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Adult moths need energy and nutrients for reproducing and obtain them mainly by 
consuming flower nectar (a solution of sugars and other compounds). Gustatory perception 
gives them information on the plants they feed on. Feeding and food perception are 
integrated in the proboscis extension response, which occurs when their antennae touch 
a sugar solution. We took advantage of this reflex to explore moth sugar responsiveness 
depending on different parameters (i.e., sex, age, satiety, site of presentation, and 
composition of the solution). We observed that starvation but not age induced higher 
response rates to sucrose. Presentation of sucrose solutions in a randomized order 
confirmed that repeated sugar stimulations did not affect the response rate; however, 
animals were sometimes sensitized to water, indicating sucrose presentation might induce 
non-associative plasticity. Leg stimulation was much less efficient than antennal stimulation 
to elicit a response. Quinine prevented and terminated sucrose-elicited proboscis 
extension. Males but not females responded slightly more to sucrose than to fructose. 
Animals of either sex rarely reacted to glucose, but curiously, mixtures in which half sucrose 
or fructose were replaced by glucose elicited the same response rate than sucrose or 
fructose alone. Fructose synergized the response when mixed with sucrose in male but 
not female moths. This is consistent with the fact that nectars consumed by moths in 
nature are mixtures of these three sugars, which suggests an adaptation to nectar perception.

Keywords: moth, sugar responsiveness, dose-response curves, nectar, sugar, quinine, gustatory perception, 
proboscis extension response

INTRODUCTION

Moth reproduction and its regulation by sex pheromone have been largely studied to find 
ways to control their populations, as their larvae are important crop pests (Cook et  al., 
2007; Naranjo et  al., 2015; Evenden, 2016). While less exploited for managing these pests, 
adult moths feeding behaviors and gustatory perception are also important for their 
reproduction; they need energy and nutrients to produce an abundant and healthy offspring 
(Hill, 1989; Hill and Pierce, 1989; Boggs and Ross, 1993; Wheeler, 1996; Boggs, 1997a,b; 
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O’brien et  al., 2000, 2004; Fischer et  al., 2004; Jervis et  al., 
2005; Geister et  al., 2008; Marchioro and Foerster, 2013; 
Levin et  al., 2017a,b). Their food consists largely in sugars 
from flower nectars, which contains mainly fructose, glucose, 
and sucrose as well as a few amino acids and, sometimes, 
repellent substances (Baker and Baker, 1973; Baker, 1977; 
Lüttge, 1977; Gottsberger et  al., 1984; Adler, 2000; O’brien 
et  al., 2000, 2004; Pacini et  al., 2003; De La Barrera and 
Nobel, 2004; Adler et  al., 2006; Heil, 2011; Nepi et  al., 2012; 
Atwater, 2013; Roy et  al., 2017). Thus, gustatory perception 
is important for moths to assess food quality and discriminate 
what is edible from what is toxic (Glendinning, 2002; 
Adler  and  Irwin, 2005; Tiedeken et  al., 2014).

When their legs, antennae, or proboscis contact a sugar 
solution of sufficient concentration, moths extend their proboscis 
and use it to imbibe the solution. This proboscis extension 
response (PER) first reflects the integration of gustatory 
perception and motivation for sugar and then allows feeding. 
Sucrose-elicited PER has been described and involved in 
associative learning in restrained insects including moths 
(Hartlieb, 1996; Fan et  al., 1997; Hartlieb et  al., 1999a,b; Fan 
and Hansson, 2001; Skiri et  al., 2005; Jorgensen et  al., 2007), 
butterflies (Kroutov et  al., 1999), bees (Menzel, 1999, 2012; 
Page and Erber, 2002; Sandoz, 2011; Giurfa and Sandoz, 2012; 
Giurfa, 2015) and flies (Fresquet, 1999; Chabaud et  al., 2006); 
similar feeding-related responses exist in ants (Guerrieri and 
d’Ettorre, 2010; Perez et  al., 2013), crickets (Matsumoto et  al., 
2015), and bugs (Vinauger et  al., 2013; Labrousse et  al., 2017). 
PER has been used by Scheiner and her colleagues to assess 
responsiveness to sucrose in bees and flies (Scheiner et  al., 
2004a,b, 2013; Mujagic et al., 2010). These authors demonstrated 
that sucrose responsiveness is correlated to important parameters 
of honey bee biology such as division of labor, and foraging 
decisions are modulated by sugar gustatory perception (see 
for instance Nachev et  al., 2013). Sugar-induced PER has been 
used in various moth species (Hill and Pierce, 1989; Winkler 
et  al., 2005; Jørgensen et  al., 2007; Zhang et  al., 2010; Minoli 
et al., 2012) using different sucrose concentrations and animals 
in different physiological conditions; however, the impact of 
the physiological state on sugar responsiveness is hardly known 
in these insects.

Thus, we  aimed for the first time at specifically looking at 
sugar responsiveness in relation to different physiological 
parameters (i.e., sex, age, and level of satiety) in the moth 
species Agrotis ipsilon. Testing systematically different 
concentrations and kinds of sugars composing nectar (i.e., 
sucrose, fructose, and glucose) further allowed us to find the 
optimal parameters for releasing the PER. Our work was inspired 
by extensive work on sucrose responsiveness in bees and flies 
(Scheiner et al., 2004a, 2013). We tested if sucrose responsiveness 
can also be  induced using other sensory pathways beyond 
perception by the antennae (i.e., legs) and modulated by other 
gustatory stimuli (quinine). We also uncovered a non-associative 
plasticity, sensitization for water.

MATERIALS AND METHODS

Animals
This study was performed on adult A. ipsilon (Lepidoptera, 
Noctuidae), which is a native species of France. Animals were 
reared in our laboratory in INRA, Versailles, France. Males 
and females were separated at the pupal stage and kept in 
different climatic chambers (22°C, 60–70% relative humidity) 
under an inverted photoperiod (16 h of light, starting at 18 h). 
Newly emerged adults (i.e., animals having just completed the 
imaginal molt) were collected every day (so that their post-
emergence age is known) and grouped by 10 in breeding boxes 
(20  ×  11.5  ×  5  cm) with ad libitum access to either sucrose 
solution (fed animals) or tap water (starved animals). The 
sucrose solution was 12% weight/weight (13.6% weight/volume). 
We  did not use more than 5-day starvation delays as the 
moths start to be  weak or even die after starving for 6  days. 
Moths provided with sucrose gain weight, whereas moths 
provided only with water lose weights (unpublished observation), 
and we often observed that they readily drink the 12% solution 
in their breeding boxes but hardly react to water. Thus, it is 
reasonable to assume the feeding statuses of water- and 
sucrose-fed moths are not the same.

