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ABSTRACT
Background  We present a radiomics-based model for 
predicting response to pembrolizumab in patients with 
advanced rare cancers.
Methods  The study included 57 patients with advanced 
rare cancers who were enrolled in our phase II clinical trial 
of pembrolizumab. Tumor response was evaluated using 
Response Evaluation Criteria in Solid Tumors (RECIST) 
1.1 and immune-related RECIST (irRECIST). Patients were 
categorized as 20 “controlled disease” (stable disease, 
partial response, or complete response) or 37 progressive 
disease). We used 3D-slicer to segment target lesions 
on standard-of-care, pretreatment contrast enhanced CT 
scans. We extracted 610 features (10 histogram-based 
features and 600 second-order texture features) from each 
volume of interest. Least absolute shrinkage and selection 
operator logistic regression was used to detect the most 
discriminatory features. Selected features were used 
to create a classification model, using XGBoost, for the 
prediction of tumor response to pembrolizumab. Leave-
one-out cross-validation was performed to assess model 
performance.
Findings  The 10 most relevant radiomics features were 
selected; XGBoost-based classification successfully 
differentiated between controlled disease (complete 
response, partial response, stable disease) and progressive 
disease with high accuracy, sensitivity, and specificity 
in patients assessed by RECIST (94.7%, 97.3%, and 
90%, respectively; p<0.001) and in patients assessed 
by irRECIST (94.7%, 93.9%, and 95.8%, respectively; 
p<0.001). Additionally, the common features of the RECIST 
and irRECIST groups also highly predicted pembrolizumab 
response with accuracy, sensitivity, specificity, and p value 
of 94.7%, 97%, 90%, p<0.001% and 96%, 96%, 95%, 
p<0.001, respectively.
Conclusion  Our radiomics-based signature identified 
imaging differences that predicted pembrolizumab 
response in patients with advanced rare cancer.
Interpretation  Our radiomics-based signature identified 
imaging differences that predicted pembrolizumab 
response in patients with advanced rare cancer.

INTRODUCTION
Rare cancers together account for 22% of 
all cancer diagnoses1 and 25% of all adult 

cancers,2 representing a higher percentage 
than any single common cancer, such as 
lung (12.9%), breast (15.2%), and colon 
(8.3%) cancers.3 The prognosis of rare 
cancer is poor; the 5-year survival rate for 
these cancers is 15%–20% lower than for the 
more common cancers.4 Immunotherapy, 
in particular immune checkpoint inhibi-
tors, has revolutionized cancer treatment.5–8 
Recently our group published the first paper 
on immunotherapy in advanced rare cancer, 
where we demonstrated a 14% objective 
response rate in these patients as well varying 
rates of treatment resistance and toxicity.9 
In general, the reported immunotherapy 
response rates has been shown to range 
from 13.3% to 87% depending on the type 
of cancer.5 10–13 To date, no single biomarker 
has been found to accurately predict immu-
notherapy response.14 Having the ability to 
predict treatment failure and therapeutic 
efficacy would enable clinicians to administer 
alternate therapeutics and prevent patients 
who are unlikely to benefit from being 
exposed to potentially life-threatening toxic 
effects of the treatment, such as encephalop-
athy, pneumonitis, hypophysitis, hepatitis, 
colitis, and pancreatitis.15 Recently some 
studies have been published attempting to 
identify immune biomarkers that can poten-
tially predict response to immunotherapy; 
these include programmed death protein 
ligand 1 (PD-L1) expression level,6 16 immu-
nosuppressive factors (Forkhead box P3 
(FOXP3), indolamine 2,3-dioxygenase),17 
interferon-gamma,18 microsatellite instability 
(mismatch-repair status),19 and tumor muta-
tion burden.20 However, the more well-known 
of these biomarkers, such as PD-L1 expres-
sion in selected tumor types and microsat-
ellite instability, have a low predictive value 
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in assessing response.21 22 In addition, these biomarkers 
require an invasive procedure (surgery or biopsy), and 
they represent only a small, static “snapshot” of the entire 
tumor which can be very heterogeneous. Thus, there is an 
urgent need to develop non-invasive, robust biomarkers 
that account for tumor heterogeneity to identify patients 
who will benefit from immunotherapy.

