640): open,

flexible structure
Overlaying disulfides

(C600–635; C630–640): abrogates
membrane binding and
substrate recognition

PDI catalyzes the isomerisation
from the linear to the overlaying

disulfide pattern.
[135, 141]

Ask1
C200, 250: intramolecular
disulfide
C250: interaction with Trx1

ASK1 is involved in TLR4
signaling and is involved in
TNFα-induced apoptosis.

Intramolecular disulfide induces
conformational changes within

the Trx-binding region.

Trx1 and Grx1 bind to ASK1
and inhibit the kinase; in case

of Trx1 proteasomal degradation
is induced. Oxidation of

Trx1/ Grx1 induces the dissociation
of the complex and kinase activation.

[14, 96, 97, 257]

EGFR C797: sulfenylation
EGFR-mediated signaling;

sulfenylation enhances tyrosine
kinase activity.

Oxidation by H2O2 [90, 91]

HMGB1

C23, C45, C106:
intramolecular disulfide
(C23–45),
sulfenylation(C106)

Fully reduced: chemotactic
activity; intramolecular disulfide
(C23–45), reduced C106: cytokine

Trx1 (Grx1?) [154, 155, 157]

Myd88
8 Cys residues:
(i) intermolecular disulfides
(ii) nitrosylation

Intermolecular disulfides:
oligomerisation during

TLR signaling

Oxidation by H2O2 (Prx?),
Nrx, Trx

[21, 93, 94]

NFκB
C62:
(i) glutathionylation
(ii) sulfenylation

Reduced C62: DNA
binding and gene expression

Bound in an inactive complex
by Trx1 (cytosol), reduction by

Trx1, Grx1 (nucleus)
[16, 99, 101]

Src
C245, C487:
disulfide formation

Intramolecular disulfide connects
SH2 and kinase domain and stabilizes
the active conformation of the kinase

Oxidation by H2O2 [88, 89]
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[81]. NOX2 constitutes the first identified NOX, which is
highly expressed in phagocytic active neutrophils and macro-
phages and to a much lower rate in dendritic cells [82].
NOX2 is sensitive to multiple TLRs [83] and essential for
the oxidative burst. The assembly and activation of NOX2
occur upon fully activation of neutrophils in the presence
of pathogens. Dendritic cells are specialized for antigen pre-
sentation, and NOX2 is needed for proper antigen presenta-
tion towards T-cells [84, 85]. In the airway epithelium,
Duox1 was shown to depend on TLR4 [86]; regulating the
expression of chemokines, which attract neutrophils and
macrophages [83, 86, 87]. The physical interaction between
the TIR domain of TLR4 and the cytoplasmic tail of NOX4
results in an activation of src, which phosphorylates IkBα,
thereby activating NFκB and target genes [87]. The activity
of src is regulated by tyrosine phosphorylation and can be
boosted by a thiol switch [88]. Protein tyrosine phosphatases
(PTPs) remove an inhibitory phosphorylation of a C-
terminal Y527 residue and thus its inhibitory interaction with
the SH2 domain of the kinase, followed by autophosphoryla-
tion. This active conformation of the protein is stabilized by a
reversible thiol switch. C245 and C487 are oxidized and form
a disulfide bond connecting the SH2 and the kinase domain.
An exchange of these cysteinyl residues to alanine residues
results in a redox unresponsive variant [88, 89]. Interestingly,
src is not only involved in the regulation of NOX signaling
but also targets the epidermal growth factor receptor (EGFR)
that was also shown to undergo thiol oxidation. The tar-
geted cysteine residue is located close to the ATP-binding
site within the cytoplasmic part of the receptor protein
(Figure 4). An exchange of the cysteine residue to a serine
residue induces a 2.5-fold increase in the ATPase activity of
EGFR [90, 91]. Besides src and EGFR, PTPs, for example,
PTP1B, are targets for redox modification, that is, reversible
oxidation of the catalytic active cysteine that renders the pro-
tein inactive [91, 92]. All three proteins are targeted by H2O2,
produced by Duox1 in response to extracellular ATP, which
functions as danger signal in the airway epithelium host
defence [91]. These three examples show how specific and
diverse redox regulation can occur during the same condi-
tions and stimuli within a signaling cascade. Even though
all transducers are oxidized at one or two particular Cys res-
idues, the effect on the protein activity differs from being
turned on or off like a redox switch to being modulated! Even
though the oxidation has been shown, the exact regulatory
mechanisms are still mostly elusive. It is however tempting
to speculate that the oxidation by hydrogen peroxide is medi-
ated via cytosolic Prxs and the reduction via, for example,
Trx. Trx proteins have been already shown to regulate
Myd88 and downstream Map kinases. Most TLRs need the
adaptor protein Myd88 for signal transduction, which func-
tions downstream of the signal-receptor complex upon
ligand binding. Myd88 oligomerizes with the interleukin-1
receptor-associated kinase (IRAK) forming a signal initiation
complex. The complex signal transduction involves various
proteins and kinases, eventually triggering MAP kinases
and NFκB signaling pathways (Figure 3) [41]. Recently,
Stottmeier and Dick demonstrated that Myd88 undergoes
redox regulation. In the presence of H2O2, Myd88 dimerizes