Experiments were conducted under dim red light and started 
at the middle of the scotophase, when moths are the most 
active (highest responsiveness of males to the sex pheromone, 
sex pheromone release by females), under a temperature of 
22–24°C and 65% relative humidity. Unless otherwise mentioned, 
experiments were performed on day 5 post-emergence. Five-
day-old A. ipsilon are standardly studied because males of this 
age are sexually mature and respond to the female sex pheromone 
(Gemeno and Haynes, 2000). In the morning of the experiments, 
animals were fixed in plastic tubes made from 1  ml pipette 
cones cut to fit a moth, so that only the head (with antennae 
and proboscis) protruded. Their position was further assured 
by inserting a small ball of absorbing paper or cotton behind 
them in the tube and fixing the top of their body to the tube 
using adhesive tape. Legs were blocked by the tape or inside 
the tube, unless otherwise mentioned (section “Proboscis 
Extension Response Induced by Leg Stimulation” reports the 
effect of leg stimulation). Once restrained, animals were left 
to acclimatize in the experimental room until the beginning 
of the experiment (in the afternoon).

Sugar Responsiveness Assay and 
Solutions Used
We adapted Scheiner’s protocol for honey bees and flies (Scheiner 
et  al., 2004a,b, 2013) to moths. Assessing sugar sensitivity 
consisted in presenting solutions of increasing sugar 
concentration; a 10-min interval between each presentation 
was used, except in section “Sensitization and Presentation 
Timing,” where a 1-min interval was also used. A solution 
presentation consisted in touching both antennae of the animal 
with a wooden toothpick imbibed with the sugar solution 
during 1–4  s; a response was recorded if the animal released 
a PER, i.e., extended its proboscis beyond its position at the Abbreviations: PER, Proboscis extension response.
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onset of the stimulation (the initial position varies from one 
animal to the other, but the occurrence of the proboscis extension 
can be  observed unambiguously). Animals were not fed, and 
great care was taken to avoid touching the proboscis with the 
toothpick by coming from behind the head, while the proboscis 
extends in front of it. We  defined PER rate as the proportion 
of animals releasing a PER upon presentation of a sugar solution 
on the antennae.

The solution concentrations were 0 (i.e., deionized water), 
0.1, 0.3, 1, 3, 10, and 30% (weight/weight in deionized water, 
e.g., 30% is 3  g of sucrose in 7  ml of deionized water). These 
sugar concentrations correspond to 0.1, 0.4, 1.1, 4.3, 11.1, and 
42.9% weight/volume, respectively. A second presentation of 
the 0% solution was made afterwise to monitor the occurrence 
of sensitization, i.e., the fact animals might start to respond 
to weak stimuli such as 0% solution just because they are 
excited by previous sugar presentations. Sensitization is discussed 
in section “Sensitization and Presentation Timing.” This set of 
concentrations is inspired of previous studies in bees and flies 
(Scheiner et al., 2004a, 2013) and corresponds to a logarithmic 
increase in the stimulus intensity (i.e., around −1, −0.5, 0, 
0.5, 1, 1.5), consistently with Weber’s law in sensory physiology 
(Waddington and Gottlieb, 1990; Akre and Johnsen, 2014; 
Shafir and Yehonatan, 2014). In our experiments, the sugar 
used was usually sucrose, but fructose, glucose, and various 
mixtures of these sugars were also tested (see section “Response 
to Various Sugars and Sugar Mixtures”). We  focused on these 
three sugars (obtained from Sigma) as they are the main 
constituents of flower nectar, the main food of adult moths: 
typically 10–15% of the fresh mass for each sugar, possibly 
up to 30% for sucrose (Lüttge, 1977; Gottsberger et  al., 1984; 
Pacini et  al., 2003; De La Barrera and Nobel, 2004; Roy et  al., 
2017). In some experiment (section “The Effect of Quinine 
on Sucrose Responsiveness”), animals were also presented with 
100  mM quinine (Sigma).

To rule out the possibility of having animals responding 
to water rather than sugar, animals responding to the initial 
water presentation were not kept in the analysis. However, 
removing these animals hardly modified the results. 
Supplementary data report figures including all the animals 
and the corresponding analysis (Supplementary Figures S1–S6, 
Supplementary Tables S13–S24).

Experiments
Age, Sex, and Feeding Status
First, we  investigated the effect of age and feeding status. 
Sucrose responsiveness was measured for various sucrose 
concentrations in five groups of males: 3-day-old moths either 
(1) with ad libitum access to sucrose solution (fed) or (2) 
starved (ad libitum access to water only), and 5-day-old moths 
either (3) fed, (4) starved for 3  days, or (5) starved for 
5 days. Five-day-old moths starved for 3 days received sucrose 
from 0 to 2 days post-emergence and then only water for 
the following 3 days. Using this group was an attempt to 
discriminate between age of the animals and starvation duration, 
as when comparing 3-day-old and 5-day-old unfed moths, 

we simultaneously compare age (3-day-old or 5-day-old) and 
starvation duration (3 days or 5 days), so that the two factors 
are confused.

To assess the effect of sex, this experiment was replicated 
with females using the same age/starvation treatments, plus a 
group of 5-day-old male moths starved for 5 days for comparison 
purposes. Experiments reported elsewhere (Hostachy et  al., 
submitted) indicated that sucrose responsiveness of males is 
not affected by the presence of sex pheromone, which allows 
to test them in parallel with females.