Imaging studies are a non-invasive means of assessing 
immunotherapy response.23 24 However, current imaging 
assessment criteria, including Response Evaluation 
Criteria in Solid Tumors (RECIST) and immune-related 
RECIST (irRECIST) are used throughout treatment to 
assess response only longitudinally during the course of 
treatment.23 24 No criteria for robustly predicting immu-
notherapy response a priori (before receiving therapy) 
have yet been established.

Radiomics is a high-throughput computational method 
that unlocks microscale quantitative data hidden within 
conventional imaging25 to provide a deeper under-
standing of cancer biology,26 genomics,27 spatial hetero-
geneity,27 tumor type,28 and immune infiltration.29 
Radiomics-based approaches have several advantages; 
it is non-invasive, and features are extracted from stan-
dard medical images, making it ideal for easier clinical 
translation as a non-invasive method to predict response. 
Further, radiomics capture the entire three-dimensional 
tumor landscape inclusive of spatial heterogeneity27 
and allows for better evaluation of the tumor and its 
microenvironment.30 Radiomics has been shown to 
help predict immunotherapy response and outcome in 
multiple cancers, including melanoma,31 32 non-small cell 
lung cancer (NSCLC),32 33 and advanced solid tumors.29 
However, to the best of our knowledge, no study has been 
published on radiomics biomarkers predicting immuno-
therapy response in advanced rare cancers.

In this study, we sought to identify a CT based radio-
mics texture signature that can robustly predict treatment 
response to immunotherapy, specifically pembrolizumab, 
in patients with advanced rare solid cancers. We used 
CT-based radiomics features to create a non-invasive 
predictive model for classifying 57 patients with advanced 
rare cancers as likely “controlled disease” or “progressive 
disease” to immunotherapy. To the best of our knowledge, 
this is the first study to predict pembrolizumab treatment 
response in advanced rare cancers.

MATERIALS AND METHODS
Study design and patient population
This retrospective study was conducted in compliance 
with US Health Insurance Portability and Accountability 
Act regulations. All patients included in the study were 
enrolled in our phase II clinical trial of pembrolizumab (​
ClinicalTrials.​gov number NCT02721732) at UTMDACC 
between August 2016 and July 2018; the safety and effi-
cacy outcomes for that trial were reported previously.9 
Inclusion criteria for the present study were age ≥18 
years; histopathologically proven rare cancer; availability 

of contrast-enhanced CT scans obtained prior to anti-
programmed cell death protein 1 (PD-1) treatment; and 
absence of CT image artifacts (such as motion or streak 
artifacts) that would hinder imaging analysis. Written 
informed consent was obtained before the initiation 
of the clinical trial from all patients, and the patients’ 
clinical, radiological, and histopathological data were 
retrieved from the medical records.

Imaging analysis
During the clinical trial, tumor response to pembroli-
zumab was evaluated using both RECIST 1.1 and irRE-
CIST. At that time, patients were categorized as either 
controlled disease (defined as patients demonstrating 
stable disease, partial response, or complete response) or 
progressive disease.