and forms disulfide-linked conjugates with other proteins via
eight conserved Cys residues (Figure 4). Interestingly, the
oxidation by hydrogen peroxide is comparably sensitive to
oxidation of Prx2 [93]. S-Nitrosylation of distinct Cys resi-
dues of Myd88 has also been described [94]. Nucleoredoxin
(Nrx) controls TLR4 signaling by regulation of Myd88, that
is, by stabilizing the interaction of Myd88 with flightless
homolog 1 [21]. Moreover, Nrx was shown to regulate the
adaptor protein, potentially as a disulfide reductase. Nrx is
related with Trx, which additionally catalyzes de- and trans-
nitrosylation of proteins. It is tempting to speculate that Nrx
has similar catalytic mechanisms and that it could regulate
Myd88 activity not only as disulfide reductase but also by
regulating S-nitrosylation. Interestingly, different regulatory
functions for the eight Cys residues have been introduced.
Mutation of C113 inhibited NFκB signaling, whereas mutat-
ing the other Cys residues individually and especially simul-
taneously enhanced NFκB activity. Note that these seven Cys
residues are all located in the TIR domain [93]. Different
kinases, including theMAP kinases, are responsible for signal
transduction and have been described to be susceptible to
redox regulation. Trx1 and also Grx1 regulate ASK1 and
downstream kinases such as ERK, JNK, and p38. The
reduced oxidoreductases bind to ASK1 and thereby inhibit
the enzymatic activity of the kinase. In case of Trx1, the pro-
tein interaction initiates ubiquitin-mediated degradation.
Oxidation of the oxidoreductases induces the dissociation
of the complex and restores kinase activity [1, 14, 95, 96].
Interestingly, ASK1 is involved in TLR4 signaling and has
however not been shown to be essential for other TLR path-
ways (Figure 3) [97, 98].

Following the cascade of cell signaling-transducing mol-
ecules, effector molecules are also posttranslationally modi-
fied, for example, the transcription factor NFκB, which is
highly regulated (for an overview see [36]). Comparable to
other transcription factors such as AP1 and HIF1α, the
DNA binding of NFκB is regulated by specific Cys residues
that are susceptible to oxidation. The NFκB subunit p50
contains a cysteine residue in position 62 that promotes
DNA binding in its reduced form. Alkylation, oxidation,
or mutation to Ser or Ala of that particular cysteine inhibit
DNA binding. It was shown that Cys62 can undergo S-
glutathionylation and can also form a sulfenic acid [99].
Interestingly, various members of the Trx family have been
shown to be involved in NFκB regulation. Even though it
was shown that NFκB is a substrate for Trx1, Grx1,
Grx2, and Nrx, the physiological impact during cellular sig-
naling is poorly understood [1, 16, 100, 101]. Overexpres-
sion of Grx3 in T-cells on the other hand inhibited
NFκB- as well as AP1-induced gene expression [102].
Besides the DNA binding, the nuclear translocation is also
redox-regulated. Reduced Trx1 inhibits the dissociation of
the inhibitory iκB/NFκB complex. Upon dissociation of
the complex, iκB becomes phosphorylated and degraded
by the proteasome. NFκB translocates into the nucleus
(Figure 3). Apart from the regulation of transcription fac-
tors, gene expression can also be redox-regulated by, for
example, the nuclear histone deacetylase and thus by chro-
matin remodelling [103].
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3.2. Redox Regulation of Inflammatory Mediators

3.2.1. The NLRP3 Inflammasome Is Redox-Regulated. ROS
were shown to control the NLRP3 inflammasome, a multi-
protein complex that transfers the precursor of IL-1β in its
mature and active form [26]. This process was shown to be
regulated via Trx1. The cytosolic oxidoreductase binds
thioredoxin-interacting protein (Txnip), a protein that was
suggested to act as an endogenous inhibitor of Trx [104]. In
this complex, Txnip is not able to interact with and activate

NLRP3. Upon oxidation of Trx1, the Trx1-Txnip complex
dissociates and Txnip binds to NLRP3. Other mechanisms
have been proposed in the regulation of the NLRP3 that is
activated by various different stimuli, which are redox-
independent or might depend on the redox regulation by
Trx1 and Txnip [44].