Sensitization and Inter-trial Interval
In a sucrose responsiveness assay, it is important to know 
whether responses (or lack thereof) to repeated presentations 
of sucrose of varying concentrations are independent from 
each other: having already been stimulated by a sucrose solution 
could affect responsiveness to the next simulations. This could 
be  explained by sensitization (or habituation if we  observed 
a decrease) and/or a time-dependent modification of motivation. 
To quantify this phenomenon, we  performed the sucrose 
responsiveness assay in two groups of 5-day-old female moths: 
one group was presented with the sucrose solutions in the 
same order as previously (ascending concentrations), whereas 
for the other group, the six sucrose solutions were presented 
in a randomly determined order for each animals (keeping 
water as first and last stimulation). If sensitization or motivation 
variations alter sugar responsiveness when the solutions are 
presented in ascending order, then sugar responsiveness will 
be  different in the random order group. Within each group, 
a sub-group was unfed for 5 days, whereas the other sub-group 
was fed; this was done to evaluate whether the occurrence of 
sensitization or motivation variations differed between fed and 
unfed animals.

To further explore the occurrence of sensitization and 
determine the importance of the inter-presentation interval, 
we  used two inter-trial intervals: either 10  min (as previously) 
or 1  min. Indeed, a potential sensitization should occur more 
easily with a shorter inter-trial interval, as this is a form of 
short-term plasticity. In some animals, we also interleaved water 
presentations between sucrose presentations, as this was initially 
done in some experiments with bees to try and prevent 
sensitization (see for instance, Scheiner et  al., 2003). For these 
groups, the interval between two sucrose presentations was 
either 2 or 20  min, with a water presentation interleaved at 
1 or 10  min, respectively.

Effect of the Stimulation Site
While proboscis extension is classically elicited by antennal 
stimulation in bees and moths, it can also be  triggered by leg 
stimulation (which is standard for fruit flies). Thus, we performed 
again the sucrose sensitivity protocol using two groups of 
animals, stimulating either the antennae (as previously, reference 
group) or the tibia and tarsi of the front legs. Leg-stimulated 
animals were restrained slightly differently: one of their front 
leg was fixed, so that it stayed outside of the tube. During 
leg stimulations, great care was taken to avoid touching the 
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antennae. After testing all sucrose concentrations using the 
legs, the leg-stimulated animals were then assessed a second 
time using the antennae (i.e., the whole protocol was completed 
using the legs, then performed again using the antennae).

The proboscis also bears gustatory sensilla, so that 
stimulating it should elicit a PER. However, in moths, it is 
quite inconvenient to reach when it is coiled in its rest 
position; furthermore, it is impossible to prevent the animals 
to imbibe some of the solution in this case. Thus, evaluating 
sucrose responsiveness by direct proboscis stimulation is not 
feasible with this protocol.

Effects of a Bitter Compound: Quinine
As in nature moths consume sugar solutions found in flowers, 
they can be  exposed to alkaloids that might have a deterrent 
effect. To assess whether alkaloids such as quinine affect 
PER and sucrose responsiveness, we  performed again the 
sucrose responsiveness protocol on 5-day-old males. Animals 
releasing a PER had their proboscis immediately touched 
either with water (control group) or with 100  mM quinine, 
and we  recorded whether the PER would continue after this 
proboscis stimulation. To complement these observations, 
we also measured responsiveness to sucrose and sucrose plus 
100  mM quinine in 5-day-old males.

Effects of Other Sugars: Fructose, Glucose, and 
Sugar Mixtures
Sucrose is the reference sugar used in PER experiments in 
various insects. However, it is well known that nectar can also 
include fructose and glucose in various proportions. Thus, 
we  measured responsiveness for fructose and glucose besides 
sucrose, as well as mixtures between these three molecules. 
For mixtures, the same concentrations were used with sugars 
in equal amounts (i.e., a 3% sucrose/fructose solution contains 
1.5% sucrose, 1.5% fructose, weight/weight; or 2.15% of each 
sugar, weight/volume). Experiments were done with 5-day-old 
males unfed for 5  days.

In another experiment, the sugar responsiveness assay was 
performed in females with glucose, fructose, and sucrose, as 
well as sucrose/fructose and sucrose/fructose/glucose mixtures. 
All animals were 5-day-old females unfed for 5  days, and a 
group of 5-day-old males unfed for 5  days and tested with 
sucrose was also used for comparison purpose.

Data Analysis
Data were analyzed using R 3.4.0 (R Core Team, 2017) and 
RStudio 1.1.423, taking an α risk of 0.050. PER rates were 
computed for each experimental group and are reported in 
the figures, with the sample sizes reported in parenthesis in 
the legends. Thus, a dose-response curve was obtained for 
each experimental group.

For each sugar concentration in a dose-response curve, PER 
rates were compared between experimental groups using χ2 
test or bilateral Fisher’s exact test when χ2’s assumption (Cochran’s 
rule) was not met. When more than two groups were compared 
and a significant p was obtained, we  performed pairwise 

comparisons using the same tests and adjusted p for repeated 
testing using Holm’s method (Holm, 1979); however, it sometimes 
happened adjusted p could not determine the source of the 
difference detected in the global test.

In a few cases, response variations within a group were 
compared using McNemar’s test, using Holm’s method to adjust 
p when needed. Logistic regression (binomial generalized linear 
model) was also used in section “Sensitization and Presentation 
Timing” to assess whether PER rates to the final water 
presentation were affected by the sugar concentration presented 
10  min before or by the number of PER previously released 
(preliminary stepwise analysis indicating the interaction term 
was not significant, so that it was dropped). To avoid tedious 
lists of p in the results, most of them are only presented in 
tables in supplementary data (Supplementary Tables S1–S12, 
one table for each figure or figure panel).

RESULTS

The Effect of Age, Starvation Duration, and 
Sex on Sucrose Responsiveness
We first explored the experimental parameters required for 
optimally assessing sucrose responsiveness by comparing age 
and starvation duration. For male moths (Figure 1A and 
Supplementary Figure S1A), significant differences were 
observed for all sucrose solutions of 1% and higher (χ2 or 
Fisher’s exact test, p  ≤  0.004): overall, fed animals were less 
responsive than unfed ones, irrespective of their age, while 
5-day-old moths unfed for 5  days were consistently among 
the highest PER rates (details of the pairwise comparisons are 
in Supplementary Table S1).

For females (Figure 1B and Supplementary Figure S1B), 
results were analyzed in two steps: first, 5-day-old males and 
females unfed for 5 days were compared, and second, all female 
groups were compared. For the lowest concentrations (0.1 and 
0.3%), the PER rates of females were slightly lower than males’ 
(χ2 or Fisher’s exact test, p  ≤  0.022), suggesting females are 
slightly less responsive than males for the lowest concentrations. 
However, the same pattern as for males was observed for the 
PER rates across treatments, i.e., 5-day-old females unfed for 
5  days were consistently among the highest PER rates for 0.3, 
1, 3, and 30% concentrations (details of the pairwise comparisons 
are in Supplementary Table S2).