For the radiomics analysis, target lesions on the contrast-
enhanced CT scans obtained before anti-PD-1 treat-
ment were segmented using the 3D Slicer 4.8.1 module 
(http://​slicer.​kitware.​com/​midas3/​item/​330416). 
Lesion segmentation was performed and subsequently 
reviewed by a board-certified radiologist (R.R.C.; >10-year 
experience). Each target lesions were segmented slice 
by slice and given a color label using 3D Slicer v4.8.1. In 
patients who had more than one target lesion, all lesions 
were segmented in the same manner and given the same 
color label in order to predict response of target lesion 
tumor burden. Additional volumes of interest were 
segmented for within-phase normalization; the normal 
pectoralis major muscle was segmented for chest lesion 
normalization, and the normal paraspinal muscle was 
segmented for abdominal/pelvic lesion normalization. 
The contour outlines of the segmented tumors and the 
normal muscle were saved as an output label volume for 
radiomics analysis. Radiomics analysis was performed 
as we described previously.27 Intensity-level histogram 
and gray-level co-occurrence matrices (GLCMs) were 
used for radiomics feature extraction. In brief, a total 
of 10 first-order features were extracted based on  
Papoulis et al34 and include: minimum, maximum, mean, 
SD, skewness, kurtosis, and four percentiles (1%, 5%, 
95%, 99%). A total of 300 GLCM second-order features 
were extracted based on Haralick et al,35 Clausi,36 and  
Soh et al,37 and include: autocorrelation, contrast, correla-
tion, cluster shade, cluster prominence, dissimilarity, 
energy, entropy, homogeneity, maximum probability, 
variance, sum average, sum variance, sum entropy, differ-
ence variance, difference entropy, information measure 
of correlation 1 and 2, inverse difference moment, and 
normalized inverse difference moment. Each feature is 
calculated in four angles (angle between the voxel of 
interest and the in-plane neighbor) of 0°, 45°, 90°, and 
135°; rotation-invariant features were calculated using 
average, median and range resulting in 60 rotation-
invariant features. To increase the signal-to-noise ratio, 
original images discretized into five grey-levels (8, 16, 
32, 64, and 256 grey-levels) at which we obtain the 60 
rotation-invariant features. Finally, because the GLCM 
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is not dependent on the volume of interest (VOI), we 
computed 300 volume-dependent second-order features 
by dividing each second-order feature by the volume of 
the segmented VOI; thus, a total of 610 radiomics features 
were obtained. Radiomics analysis was performed using 
our in-house software in matlab (version 2017b; Math-
Works; Natick, Massachusetts, USA) (figure 1).

Bioinformatic analysis
Given the large multi-dimensional dataset, we used 
regression analysis with the least absolute shrinkage and 
selection operator (LASSO) feature selection method 
to find the most meaningful predictors of response.38 
The selected features where used to build a classifica-
tion model for the prediction of tumor response to 
pembrolizumab; with XGBoost (eXtreme Gradient 
Boosting) machine-learning algorithm as it offers 
various potential benefits such as implementing tree-
boosting technique, enabling regularization (L1−L2), 
cross-validation, parallel computation, missing value 
imputation, and tree pruning.39 It is recognized as the 
most popular and widely used tool in many competitions 
held worldwide primarily due to its nature in handling 
the overfitting of the model through L2 or also called 
as ridge regularization. The tree-boosting techniques 
in XGBoost are implemented using gradient boosting 
machines through which the boosted trees are said to 
continuously learn from the new data that are added 

during the training of the model. All these attributes 
within the XGBoost algorithm eventually accounts for 
the improvement in the model’s performance and 
computational speed. To look for the effectiveness of 
the XGBoost algorithm, we built classification models 
with other classifiers like Support Vector Machines, 
Decision Trees and Random Forest, and compared the 
XGBoost’s model performance with the model perfor-
mance from other classifiers.

Since, we had a small dataset with 57 patients, we used 
leave-one-out cross validation (LOOCV) method to eval-
uate the robustness of the estimates as the cross-validation 
technique for building our radiomics models. In the 
LOOCV process, we are holding out a single patient 
sample as the test sample and then fitting a model on 
the remaining patient samples that serves as the training 
test using the radiomics texture features from the LASSO 
feature selection. After the training, we are obtaining 
the prediction on the held-out patient sample or the 
test sample. In order that we develop our model for the 
future clinical implementation, we thus selected our final 
model to be the one that was built with least number of 
texture features and the one that required less computa-
tion time. Each model’s accuracy was predicted using the 
area under the receiver operating characteristic [ROC] 
curve (AUC), sensitivity, and specificity; p value was also 
obtained.

Figure 1  Radiomic pipeline for advanced rare tumor.
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Additionally, we performed LASSO feature selection 
and LOOCV simultaneously for prediction of the response 
and calculated AUC, sensitivity, specificity, and p value. R 
software (V.3.4.0, R Foundation for Statistical Computing, 
Vienna, Austria) was used for all of the analysis: XGBoost 
package (V.0.6.4.1) and the Machine Learning package 
mlr (V.2.11) were used for feature selection and model 
building and finally, ROC analysis was performed using 
pROC package (V.1.9.1).