3.2.2. Ectodomain Shedding by ADAM17—A Regulatory
Thiol Switch in ADAM17 in Inflammation and Tissue
Regeneration. Phagocytes release various proinflammatory
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Figure 4: Pathogen detection and ROS-dependent defence and regeneration mechanisms. Epithelial cells are constantly exposed to
pathogens. The redox state, the localisation, and the activity of different molecules and proteins are altered in the absence (a) or in the
presence (b) of pathogens. Activation of TLRs by PAMPs and Myd88 recruitment induce secretion of ATP, which functions as danger
signal and activates NOX. TLR and NOX activation both result in NFκB activation, via Myd88 or src, respectively. NFκB translocates to
the nucleus and induces the expression of, for example, chemokines such as IL-8, promoting leukocyte recruitment. Myd88 dimerizes
upon H2O2 exposure forming disulfide bridges. Src oxidation stabilizes the active conformation of the protease and the oxidation of
cysteine residues near the ATP-binding site of the EGFR enhances its activity. Extracellular ATP leads to the activation of the shedding
activity of ADAM17. ADAM17 releases soluble TNFα and ligands of the EGFR, such as TGFα and HB-EGF, from the cell surface,
whereas TNFα promotes inflammation; signaling via the EGFR leads to regeneration due to induction of cell growth and division
(mTNFα: membrane-bound TNFα; mEGFRL: membrane-bound EGFR ligands).
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mediators to promote leukocyte recruitment and activation
of the surrounding tissue. In this process, the IL-6R and the
membrane-bound precursor of TNFα are proteolytically
cleaved by ADAM17; this shedding process leads to the gen-
eration of proinflammatory acting TNFα and sIL-6R
(Figure 5). Shedding of IL-6R from apoptotic neutrophils
generates an agonist of IL-6 signaling, allowing the activation
of cells, which do not express the membrane-bound IL-6R,
but the ubiquitously expressed signaling subunits of the IL-
6 receptor complex gp130. This transsignaling mechanism
promotes the attraction of monocytic cells and inflammation
[46, 105, 106]. Moreover, ADAM17 cleaves members of the
EGFR ligand family, which are essential for their function
as growth factor and tissue regeneration [107–109]. Various
ligands of the TLR and NOXs induce the activity of
ADAM17 that is essential for immune response/inflamma-
tion and regeneration (Figure 4) [47, 83, 110, 111]. In the