Sensitization and Presentation Timing
When the independence of the stimulations and the occurrence 
of sensitization was assessed (Figure 2A and Supplementary 
Figure S2A), there was a global significant difference between 
the four groups for 1, 3, and 10% sucrose concentrations (χ2 
or Fisher’s exact test, p ≤ 0.001), replicating the previous finding 
that fed animals have a lower sucrose responsiveness; by contrast, 
presenting the solutions in random order or in ascending order 
did not have any effect (Supplementary Table S3 reports 
detailed analysis). As a result, sensitization (or even habituation) 
or variations of motivations during the assay are unlikely to 
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be  an important determinant of the PER rate in the sugar 
responsiveness assay.

However, even if sensitization does not alter sucrose 
responsiveness, it could explain the PER rate observed during 
the final water presentation. To test this, we  used the data 
from the unfed random group and computed a logistic regression 
to test the effect of two factors on water responsiveness: the 
total number of responses before the final water test (ranging 
from 0 to 6, i.e., the number of responses to the 6 sugar 
concentrations) and the concentration of the sugar solutions 
used before water (which can be  any of the 6 concentrations 
in this random order group). Both factors were significant 
(logistic regression p  ≤  0.046). This indicates that animals 
responding to most sucrose concentrations tend to respond 
to the final water, even though they did not respond to the 
initial water presentation. Moreover, a higher concentration 
just before the final water presentation (typically, the 3, 10, 
or 30% solutions) also contributes to this sensitization to water.

Figure 2B and Supplementary Figure S2B report sucrose 
responsiveness with various inter-trial intervals and with or 

without interleaved water. Our hypothesis was that sensitization 
would occur in the 1-min group without interleaved water 
and be  lower in the 10-min group with interleaved water, 
but this was not the case: the four groups were similarly 
responsive (χ2 or Fisher’s exact test, p  ≥  0.064; details of the 
analysis are in Supplementary Table S4). Moreover, responses 
to the interleaved water presentation were low and did not 
differ significantly across groups (data not shown; Fisher’s 
exact test, p  ≥  0.386).

Proboscis Extension Response Induced by 
Leg Stimulation
Results on the effect of leg stimulation are presented in Figure 3 
and Supplementary Figure S3 and details of the statistics in 
Supplementary Table S5. Leg stimulation was much less efficient 
to elicit PER, as it only did so to a meaningful level for the 
highest concentrations; in all cases, leg-elicited-PER rate was 
significantly smaller from antennal-elicited-PER rate (χ2 or 
Fisher’s exact test, p  ≤  0.005). A second series of tests was 
made to compare the leg group to the reference group when 

A

B

FIGURE 1 | Effect of age and starvation duration on sucrose responsiveness in Agrotis ipsilon. The plots present dose-response curves for various sucrose 
concentrations (x-axis); the y-axis reports the PER rate, i.e., the proportion of insects extending their proboscis when their antennae were briefly touched with a 
drop of sucrose solution. Each sucrose solution presentation was separated by 10 min. In the legend, numbers in parenthesis correspond to the sample sizes. 
In part (A), experiments were done with males; in part (B), experiments were done with females and a group of males for comparison purpose. Stars denote 
significant differences between male or female groups in χ2 or Fisher’s exact tests (*p < 0.050; **p < 0.010; ***p < 0.001); in part (B), crosses denote significant 
differences between 5-day old males and females unfed for 5 days in χ2 of Fisher’s exact test (+p ≤ 0.050). Details of the analyses are reported in Supplementary 
Table S1 for part (A) and Supplementary Table S2 for part (B).
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A

B

FIGURE 2 | Sensitization and sucrose responsiveness. Part (A) reports sucrose responsiveness in four groups of 5-day-old females: the first two were presented 
sucrose concentrations in ascending order (as previously), whereas for the other two, the six sucrose solutions were presented in an order randomly determined for 
each animal. Within each treatment, one of the two groups had been unfed for 5 days, whereas the other was fed. Part (B) plots the sucrose responsiveness in four 
groups of unfed 5-day-old males: two groups with an inter-trial interval of 10 min (as previously) and two groups with an inter-trial interval of 1 min. For each 
interval, one of the two groups had a water presentation every other trials, so that for these groups, the interval between two sucrose presentations was either  
2 or 20 min, with a water presentation interleaved at 1 or 10 min. Some animals in the two no-water groups were not presented the final water solution. 
Other details are as in Figure 1. Details of the analyses are reported in Supplementary Table S3 for part (A) and Supplementary Table S4 for part (B).

FIGURE 3 | Comparison of antennal stimulation and leg stimulation. The sucrose sensitivity experiment was conducted by stimulating either the antennae 
(as previously) or the legs of 5-day-old males starved for 5 days. Animal stimulated on the legs for the complete set of sucrose solutions underwent the protocol 
a second time with the antennae (i.e., the whole set of sucrose solutions was presented twice, one on the legs and the other on the antennae). Stars denote 
significant difference between the leg stimulated group and the antennal stimulated group run in parallel (χ2 or Fisher’s exact test; **p < 0.010; ***p < 0.001). Details 
of the analyses are reported in Supplementary Table S5. Other details are as in Figure 1.
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the leg group was retested on the antennae: this time, there 
was no difference between the two groups (χ2 or Fisher’s exact 
test, p  ≥  0.205). This means that the leg-stimulated group had 
the same sucrose responsiveness as the control when tested 
on the antennae. This confirms that the lower PER rate is 
only due to the different types of stimulation.