Univariate and multivariate analysis
Shapiro-Wilk’s test was applied to analyze the distribution 
of the continuous variables (top 10 LASSO features from 
RECIST radiomics model, top 10 LASSO features from 
irRECIST radiomics model and age) before deciding the 
appropriate test for univariate and multivariate analysis.

For multivariate analysis, multivariate ANOVA test was 
performed on 57 patients by considering all the top 10 
LASSO features collectively from the RECIST and irRECIST 
models to see if there are any statistically significant differ-
ences between the patient’s groups in terms of clinical vari-
ables (gender, race, and number of prior therapies).

Univariate analysis was performed to assess the differ-
ences between the clinical covariates for the features used 
in radiomics models. One-way ANOVA test was used for 
clinical variables (ie, gender, race, number of prior thera-
pies), and Pearson correlation coefficient was performed 
for the continuous variable (age).

Additionally, Welch two sample t-test was applied to analyze 
if the radiomics features used for model generation were 
independently associated with the treatment response.

Univariate and multivariate analysis with overall survival and 
radiomics texture features
A univariate analysis was performed using univariate Cox 
regression model to assess the significant difference and 
independent association of each of the 10 radiomics texture 
features that were used in our predictive RECIST and irRE-
CIST models with overall survival (OS). The OS for the 
57 patients were calculated in months and the OS status 
(0=alive and 1=deceased) was assigned for each patient. 
The radiomics texture features that were significant from 
the univariate Cox regression model were later used for 
constructing a multivariate Cox regression model to predict 
the OS outcome. Further, we categorized the 10 radiomics 
texture features from the RECIST and irRECIST models 
into high versus low groups using their median as the cut-off. 
Using the univariate Kaplan-Meier curves and the log-rank 
test, we analyzed for the association between high versus low 
groups of each radiomics texture feature with OS.

RESULTS
Patient population
Of the 127 patients with advanced rare cancers enrolled 
in the pembrolizumab clinical trial, 70 patients were 
excluded; contrast-enhanced CT scans obtained prior 
to anti-PD-1 treatment was not available for 48 patients 

and 22 patients had CT image artifacts that would hinder 
imaging analysis. Fifty-seven patients met the inclusion 
criteria for the present study. Their demographic data are 
outlined in table 1. A total of 37 patients were classified as 
controlled disease and 20 patients as progressive disease 
per evaluation by RECIST. Similarly, 33 patients were clas-
sified as progressive disease and 24 patients as controlled 
disease per evaluation by irRECIST. Patients’ responses 
based on RECIST and irRECIST by cancer type are given 
in table 2.

Radiomics predicts response
A total of 610 features (10 histogram-based features and 
600 second-order texture features) were calculated from 
each extracted VOI. Among these 610 radiomics features, 
LASSO feature selection identified 44 features that were 
most discriminatory between the response outcomes in 
patients assessed by RECIST (table 2). Of these 44 selected 
features, the most relevant, most significant 10 features 
(table  3) robustly discriminated controlled disease and 
progressive disease using a classification model based 
on the XGBoost machine-learning method. LOOCV 
demonstrated that our radiomics model had high accu-
racy, sensitivity, and specificity (94.7%, 97.3%, and 90%, 
respectively; p<0.001) (figure  2A). When patients were 
grouped according to irRECIST (table 2), LASSO feature 
selection identified 56 features. XGBoost classification 
model using the 10 top discriminatory features (table 4) 
predicted controlled disease and progressive disease with 

Table 1  Patients’ demographic characteristics (N=57)

Characteristic No. of Patients (%)

Age at diagnosis, years

 � Mean±SD 47.16±16.70

 � Median (range) 53.00 (22–75)

Sex

 � Female 26 (46)

 � Male 31 (54)

Race/ethnicity

 � African American 4 (7)

 � Asian 2 (4)

 � White 42 (74)

 � Other 8 (14)

 � Unknown 1 (2)

ECOG performance status

 � 1 49 (86)

 � 0 8 (14)

 � Number of prior therapies

 � ≤2 37 (65)

 � >2 20 (35)

All data are no. of patients (%) unless otherwise noted.