healthy airway, TLR signaling can be upstream of exogenous
ATP [112, 113]. Duox1 is recruited to ATP-activated puri-
nergic P2YR, followed by association with src, which
becomes oxidized. Src in turn oxidizes and activates
ADAM17, which amplifies EGFR activation and promotes
immune defence and regeneration, involving an ERK1/2-
dependent production of the neutrophil attractant IL-8
(Figure 4) [114, 115]. Dysregulation of this pathway has been
linked to inflammatory diseases, for example, cystic fibrosis
and chronic inflammatory airway disease [116–120]. LPS-
induced activation of ADAM17 in macrophages was shown
to rely on the activity of PKCδ and p38. This activation is
TLR4- and NOX2-dependent and targets the tyrosine kinase
Mer, which inhibits inflammatory signaling during efferocy-
tosis [121]. In primary monocytes, LPS-induced activation of
ADAM17 is also mediated by ROS and p38 [122]. In hepato-
cytes, src activates NOX1, which in turn activates ADAM17
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Figure 5: Thiol switch in ADAM17. (a) (1) ADAM17 is active within lipid rafts (blue line). (2) Different stimuli induce the exposure of
phosphatidylserine (yellow stars), that interacts with the open and active conformation of the MPD. (3) This process allows ADAM17 to
bind and (4) release substrates from the cell surface, for example, soluble interleukin 6 (sIL-6R). (5) Reduced extracellular protein disulfide
isomerase PDIA6 catalyzes the disulfide isomerisation targeting the open MPD. (6) The resulting close and inactive structure of ADAM17
is not able to bind and process its substrates. (7) Membrane bound TNFα (mTNFα) is another substrate of ADAM17, (8) which is
released upon activation of ADAM17 and also promotes immune response and inflammation. (b) Primary structure of the MPD of
human ADAM17, indicating the disulfide bridges involved in the thiol switch. The linear pattern (C600–C630, C635–C640) constitutes the
active, the overlaying pattern (C600–C635, C630–C640), the inactive conformation. (c) Structural consequence of the thiol switch of
ADAM17. The red-colored part is highly flexible in the open MPD and therefore not visible in the NMR data. The right structure
represents the closed conformation of ADAM17 solved by NMR, in which the red part is packed tightly to the upper, green colored part
of the MPD.
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that releases TGFα for the stimulation of the EGFR [123].
This process is caveolin-1-dependent. ADAM17, NOX1,
and NOX2 are located and active within lipid rafts [75,
123–126]. The interaction of NOX1 and ADAM17 was
shown by coimmunoprecipitation [127]. Interestingly,
ADAM17 can also be activated by mitochondrial ROS in a
src- and PKC-independent way via the activation of the
P2Y receptor by ATP in fibroblast [128] and FAS-mediated
apoptosis in neutrophils [129]. The activation of ADAM17
by members of the NOX family appears to be dependent on
the activity of kinases such as src, PKC, p38, and/or ERK1/
2. These kinases have been previously shown to be involved
in the regulation of ADAM17, which is multilayered and only
partially understood [130–133]. Interestingly, the extracellu-
lar part of ADAM17 is a target for regulatory events. In its
mature form, the N-terminal catalytic domain is followed
by a disintegrin domain, a membrane-proximal domain
(MPD), and a conserved helical stalk region called conserved
ADAM seventeen interaction sequence (CANDIS), a single
transmembrane region and a cytoplasmic tail [134–137].
The MPD exists in two conformations that control the activ-
ity of the protease [135, 138]. A linear order of two disulfide
bridges (C600–C630 and C635–C640) leads to an open, flexible
structure, which is able to interact with the plasma mem-
brane and substrates [139, 140]. Reduced protein disulfide
isomerase (PDI), a member of the Trx protein family, cata-
lyzes the isomerisation to an overlaying pattern (C600–C635
and C630–C640) causing a close, compact structure, which
abrogates membrane binding and substrate recognition and
thereby ADAM17 activity. In line, PDIA1 and PDIA6 were
found to act as negative regulators [22, 135, 141] (Figure 5).
The thiol switch as a general posttranslational mechanism
to regulate the activity of members of the ADAM family
appears to be unlikely since ADAM17 and its closest relative
ADAM10 are atypical members of the protein family. The
other members lack the redox-regulated MPD domain and
contain a cysteine-rich and an EGF-like domain instead
[134, 136]. Therefore, no comparable posttranslational thiol
switch can be expected and indeed so far no posttranslational
regulation of these proteases via NOX, ROS in general or spe-
cific oxidoreductases has been described to our knowledge. It
is however possible that the activity of ADAM10, which con-
tains a MPD homolog to the one of ADAM17, is regulated
via a comparable thiol switch. The isolated open form of
the ADAM17-MPD can be expressed as a soluble protein
and the closed from can be obtained by refolding or by enzy-
matic catalysis by PDIs, converting the open form to the close
form. So far, no open ADAM10-MPD was obtained by
expression in E. coli (unpublished observations), indicating
that no open form exists and/or that the interaction with
the N-terminal located disintegrin domain might be tighter
and more important for the stabilization than in ADAM17.
This might point against a regulatory thiol switch of
ADAM10 and fit to the observation that the activity of
ADAM17 is more strongly regulated than the activity of
ADAM10, which can be constitutively active. However, a
thiol switch in ADAM10 cannot be excluded since reports
indicate that the shedding activity of ADAM10 can indeed
be stimulated by ROS [142, 143]. PDIs attack the CKVC

motive in theMPD of ADAM17, which is evolutionarily con-
served in vertebrates, but not present in animals such as pike,
hamadryad, or drosophila. ADAM10 on the other hand con-
tains the CHVC motif that is also conserved in evolutionary
higher animals. This indicates that during evolution with
increased complexity and potential higher risks of uncon-
trolled substrate release, a regulatory mechanism of the pro-
tease became essential. Note that the posttranslational
regulation of proteins by a thiol switch in their ectodomains
is not unique for metalloproteases. For example, CD30 con-
tains no CKVC or CHVC motive and is targeted by Trx1
which results in an altered ligand binding [144], whereas
ADAM17 becomes inactivated by the thiol switch, and β1
and β3 integrins become activated [145]. Intriguingly, this
can be catalyzed by identical PDIs, such as PDIA1 and
PDIA6. Since β1 and β3 integrins contain numerous CXXC
motives, but not a CKVC motive, PDIs may recognize differ-
ent CXXC motives.