The Effect of Quinine on Sucrose 
Responsiveness
The effects of quinine stimulation are reported in Figure 4A 
and Supplementary Figure S4A and the detailed analysis in 
Supplementary Table S6. Before contacting the proboscis with 
water or quinine, the sucrose responsiveness did not significantly 
differ between the water- and the quinine-stimulated group 
(χ2 or Fisher’s exact test, p ≥ 0.123), confirming the two groups 
were identical at this step. Touching the proboscis with water 
did not affect the PER, as no animal retracted its proboscis; 
by contrast, most animals which proboscis touched quinine 
interrupted the PER and retracted the proboscis, almost 

significantly for sucrose concentrations 1 and 3% (McNemar’s 
test, p  ≤  0.071), and significantly for concentrations 10 and 
30% (McNemar’s test, p  ≤  0.005); no difference was observed 
for other concentrations, but the PER rates were low for them 
anyway. We also compared the proportions of animals retracting 
the proboscis among those initially responding, and the results 
were the same (data not shown). Interestingly, the fact that 
the PER rates remain the same as in the control group in 
ulterior sucrose solution presentations means that even though 
quinine elicited proboscis retraction, it does not modulate 
sucrose responsiveness (at least after 10  min). Moreover, when 
quinine was added to sucrose (Figure 4B, Supplementary 
Figure S4B, Supplementary Table S7), it strongly inhibited 
PER (χ2 or Fisher’s exact test; p  ≤  0.024).

Response to Various Sugars  
and Sugar Mixtures
In a first experiment, animals were presented with either 
sucrose, fructose, or a mixture of these sugars (Figure 5A 

A

B

FIGURE 4 | Effect of quinine on sucrose responsiveness. In part (A), animals were presented the series of sucrose solutions (dotted lines), and if they released a 
PER, they immediately received either 100 mM quinine or water on the extended proboscis; the continuous lines indicate the proportion of animals still releasing a 
PER after receiving one of these solution. Notice that as touching the proboscis with water had no effect, the two lines (before and after water) are superimposed. 
Stars denote a significant difference between the PER rate before and after touching the proboscis with quinine, i.e., a significant rate of proboscis retraction 
(McNemar’s test **p < 0.010); detailed analysis is in Supplementary Table S6. In part (B), animals were presented the series of sucrose solutions either alone as 
previously or combined with 100 mM quinine. Stars denote a significant difference between the PER rate of the two groups (χ2; *p < 0.050, ***p < 0.001); detailed 
analysis is in Supplementary Table S7. All animals were 5-day-old males starved for 5 days; other details are as in Figure 1.
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and Supplementary Figure S5A, Supplementary Table S8). 
Although fructose elicited high PER rates, overall they were 
significantly lower than for sucrose (χ2 or Fisher’s exact test; 
adjusted p  =  0.068 for 3%, p  ≤  0.046 for 0.3, 1, 10, and 
30%). Interestingly, mixtures of fructose and sucrose elicited 
the same level of PER rate as sucrose alone (χ2 or Fisher’s 
exact test; adjusted p  ≥  0.217 for 3, 10, or 30%), or even 
higher responses for lower concentrations (χ2 or Fisher’s exact 
test; adjusted p  ≤  0.030 for 0.1, 0.3, or 1%). Thus, while 
fructose tended to elicit less responses than sucrose, replacing 
half the sucrose by fructose in a mixture actually improved 
the PER rate, indicating a synergistic effect.

In a second experiment, we  compared animals’ responses 
to sucrose, glucose, and their mixture (Figure 5B and 
Supplementary Figure S5B, Supplementary Table S9). Glucose 
elicited PER much less often than the two other solutions (χ2 
or Fisher’s exact test, adjusted p  ≤  0.020) and induced less 
sensitization for the final water presentation (χ2, adjusted 
p  ≤  0.022). Yet, replacing half the sucrose by glucose did not 
modify the PER rate relatively to the sucrose group (χ2 or 
Fisher’s exact test, adjusted p ≥ 0.686); thus, in spite the mixture 
only includes half sucrose found in the sucrose solution (e.g., 
the 3% mixture only includes 1.5% sucrose), and so should 
elicit much lower PER rates, the response is unchanged. This 
leads to the intriguing conclusion that while glucose did not 
elicit much response, replacing half of the sucrose by glucose 
in a solution did not decrease the response, although there 
was not the synergy observed for sucrose and fructose.

When the responses to fructose, glucose, and their mixture 
were compared (Figure 5C and Supplementary Figure S5C, 
Supplementary Table S10), results were similar: glucose elicited 

less response than fructose or fructose/glucose mixtures for 3 
and 10% (χ2, adjusted p  ≤  0.031); for 30% sugar solution, the 
global test was significant (χ2, p = 0.038), but pairwise comparisons 
were not. Fructose and fructose/glucose mixtures elicited similar 
PER rates, except for the 3% concentrations, where the mixture 
was slightly inferior (χ2, adjusted p  =  0.049). To sum up, while 
animals had lower PER rates for glucose than for fructose, replacing 
half of the fructose by glucose impaired only slight response. 
This is comparable to what was seen with sucrose/glucose mixtures.

Finally, we compared PER rates to sucrose, glucose, fructose, 
and a sucrose/glucose/fructose mixture (Figure 5D and 
Supplementary Figure S5D, Supplementary Table S11). 
We  replicated the observation that fructose was slightly but 
significantly less responded to than sucrose (χ2 or Fisher’s exact 
test, adjusted p  ≤  0.040 for 0.3, 1 and 3%), and that glucose 
was much less responded to than fructose or sucrose for 1, 
3, 10, and 30% (χ2 or Fisher’s exact test: adjusted p  =  0.068 
for 1% for glucose vs. fructose, adjusted p  ≤  0.046 for other 
comparisons). Moreover, glucose also elicited less PER than 
the mixture for 1, 3, 10, and 30% (χ2 or Fisher’s exact test, 
adjusted p ≤  0.045), whereas sucrose or fructose did not differ 
from it (χ2 or Fisher’s exact test, adjusted p ≥ 0.151). Therefore, 
neither synergy nor inhibition was observed in this case.