ECOG, Eastern Cooperative Oncology Group.
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robust accuracy, sensitivity, and specificity (94.7%, 93%, 
and 95%, respectively; p<0.001) (figure 2B).

Fifteen features were common to both the group of 44 
discriminatory features for patients assessed by RECIST 
and the group of 56 discriminatory features for patients 
assessed by irRECIST (figure  3B, table  5). The predic-
tive model generated with these 15 features, effectively 
discriminated between controlled disease and progres-
sive disease and achieved high accuracy, sensitivity, and 
specificity in patients assessed by RECIST (94.7%, 97%, 
and 90%, respectively; p<0.001) and those assessed by 
irRECIST (96%, 96%, and 95%, respectively; p<0.001) 
(figure 3A,C).

In the radiomics analysis with LASSO and LOOCV 
performed concurrently, we achieved an accuracy, sensi-
tivity, and specificity in patients assessed by RECIST 
(89.7%, 70%, and 100%, respectively; p<0.001) and 
those assessed by irRECIST (87.7%, 87.5%, and 87.8%, 

respectively; p<0.001) (online supplemental figure S1A,B, 
respectively).

Online supplemental table 1 shows the accuracy, sensi-
tivity, specificity, AUC, and p value for the models gener-
ated by using other classifiers (support vector machines, 
decision tree, and random forest) to predict treatment 
response based on RECIST and irRECIST.

Univariate and multivariate analysis
Shapiro-Wilk’s test demonstrated that 10 lasso features 
from RECIST and irRECIST model are normally distrib-
uted whereas the age is not normally distributed (online 
supplemental table 2).

Multivariate analysis determined that all the top 10 
LASSO features (collectively) from the RECIST model 
does not account for any statistically significant (p value 
<0.05) differences between the patient groups with regard 
to number of prior therapies, race, and gender (online 

Table 2  Pembrolizumab response status based on RECIST and irRECIST for 57 patients with rare cancers

Primary cancer

Based on RECIST Based on irRECIST

Controlled 
disease
(N=20)

Non-responders 
(N=37)

Controlled 
disease
(N=24)

Non-responders
(N=33)

Adrenocortical carcinoma 5 (25) 4 (11) 6 (25) 3 (9)

Carcinoma of unknown primary 2 (10) 6 (16) 4 (12) 4 (12)

Medullary renal carcinoma 1 (5) 3 (8) 1 (4) 3 (9)

Other rare histologies* 5 (25) 5 (15) 5 (20) 5 (15)

Paraganglioma-pheochromocytoma 3 (15) 2 (5) 3 (13) 2 (6)

Penile carcinoma 0 (0) 1 (3) 0 (0) 1 (3)

Small cell malignancies of non-pulmonary origin 0 (0) 3 (8) 1 (4) 2 (6)

Spindle cell sarcoma of retroperitoneum† 0 (0) 1 (3) 0 (0) 1 (3)

Squamous cell carcinoma of the skin 1 (5) 3 (8) 1 (4) 3 (9)

Testicular carcinoma/germ cell tumor 2 (10) 7 (19) 2 (8) 7 (21)

Vascular sarcoma 1 (5) 2 (5) 1 (4) 2 (6)

All data are no. of patients (%).
*Vaginal squamous cell carcinoma and others.
†The one case of spindle cell sarcoma of retroperitoneum was initially diagnosed as adrenocortical carcinoma.
irRECIST, immune-related RECIST; RECIST, Response Evaluation Criteria in Solid Tumors.

Table 3  Top 10 features (from 44 features extracted in patients assessed by Response Evaluation Criteria in Solid Tumors)

Order No Feature Level Feature name

1 PV_F109 16 Angular variance of homogeneity

2 PV_F35 8 Range of difference variance

3 Ar_F152 32 Range of sum average

4 P_F269 32 Angular variance of homogeneity

5 Ar_F154 32 Range of sum entropy

6 P_F84 16 Range of cluster prominence

7 PV_F89 16 Range of homogeneity

8 P_F289 256 Angular variance of homogeneity

9 Ar_F238 64 Angular variance of information measure of correlation 2

10 P_F7 8 Average of energy

https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
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supplemental table 3A). Multivariate analysis showed that 
all the top 10 LASSO features (collectively) from the irRE-
CIST model does not account for any statistically signif-
icant (p value <0.05) differences between the patient 
groups in terms of number of prior therapies and race 
however; these features account for statistically significant 
difference between men and women as demonstrated in 
online supplemental table 3B.