3.2.3. The Immunomodulatory Functions of HMGB1 Are
Regulated via Three Cys Residues. HMGB1 comprises the
HMG A box essential for DNA binding, the HMG B box
essential for DNA binding and proinflammatory functions
(i.e., amino acids 89 to 108), and an acidic C-terminus
[146]. HMGB1 conducts various functions depending on its
localization. Nuclear HMGB1 is, for instance, involved in
DNA organization and gene transcription; cytosolic HMGB1
regulates the inflammasome, pyroptosis, and the autophagy/
apoptosis balance; and extracellular HMGB1 has been
described as one of the first DAMPs with proinflammatory
activities in distinct cell culture and animal models, as well
as in patients suffering from sterile or infectious inflamma-
tion (reviewed in [147]). LPS-stimulated monocytes secrete
HMGB1 nonclassically via exocytosis of secretory lysosomes
induced by lysophosphatidylcholine that is produced compa-
rably late during inflammation [148]. Interestingly, oleanolic
acid is a natural inhibitor of HMGB1 release by LPS-
stimulated RAW264.7 macrophages. Even though the exact
mechanism is not fully understood, it involves the activation
of Nrf2 that binds to the ARE of heme-oxygenase-1 [149].
HMGB1 is also released during necrosis or cell damage, how-
ever, not during apoptosis [150]. HMGB1 leakage has also
been associated with high levels of superoxide and peroxyni-
trite [151]. HMGB1 has three Cys residues in the positions
23, 45, and 106. We have recently shown that TNFα-induced
HMGB1 secretion from HEK293 cells does not depend on
the redox state of the protein [51]. Note that the translocation
from the nucleus to the cytosol depends on posttranslational
modifications such as acetylation and potentially also thiol
oxidation [152, 153]. Especially, the substrate interaction
and the distinct functions of HMGB1 are redox-regulated.
An intramolecular disulfide between Cys23 and Cys45, as
well as the reduced Cys106, located in the HMG B box, is
essential for TLR4/MD2 binding, macrophage activation,
and cytokine release. Fully oxidized, that is, three sulfonates
and fully reduced HMGB1 do not affect TLR4 signaling
[154, 155]. However, the latter shows chemotactic activity
by interacting with the chemokine CXCL12 that binds to
the chemokine receptor CXCR4. Interestingly, a redox-
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inactive mutant, containing three Ser residues instead of Cys
residues, is even more active in terms of leukocyte recruit-
ment than the fully reduced protein [151, 156, 157]. Even
though the redox state of the protein has been linked to par-
ticular substrates and functions in different compartments,
the regulation of the thiol switches of HMGB1 has not been
fully understood. It is however clear that these switches con-
stitute physiological mechanisms to regulate and modulate
the inflammatory activities of the protein. Interestingly,
HMGB1 was shown to interact with the oxidoreductase glu-
taredoxin [153] and also Trx1 was shown to be able to reduce
the intramolecular disulfide [153, 158].

3.2.4. Extracellular Redoxins Act as Immune Mediators.
Distinct members of the Trx family of proteins have been
described to be secreted in various cell and animal models,
as well as in patients suffering, for example, from inflam-
matory diseases (reviewed in [1]). Trx1 was originally
known as T-cell leukemia-derived factor that was shown
to induce the IL2 receptor [159] and the expression of var-
ious cytokines [160]. In addition, the truncated Trx80, for-
merly characterized as eosinophil cytotoxicity-enhancing
factor, has been shown to be secreted functioning as cyto-
and chemokine [161]. Apart from its cytokine and che-
moattractant functions, there are also controversial find-
ings that imply an anti-inflammatory role. One potential
mechanism could involve the regulation of the proinflam-
matory macrophage migration inhibitor factor (MIF).
Interestingly, MIF also belongs to the Trx family of pro-
teins and is involved in the innate immune response
[162]. Prx2 is a highly expressed intracellular peroxidase
that is released from myeloid cells in response to inflam-
matory stimuli. Once released from cells, Prx2 has proin-
flammatory activity, essentially behaving as a DAMP
[52]. Intriguingly, the release of Prx2 from cells under
inflammatory conditions is mediated by two types of thiol
modifications involving all three cysteine residues. Prx2 is
released from LPS-stimulated mouse macrophages in a
glutathionylated form [52]. A second thiol redox change
involves oxidation of two cysteine residues forming a
disulfide bond, which induces protein dimerization and
results in its release from the cell via exosomes [51].
Mutation of either one of the Cys residues involved in
the disulfide bridge prevents secretion of the enzyme.
Recombinant Prx2 is able to stimulate the release of TNFα
from both mouse macrophages and primary human
monocytes [51, 52]. Prx1 is also released from mouse mac-
rophages in response to LPS. It was detected in the secre-
tome of LPS-stimulated cells in a glutathionylated form and
also exhibits the reliance on Cys oxidation for the release
from cells. Thus, it appears that redox modulation regulates
the release of these enzymes from cells contributing to the
local inflammatory response. In addition, redox changes pro-
vide a novel mechanism by which proteins are processed for
export from cells during inflammation, at least for Prx1 and
2. As such, there is the potential for the development of novel
therapeutic strategies for modulating the redox environment
in order to dampen the inflammatory response. Note that
also Trx1 was detected in the proteomic analysis.