When females were tested for sugar mixtures (Figure 6 
and Supplementary Figure S6, Supplementary Table S12), 
contrasting for what was seen in Figure 1B, males and females 
tested for sucrose did not differ for low concentration of sucrose 
(χ2, p ≥ 0.763) and males were only slightly higher than females 
for 10 and 30% sucrose, but without reaching significance 
(Fisher’s exact test, p  =  0.060  in both cases). While there was 
no difference between the female groups for 0.1 or 0.3% sugar 

A B

C D

FIGURE 5 | Responsiveness to various sugars and sugar mixtures in male moths. These plots display dose-response curves for various sugars and sugar 
mixtures. Part (A) presents PER rates for fructose, sucrose, and their mixture; part (B) for glucose, sucrose, and their mixtures; part (C) for glucose, fructose, and 
their mixture; and part (D) for glucose, fructose, sucrose, and their mixtures. All mixtures involved even amount of sugars. All animals were 5-day-old male moths 
starved for 5 days. Other details as in Figure 1. Detailed analysis is reported in Supplementary Tables S8–S11.
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concentrations (χ2 or Fisher’s exact test, p  ≥  0.080  in both 
cases), there were significant differences for 1, 3, and 10% 
sugar concentrations (χ2 or Fisher’s exact test, p  ≤  0.004  in 
all cases). This difference was mainly due to much lower PER 
rates to glucose solution (χ2 or Fisher’s exact test, adjusted 
p  ≤  0.042  in all cases). The other groups did not differ (χ2 
or Fisher’s exact test, adjusted p  ≥  0.113), except Fructose 
and Sucrose/Fructose/Glucose mixture for 1% (χ2, p  =  0.029).

DISCUSSION

The Sugar Responsiveness Assay: Impact 
of Various Parameters
This study assessed sucrose responsiveness in relation to different 
physiological states in the moth A. ipsilon. Sucrose responsiveness 
has been extensively studied in the honey bee (Scheiner et  al., 
2004a, 2013) and in some moths (Winkler et  al., 2005; Zhang 
et  al., 2010; Minoli et  al., 2012). We  used a broad range of 
concentrations, consistent with what was used in bees (Scheiner 
et  al., 2004a, 2013) and flies (Scheiner et  al., 2004b), and 
including concentrations found in nectar (10–30% for sucrose: 
Lüttge, 1977; Gottsberger et  al., 1984; Pacini et  al., 2003;  
De La Barrera and Nobel, 2004; Roy et  al., 2017).

Our exploration of the parameters associated to sucrose 
responsiveness has led to various conclusions. Overall, sucrose 
responsiveness depends upon starvation duration (i.e., motivation 
for food) and possibly sex but not age; as a result, in most 
experiments, we  used 5-day-old moths starved for 5  days as 
the standard condition. The inter-trial interval or the interleaving 
of water are not crucial parameters in the sucrose responsiveness 
assay, as the response of the animals is not influenced by the 
previous trials; yet, we  could observe some sensitization to 
water, a new form of behavioral plasticity in A. ipsilon (see 
also Minoli et  al., 2012 for a study of sensitization in a related 
species). Finally, while moths can detect sucrose through their 

legs, this pathway is less prone to elicit a PER, either because 
it does not respond to sucrose very well or because it is less 
well coupled with the PER motor pathways.

Beyond physiological parameters, the composition of the 
solution is also essential to observe the PER. In the presence 
of quinine, moths do not release PER. Thus, quinine is more 
aversive than sucrose is appetitive, i.e., its ability to elicit a 
withdrawal of the proboscis is stronger than sucrose’s ability 
to elicit its extension. A simple overshadowing of sucrose is unlikely, 
as it would not explain PER termination in Figure 4A. Concerning 
the sugars found in nectars, sucrose elicited more responses 
than fructose, and responses to glucose were much lower than 
either of them. However, replacing half of the sucrose or half 
of the fructose by glucose did not lower the PER rate, and 
mixing sucrose and fructose increased it, suggesting a synergy; 
interestingly, glucose did not support a synergistic effect in 
sucrose/fructose/glucose mixture. The results with females are 
quite different from those observed in males: sucrose and 
fructose are responded to at the same level, and mixing them 
(with or without glucose) had no effect. The common point 
is that glucose alone does not elicit much response while being 
able to replace the other sugars in mixture.

While simple, the sugar responsiveness assay offers many 
experimental opportunities. First and foremost, the words “sugar 
responsiveness” cover various underlying processes, which is 
why they were preferred to “sugar sensitivity.” The dose-response 
curves used here simultaneously assess three functions: perception 
(the ability to detect sugar), motivation for sugar (the ability 
of sugar perception to trigger a PER), and motor response 
(i.e., if a PER is triggered, the ability to produce it). Detecting 
sugar and releasing a PER are well-defined phenomena. By contrast, 
while motivation is associated to them (e.g., Figures 1 and 2 
link hunger to PER rate), its definition is blurrier as it encompasses 
various situations: not only hunger (i.e., physiological need 
for food induced by starvation) but also the lack of satiety 
(i.e., animals’ desire to eat). While certainly correlated, these 

FIGURE 6 | Responsiveness to various sugars and sugar mixtures in female moths. This plot reports dose-response curves for various sugar and sugar mixtures in 
5-day old female moths starved for 5 days; a group of 5-day old males starved for 5 days was also used for comparison purpose. Sucrose, fructose, and glucose 
were used, as well as sucrose/fructose/glucose and sucrose/fructose mixtures. Stars denote significant differences between female groups (χ2 or Fisher’s exact test; 
**p < 0.010; ***p < 0.001). Other details as in Figure 1. Detailed analysis is reported in Supplementary Table S12.
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two situations are not necessarily the same; it would be possible 
to dissociate them by feeding animals with sweeteners, which 
induce satiety (i.e., they are palatable) but are physiologically 
non-nutritive (Schiff et  al., 1989; Pszczolkowski and Brown, 
2003; Dus et  al., 2011; Camacho et  al., 2017; Choi et  al., 2017; 
Fisher et  al., 2017; Takada et  al., 2017; Mustard et  al., 2018). 
The sucrose responsiveness assay would allow to test whether 
such a dissociation occurs in moth. Similarly, fed animals might 
have lower response not because they are hungry, but rather 
because they are habituated to sucrose; to test this hypothesis, 
animals could be  reared (as adult or even as larvae) with 
fructose rather than sucrose, so that they would not be starved, 
but still naïve for sucrose. Another possibility offered by the 
sugar responsiveness assay is to assess lateralization of the 
response by presenting sugar on a single antennae rather than 
both; studying lateralization in invertebrate is an emerging 
field (Jozet-Alves et  al., 2012; Baracchi et  al., 2018; Niven and 
Frasnelli, 2018), which complements the classical studies of 
its role in primate higher cognitive abilities (Prieur et al., 2019). 
In moths, a study in Spodoptera littoralis reported sensitization 
elicited by pre-exposure to sucrose is a lateralized process 
(Minoli et  al., 2012). All these possible experiments highlight 
the interest of the sucrose responsiveness assay to investigate 
precise questions on gustatory responses in moths. Understanding 
the functioning of sugar-elicited PER could help discriminating 
between perception, motivation, and PER release mechanisms.