Univariate analysis over clinical variables versus discrim-
inatory 10 radiomics features (from 44 features extracted 
in patients assessed by RECIST) that used for radiomics 
model showed that there are no statistically significant 
differences with respect to the clinical variables (p value 
<0.05). However, for the features; range of cluster promi-
nence (P_F 84) and range of sum average (Ar_F152), one-
way ANOVA test showed that these features are statistically 
significant in terms of the gender (online supplemental 
table 4A). Similarly, there are no significant differences 
between the meaningful 10 radiomics features (from 
56 features extracted in patients assessed by irRECIST) 
that used for radiomics model with respect to the clinical 

variables (p value <0.05). Except, for the range of sum 
average (Ar_F152 feature), ANOVA test demonstrated 
that this feature is statistically significant in the sense of 
the gender (online supplemental table 4B).

Welch two sample t-test showed that 5 out of the 10 
LASSO features from RECIST model (P_F269, P_F289, 
PV_F35, PV_F89, and PV_F109) and 4 out of the 10 
LASSO features from irRECIST model (P_F89, P_F269, 
P_F289, and PV_F81) are statistically significant (p value 
<0.05) and are independently associated with treatment 
response (p value <0.05) as shown in online supplemental 
table 5.

Univariate and multivariate analysis with OS and radiomics 
texture features
Of the 57 patients, 13 patients were identified to be 
alive and 44 patients were deceased. The univariate Cox 
regression models built by 10 radiomics texture features 
from RECIST model with OS had identified 6 out of 10 
texture features to have significant association with OS as 
shown in online supplemental table 6. The p value for all 

Figure 2  (A) Receiver operating characteristic (ROC) curve representing the performance of the predictive model when using 
the top 10 least absolute shrinkage and selection operator (LASSO) features in the Response Evaluation Criteria in Solid Tumors 
(RECIST) group. (B) ROC curve representing the performance of the predictive model when using the top 10 LASSO features in 
the immune-related RECIST group.

Table 4  Top 10 features (from 56 features extracted in patients assessed by immune-related Response Evaluation Criteria in 
Solid Tumors)

Order no. Feature Level Feature name

1 PV_F24 8 Range of cluster prominence

2 Ar_F152 32 Range of sum average

3 PV_F81 16 Range of autocorrelation

4 P_F89 16 Range of homogeneity

5 PV_F270 256 Range of maximum probability

6 ArV_F247 256 Average of energy

7 P_F187 64 Average of energy

8 P_F289 256 Angular variance of homogeneity

9 P_F269 256 Range of homogeneity

10 ArV_F36 8 Range of difference entropy

https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
https://dx.doi.org/10.1136/jitc-2020-001752
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three overall tests (likelihood (p value=0.001), Wald (p 
value=0.03), and score (p value=0.02)) from the multivar-
iate Cox regression model are significant, indicating that 
the multivariate Cox regression model created with the 
six significant radiomics texture features from RECIST 
model with OS was significant, as shown in online supple-
mental table 7. From the multivariate Cox analysis as 
shown in online supplemental table 7, the texture feature 
PV_F35 remain significant (p value=0.0493). The univar-
iate log-rank test for the high versus low groups of the 
10 radiomics texture features from RECIST model with 
OS showed that, 4 out of 10 texture features; P_F289 
(p value=0.0014), PV_F35 (p value=0.0045), PV_F89 (p 
value=0.016), and Ar_F238 (p value=0.011) were found 
to be significantly associated with high versus low groups 
texture feature with OS, as shown in online supplemental 
table 8. The Kaplan-Meier survival curves and p values 
from the log-rank test for the four significant radiomics 
texture features from RECIST can be seen in figure 4A.