4. Clinical Significance

Biomarkers for inflammatory disorders include oxidative
modifications of DNA, proteins, and lipids and have been
reviewed in [25]. Even though the redox state of particular
proteins is not easily accessible in patient material due to a
general lack of specific tools, the expression, localization,
and activity of redox enzymes, for example, Trx family pro-
teins have been studied in various diseases (Table 2) [1].
Moreover, different redox enzymes have been identified as
potential targets for therapy in a number of diseases, includ-
ing inflammatory disorders. The neutrophil-derived myelo-
peroxidase is known as one of the most potent oxidant-
producing proteins. Increased MPO activity and excessive
production of hypochlorous acid contribute to chronic
inflammation and organ damage in many tissues [163,
164]. Elevated expression was described in cardiovascular
disease [165, 166], presumably due to its oxidation of low-
and high-density lipoprotein [167], as well as rheumatoid
arthritis [168]. MPO also seems to be a risk factor in heart
failure and acute coronary syndrome [169]. In tracheal aspi-
rates, elevated levels of chlorinated proteins, trace markers of
MPO activity, are believed to contribute to chronic lung
infection in infants [170]. Accordingly, many studies have
been conducted in search of nontoxic, reversible MPO inhib-
itors preferably binding the native protein [171–173]. Inter-
estingly, neutrophil extracellular traps are decorated with
active MPO [174] and are associated with chronic inflamma-
tion in many diseases too [175]. Neuron-derived MPO seems
to contribute to Alzheimer’s disease, a neurodegenerative
disorder that has also been linked to neuroinflammation
[176]. It is worth mentioning that elevated MPO activity is
associated with an overall better outcome in specific cancer
chemotherapy [177]. However, MPO is tightly linked to
many clinical observations but redox signaling pathways
beyond localized HOCl-mediated oxidation remain to be
studied in most pathologies.

The heme protein lactoperoxidase is found in secretion
liquids such as tears, milk, and saliva [178]. Saliva in particu-
lar has been thoroughly investigated in different oral diseases.
The effect of orally administered LPO was weak on periodon-
titis and bacteriological profile [179]. However, LPO activity
itself seems to be increased in periodontitis [180] although
thiocyanate is not increased in this disease [181]. There is
no association between recurrent aphthous stomatitis and
salivary thiocyanate levels [182] but patients with aphtous
ulcers have significantly lower oral LPO levels [183]. Xylitol
increases oral LPO activity but not thiocyanate levels, and
this may account for the cariostatic effect of xylitol. Also,
compounds with a 3,4-dihydroxyphenyl structure signifi-
cantly enhance LPO activity [184] but the clinical implication
of this finding remains to be elucidated. Frequent tobacco
consumption puts people at risk for oral cancer [185]. Saliva
levels of thiocyanate are strongly increased in smokers [186]
whereas LPO activity is blocked by tobacco smoke [187].
Whether LPO is crucial in oral carcinogenesis currently
remains unknown.

The seven NOX members generate superoxide and sec-
ondarily H2O2. In chronic granulomatous disease, that is, a
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Table 2: Clinical implications of redox enzymes.