Sensitization is a form of non-associative learning that would 
make an animal respond to a stimulus (here, the sucrose solution 
or water) just because it has been excited by a previous presentation 
of the same or another stimulus (Thompson and Spencer, 1966; 
Groves and Thompson, 1970; Hammer et  al., 1994; Anderson 
et  al., 2007; Anton et  al., 2011; Minoli et  al., 2012; Blumstein, 
2016). Here, we  carefully monitored this possibility by using a 
10-min interval between each sugar presentation to avoid 
sensitization, which was hardly considered before in moth sucrose 
responsiveness. We  found sensitization does not affect sucrose 
responsiveness, although it increases water responsiveness. 
Interestingly, it was shown in bees and flies that while a forward 
pairing (presentation of odor, then sugar) promotes associative 
learning, a backward pairing (sugar than odor) prevents it. This 
effect seems to be  mediated by a desensitization of the PER 
occurring upon odor presentation at a specific 15-s delay (Dacher 
and Smith, 2008). Whether this type of desensitization also 
occurs in moths remains to be  determined.

Biological Meaning of Sucrose 
Responsiveness: Sugar Mixture, Foraging, 
and Nectar Composition
It is well established in bees that associations between odors 
and PER/sugar made in restrained conditions can be transferred 
to free-flying foraging, and vice versa (Gerber et  al., 1996; 
Sandoz et  al., 2000; Chaffiol et  al., 2005; Gil and De Marco, 
2005). Therefore, it is sensible to assume such transfers are 
possible between the two situations for moths too. Under this 
hypothesis, sucrose responsiveness is likely to play an important 
role in modulating foraging behaviors in these insects, as in 
bees; indeed, it is well established that bees foraging for nectar 

are less responsive to sucrose than bees foraging for pollen 
(Scheiner et al., 2004a). As a result, only the most concentrated 
nectar sources are exploited by bee nectar foragers. Such a 
phenomenon could also exist in most foraging moths, which 
land on flowers (i.e., settling moths but not hovering moths: 
Oliveira et  al., 2004; Makholela and Manning, 2006; Okamoto 
et  al., 2008; Atwater, 2013): it is likely the first appendage 
assessing sugar concentration in nectar are the legs (or possibly 
the proboscis) rather than the antennae (see also experiments 
by Zhang et  al., 2010). Thus, only highly concentrated nectar 
would elicit a PER in moth (Figure 3), just like nectar-foraging 
bees. To explore this hypothesis, the foraging behavior of male 
and female moths drinking nectar at flowers should be analyzed 
either in artificial flowers in wind tunnel or in a natural setting. 
Very little information is available on this topic.

While moths respond quite well to sucrose and fructose, 
they hardly react to glucose. This is consistent to what was 
observed in a related species, Spodoptera littoralis, during 
electrophysiological recordings of taste sensilla (Popescu et al., 
2013). In spite it is hardly responded to, glucose can replace 
fructose or sucrose in mixtures without significantly decreasing 
the PER rate. As nectars are mixtures of sugars rather than 
single compounded, this result suggests an adaptation to nectar 
perception. We  can make the hypothesis that moths or other 
animals feeding on only one type of plant (i.e., strictly 
monophagous) should have a sugar responsiveness specifically 
tuned to the specific sugar ratio found in this plant’s nectar, 
illustrating plant-pollinator coevolution (e.g., Perret et  al., 
2001; Nicolson and Fleming, 2003; Lotz and Schondube, 2006). 
This would have important consequences for the management 
of pests and pollinators. This hypothesis is also consistent 
with the fact that learning performance depends on sugar 
identity in bees (Simcock et  al., 2018; Chapuy et  al., 2019). 
By contrast, polyphagous moths such as A. ipsilon feed on 
various types of flowers, possibly with differing nectars (Wynne 
et  al., 1991; Zhu et  al., 1993). Nectars can be  classified in 
various broad categories (Percival, 1961), and usually glucose 
is neither the dominant sugar nor the only one. Thus, it 
makes sense moths detect it less well. Honey bees are much 
better at detecting it (Simcock et  al., 2018), but it is one of 
the main constituent of their honey. It would be  interesting 
to compare sucrose responsiveness of other nectar foragers, 
particularly pollinators.

Honey bees and Agrotis ipsilon are sympatric, and both are 
described as polyphagous (i.e., they are not specialized in a 
narrow range of plant species but rather forage nectar on 
various flowers; Wynne et  al., 1991; Zhu et  al., 1993); thus, 
they potentially forage on the same plants. However, previous 
results (Scheiner et  al., 2004a, 2013) indicate bees are much 
more sensitive to low sucrose concentrations than moths and 
so are likely to explore a wider range of flowers, including 
those which have nectar less concentrated. A full exploration 
of the ecological and evolutionary implications of this preliminary 
observation is beyond the scope of this article, but it certainly 
deserves to be studied; indeed, nectar foraging insects are often 
pollinators, and it is relevant to know which plants will or 
will not be  visited by a given insect in a context of pollination 
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crisis (Senapathi et al., 2015). The sucrose responsiveness assay 
will be  useful to do so.

We found little differences between males and females, and 
they were not consistently observed. It would be  interesting to 
compare sugar responsiveness in animals before and after 
reproduction; for males, that would mean before flying toward 
a female and mating, and for females, before releasing pheromone, 
mating and laying eggs. It is not unlikely the needs of moths 
change according to their reproductive status. In particular, females 
might need amino acids, while eggs are storing reserves (Watt 
et  al., 1974; Heil, 2011; Hendriksma et  al., 2014; Simcock et  al., 
2014; Levin et  al., 2017a,b), so that PER rates would be  affected 
by their presence in the tested solutions (but see O’brien et  al., 
2000; Marchioro and Foerster, 2013 for contradictory results); 
Zhang et  al. (2010) reported neuronal responses and PER to 
amino acids. Similarly, males might need sodium and potassium 
for spermatophore formation (Arms et al., 1974; Adler and Pearson, 
1982; Boggs and Jackson, 1991; Smedley and Eisner, 1995, 1996; 
Beck et al., 1999; Boggs and Dau, 2004; Watanabe and Kamikubo, 
2005; Molleman, 2010), so that the presence of salt in the solution 
might affect the PER rate. The sugar responsiveness assay can 
easily be  modified to test the effect of salt or amino acid on 
males and females of different reproductive status.