Protein Reactive species Pathology Levels/role Reference

Myeloperoxidase
Production of

hypochlorous and
hypobromous acid

Alzheimer’s disease,
Parkinson’s disease

Beneficial [172, 258]

Arteriosclerotic plaques Increased [259]

Breast cancer and
chemotherapy

Activity increased/beneficial [177]

Cardiovascular disease Increased (plasma) [165]

Chronic lung infection
in preterm infants

Increased (tracheal aspirates) [170]

Rheumatoid arthritis Increased (plasma, synovial fluid) [168]

Lactoperoxidase
Production of

hypothiocyanate
Chronic peridontitis

Oral LPO administration had
no effect on disease

[179]

Peridontitis in diabetes
mellitus type I

Activity increased (saliva) [180]

Recurrent aphtous stomatitis Decreased (saliva) [183]

Smoking Activity decreased (saliva) [187]

NADPH oxidase
Production of superoxide
and secondary hydrogen

peroxide
Acute myocardial infarct

Increased (heart tissue), activity
increased (heart tissue), increased

(saphenous vein)
[192–194]

Cardiovascular disease Increased (serum)/detrimental [202]

Chronic granulomatous
disease

Activity decreased (peripheral
blood neutrophils)/detrimental

[189]

Diabetes nephropathy Increased/phase II trial completed [199]

Melanoma
Similar (melanoma tissue)/no
correlation with invasiveness

[201]

Retinopathy Increased/detrimental [260]

Nitric oxide
synthase

Production of nitric oxide Asthma
Inhibition detrimental/inhibition
beneficial/inhibition had no effect

[224–226]

Breast cancer Increased/none [234]

Head and neck cancer
Increased/detrimental

(in respective cancer tissue)
[235]

Heart disease and rejected
transplants

Increased (heart tissue) [228–232]

Melanoma Increased/detrimental [233]

Migraine
Inhibition beneficial/inhibition

had no effect
[220–222]

Rheumatoid arthritis Increased/inhibition beneficial [227]

Sepsis
Inhibition detrimental/beneficial/no

effect (serum)
[213–217]

Peroxiredoxins
Decomposition of H2O2,

redox signaling
Alzheimer’s disease

Prx1/Prx2 increased (brain tissue),
Prx2 activity decreased (blood),
Prx3 decreased (brain tissue)

[241–243, 248]

Cataracts Prx6 decreased (eye tissue) [250]

Diabetes mellitus type II Prx4 increased (serum) [252]

Diabetic retinopathy Prx1 increased (vitreous biopsy) [251]

Glaucoma Prx6 increased (eye tissue) [249]

Lung cancer
Prx1 increased, Prx3 increased

(cancer tissue)
[254, 255]

Parkinson’s disease Prx2 increased [244]
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group of hereditary defects that result in an increased suscep-
tibility to various bacterial and fungal infections, a functional
NOX attenuation leads to life-threatening infections [188].
Hereby, the degree of attenuation governs patient prognosis
[189]. Genetic defects in components of NOX2 have been
linked to chronic granulomatous disease [69, 84, 190].
NOX proteins have been associated with cardiovascular risk
factors contributing to atherosclerosis, vascular dysfunction,
hypertension, vascular hypertrophy, and thrombosis [191].
An upregulation of NOX2 was detected upon myocardial
infarct in cardiomyocytes [192] and in failing, however not
in nonfailing hearts [193] as well as in saphenous veins of
patients with heart failure [194]. NOX2-enriched veins may
contribute to endothelial dysfunction [195]. Accordingly,
targeting NAPDH oxidases in cardiovascular disease was
suggested to be of clinical benefit [196]. NOX can be activated
in the blood vessel walls via angiotensin II [197] causing car-
diovascular disease [198]. NOX is also a target in diabetic
nephropathy [199], and an orally administrable inhibitor
(GKT137831) has completed phase 2 trial (NCT02010242)
but results have not yet been published. NOX1 inhibition is
also a therapeutic strategy against hypertension [200] that is
tested in clinical trials for cardiovascular conditions [201].
Particularly, the NOX inhibitor Dextromethorphan reduced
hypertension in a multicenter trial [202]. In malignancies,
NOX4 is elevated in brain, colorectal, gastric, lung, and pan-
creatic cancer [203]. Accordingly, NOX enzymes also consti-
tute promising targets in cancer therapy [204]. Gentian
violet, a NOX1 inhibitor, showed promising effects in the pal-
liation of a melanoma patient [205]. Yet, NOX1 does not cor-
relate with melanoma invasiveness [201]. This substance was
also successfully used to treat the inflammatory skin condi-
tion erythema multiforme [206].