Presenting quinine on the proboscis interrupts the PER, 
and it inhibits response to sugar. This contrasts to the behavior 
of bees (which readily drink bitter solutions when they are 
restrained but not when they are free flying, Ayestaran et  al., 
2010; De Brito Sanchez et  al., 2015; Guiraud et  al., 2018) 
and flies (which accepts bitter compounds after starvation, 
Ledue et  al., 2016). It is established that some plants produce 
bitter compounds in nectar (Adler, 2000; Adler et  al., 2006; 
Heil, 2011; Roy et  al., 2017), possibly to deter predatory 
insects. It can be  expected that A. ipsilon would not forage 
on these plants, but this remains to be  verified; this would 
be  consistent with the idea that this moth is a generalist 
forager, because specialists tend to adapt to deterrent nectar 
compounds (Berenbaum et al., 1989; Glendinning, 2002; Cornell 
and Hawkins, 2003; Adler et  al., 2006; Reisenman and Riffell, 
2015). This also opens the possibility to use the sugar 
responsiveness assay to evaluate moths’ reaction to aversive 
compounds such as deterrent products released in nectar, or 
possibly xenobiotics. Beside, some results indicate appetitive 
and deterrent stimuli are processed in parallel at the antenna 
level (Kvello et  al., 2010); this raises the question of the 
neurophysiological convergence of these pathways, which must 
occur at some point as quinine prevents sucrose-induced PER. 
Interestingly, pre-exposing S. littoralis to quinine or sucrose 
24 h before sucrose presentation potentiates rather than inhibits 
the response to 1% sucrose (Minoli et al., 2012). This suggests 
that previous gustatory experiments are not neutral for 
sucrose responsiveness.

Neurophysiological Substrates
Gustatory receptors and the downward neurophysiological pathways 
have been reported on antennae, proboscis, and legs (Jørgensen 
et  al., 2006, 2007; Calas et  al., 2009; Kvello et  al., 2010; Zhang 
et  al., 2010; Popescu et  al., 2013; Agnihotri et  al., 2016; Seada 

et  al., 2018); these neurophysiological results are consistent with 
our behavioral observations, as they indicated that sugar-induced 
neuronal responses are lower in the legs than in the proboscis, 
and glucose alone elicits less responses than sucrose or fructose. 
Quinine was also well detected but not by the neurons responding 
to sucrose (Jørgensen et  al., 2007). This suggests its effect result 
from a central integration, rather than an interaction at the level 
of gustatory receptors; this is different in fruit flies, where bitter 
compounds can interact at the level of the receptor (Meunier 
et  al., 2003; Jeong et  al., 2013; French et  al., 2015a,b). Popescu 
et  al. (2013) observed sex-dependent responses, suggesting the 
differences we  observed in Figure 1B (but not in Figure 6) are 
supported by differing response levels.

To fully understand how sugars are perceived and responded 
to by A. ipsilon and other moths, it will be  necessary to 
describe the full neuronal pathway of information from antennal 
gustatory receptors to PER release. At the level of antennae, 
characterization of the receptors has already been started in 
moths and involves description of the antennal gustatory sensilla 
that house gustatory neurons as well as molecular description 
of the receptors and their interactions with sugars (Balkenius 
and Kelber, 2006; Popescu et  al., 2013; Seada, 2015; Agnihotri 
et  al., 2016; Seada et  al., 2018); it would be  particularly 
interesting to describe interactions in mixtures of sugars, quinine, 
and/or amino acid, specially to find out whether synergy or 
masking occurs, as for odors (Rospars, 2013); a tempting 
hypothesis is that glucose would act as a modulator of sugar 
receptor, explaining it elicits little response while favoring 
response to other sugars. In turn, gustatory information projects 
to the central nervous system, particularly the suboesophageal 
ganglion (Jørgensen et  al., 2006; Kvello et  al., 2006, 2010; 
Popescu et  al., 2013). How motivation-linked information 
(hunger and/or other factors) is then integrated with gustatory 
input to elicit (or not) a PER remains to be determined. While 
electrophysiological and molecular tools will be  needed to 
reach this goal, the sucrose responsiveness assay provides a 
solid framework to guide such research.

As previously discussed, stimulating legs with sucrose is 
much less prone to elicit a PER than stimulating antennae. 
Assuming motivation to release a PER and the corresponding 
motor control are central processes, a simple explanation is 
that legs bear less sugar receptors than antennae and/or that 
they bear different receptors (i.e., less sensitive to sucrose in 
the legs). Alternatively, gustatory pathways from the legs could 
be  somehow less connected to the release of PER than those 
from antennae. Once again, electrophysiology (recording of 
gustatory sensilla from legs and antennae) will be  helpful to 
distinguish between these two hypotheses, by determining 
whether gustatory responses of legs and antennae are comparable 
(Calas et  al., 2009; Zhang et  al., 2010).

Finally, understanding the central integration of sucrose input 
that leads to PER will be  the ultimate goal. A way to approach 
this objective will be  to understand which neurotransmitter 
systems  are involved. Promising candidates are biogenic amines 
such as octopamine and dopamine, as they have well-known 
roles on sucrose sensitivity in other insects (Pankiw and Page, 
2003; Schwaerzel et  al., 2003; Unoki et  al., 2005, 2006;  
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Scheiner et  al., 2006, 2014; Mizunami et  al., 2009; Matsumoto 
et  al., 2015). Interestingly, biogenic amines also modulate 
sex-pheromone-elicited behaviors in male moths (Linn and Roelofs, 
1986; Linn et  al., 1992; Pophof, 2000; Flecke and Stengl, 2009; 
Jarriault et  al., 2009; Duportets et  al., 2010; Abrieux et  al., 2014; 
Hillier and Kavanagh, 2015), while sex pheromones do not affect 
sucrose responsiveness (Hostachy et  al., submitted). If these 
neurotransmitters modulated sucrose responsiveness, this would 
imply that they do so through ways different from pheromone-
responsiveness modulation.
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