The importance of NO.in human health was first sug-
gested in human ileostomy effluents showing elevated nitrite
concentrations [207]. Its role in acute and chronic inflamma-
tion [208] has been investigated ever since [209]. Elevated
levels of NO contribute to pathologies linked to inflamma-
tion, for example, asthma, arthritis, multiple sclerosis, trans-
plant rejection, stroke, and neurodegenerative diseases
[30, 210]. Glucocorticoids inhibit NOS [211] and thereby
production of NO• that has been implicated in sepsis [212].
However, clinical trials on NOS inhibition gave inconclusive
results demonstrating either a negative [213], a positive
[214], or no effect [215] on survival of septic patients.
Short-term improvement was shown following methylene
blue administration [216] whereas LNNA was ineffective
[217]. NOS inhibition with L-arginine analogues such as

LNMMA gave a more confident response with regard to car-
diovascular parameters in septic patients [218]. However, the
mortality rate in a phase III trial was elevated [219]. Nonethe-
less, this substance was shown to be effective in treating
migraine attacks in a placebo-controlled clinical study
[220]. Clinical trials using the NOS inhibitor GW274150
did not confirm these results, neither as early intervention
[221] nor in a prophylactic therapy [222]. NOS genotype
(high numbers of trinucleotides) and exhaled NO• are associ-
ated with asthma [223]. The NOS inhibitor L-NIL-TA
strongly reduced the amount of exhaled NO• in asthmatic

patients without measurable vascular side effects [224]. This
finding was confirmed in another clinical trial using
GW274150 with no significant improvement of the asth-
matic symptoms [225]. Administration of LNMMA ampli-
fied bradykinin-induced asthma in volunteers [226].
GW274150 also reduced synovial joint thickness and vascu-
larity in patients with rheumatoid arthritis [227]. In general,
NOS is linked to heart disease [228]. NOS is elevated in heart
tissue of patients experiencing hibernating myocardium
[229], in transplanted coronary arteries [230], in rejected
transplants [231], and in tissue from human heart failure
[232]. NOS expression also promotes melanoma cell prolifer-
ation and is associated with poor patient survival [233]. In
breast cancer [234] but not head and neck cancer [235],
NOS expression corresponds to stage and invasiveness.

Oxidants have long been suggested to play a role in the
central nervous system [236]. Inflammation is a key event
in the onset and stage of brain disease, such as multiple scle-
rosis [237]. Prx1 is expressed in glial cells, whereas Prx2
expression was predominantly found in neurons [238–240].
The expression levels of both Prx1 and Prx2 are elevated in
patients suffering from Alzheimer’s disease [241, 242]; more-
over, Prx2 and Prx6 are more oxidized in the brain [243].
Additionally, Prx2 peroxidase activity was found to be inhib-
ited by S-nitrosylation [244] and phosphorylation [245] in
Alzheimer’s disease. Prx2 expression is also increased in
Parkinson’s disease [246, 247], whereas the Prx3 expression
is decreased in the latter [248]. Prx expression is also regu-
lated in ocular pathologies. Alongside with inflammation,
Prx6 is increased in the trabecular meshwork in glaucoma
patients [249] and correlates negatively with severity of cata-
racts [250]. Diabetic retinopathy is associated with elevated
levels of Prx1 [251], with the diabetic risk being associated
with increased serum concentrations of Prx4 [252]. Peroxir-
edoxins are regulated in cancer, a condition that heavily
modulates the inflammatory environment to enhance growth
[253]. Tissue and serum of lung cancer patients showed
elevated levels of Prx1 and Prx3, respectively [254, 255].
Autoantibodies against Prx6 have also been shown to be of
prognostic value in esophageal cancer [256]. So far, no
therapeutic strategies to target Prxs were conducted.

5. Future Perspective

It is of great interest to understand the mechanisms of cellu-
lar signaling and how they are regulated under physiological,
but generally also under pathological conditions. Even
though it has been established that redox regulation and oxi-
dative Cys modifications are essential for signal transduction
and cellular processes, the identification and characterization
of specific thiol switches and their enzymatic regulation con-
stitute a big challenge in the field. Particularly, the field lacks
time- and spatial-resolved in vivo techniques for the analysis
of (i) the levels and distribution of different ROS and RNS,
(ii) the particular redox state of proteins, and (iii) the impact
of redox signaling on complex signaling circuits and net-
works. The innate and the adaptive immune responses are
tightly controlled and depend on the enzymatic production
of superoxide, hydrogen peroxide, hydrogen sulfide, and
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nitric oxide. However, not many redox-regulated protein
substrates are known. Future research will identify these sub-
strates and particular thiol switches, including intracellular,
as well as membrane and extracellular proteins and the
underlying regulatory mechanisms. Intriguingly, the extra-
cellular space contains redox-active enzymes and molecules
such as glutathione. It is tempting to speculate that the
inflammatory response does not only constitute intracellular
redox-signaling cascades but also depends on extracellular
signal transduction within the microenvironment of distinct
cell types.
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