The univariate Cox regression models generated by 10 
radiomics texture features from irRECIST model with 
OS had determined 5 out of 10 texture features to have 
significant association with OS; as demonstrated in online 
supplemental table 9. The p value for all three overall tests 
(likelihood (p value=8e-05), Wald (p value=0.04), and 
score (p value=6e-04)) from the multivariate Cox regres-
sion model are significant, indicating that the multivar-
iate Cox regression model built using the five significant 
radiomics texture features from irRECIST model with OS 
was significant, as detailed in online supplemental table 
10. From the multivariate Cox analysis as shown in online 
supplemental table 10, two of the texture features; PV_F81 
(p value 0.00696) and ArV_F36 (p value=0.02417) remain 
significant. The univariate log-rank test for the high 
versus low groups of the 10 radiomics texture features 
from irRECIST model with OS showed that, 3 out of 10 
texture features; P_F289 (p value=0.0014), PV_F81 (p 
value=0.0071), and PV_F270 (p value=0.048) were found 
to be significantly associated with high versus low groups 

Figure 3  (A) Receiver operating characteristic (ROC) curve representing the performance of the predictive model when using 
the common 15 least absolute shrinkage and selection operator (LASSO) features in the Response Evaluation Criteria in Solid 
Tumors (RECIST) group. (B) Fifteen common LASSO features between 44 features and 56 features obtained from 57 patients 
assessed by RECIST and immune-related RECIST (irRECIST), respectively. (C) ROC curve representing the performance of the 
predictive model when using the common 15 LASSO features in the irRECIST group.
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texture feature with OS, as shown in online supplemental 
table 11. The Kaplan-Meier survival curves and p values 
from the log-rank test for the three significant radiomics 
texture features from irRECIST can be seen in figure 4B.

DISCUSSION
The results of our study demonstrate that quantitative 
radiomics texture analysis on standard-of-care CT scans 
obtained prior to the initiation of therapy can successfully 
predict pembrolizumab response. To our knowledge, 
this is the first study to use a radiomics-based approach 
to predict immunotherapy response in patients with 
advanced rare solid cancers. Radiomic signatures based 
on top 10 LASSO-selected features predicted immuno-
therapy response with high accuracy, sensitivity, and spec-
ificity in patients assessed by RECIST (94.7%, 97.3%, and 
90%, respectively) and in patients assessed by irRECIST 
(94.7%, 93.9%, and 95.8%, respectively). Furthermore, 
the shared features of the RECIST and irRECIST groups 
also highly predicted pembrolizumab response with the 
accuracy, sensitivity, specificity, and p value of 94.7%, 97%, 
90%, p<0.001and 96%, 96%, 95%, p<0.001, respectively.

The future clinical use of our radiomics-based approach 
to predict immunotherapy response is supported by 
previous studies in patients with other diseases.29 32 40 Sun 
et al29 generated a radiomics-based treatment response 
prediction model using machine learning. They found 
that their baseline radiomics score was able to predict CD8 
gene expression. Patients with higher radiomics score 
had higher CD8 gene expression and better response to 
immunotherapy compared with patients with progressive 
disease or stable disease (p=0.049); the baseline radiomic 
score however, was not significantly higher in the patients 
with controlled disease (stable disease, partial response, 

complete response) compared with patients with progres-
sive disease (p=0.05). However, that latter study was for 
the most part correlative and the sensitivity, specificity, 
and accuracy of their radiomic model was not reported. 
In another retrospective study, Mu et al40 described a 
multi-parametric radiomic signature based on posi-
tron emission tomography (PET)/CT images to predict 
durable clinical benefit of immunotherapy response in 
patients with advanced NSCLC (AUC ranging from 0.81 
to 0.86). They found that compared with that of the 
multi-parametric radiomics signature, the AUCs of the 
CT-only-based features used to predict response were 
lower (AUCs ranging from 0.64 to 0.69). These AUCs 
are also lower compared with our study (0.95 and 0.99 
in the irRECIST and RECIST groups, respectively), likely 
because the CT images used from PET/CT studies have 
lower resolution than the diagnostic CT studies as used in 
the present study and were non-contrast enhanced CTs.

Finally, Trebeschi et al,32 looked at radiomics to assess 
immunotherapy response (rule out progression) in 
patients with NSCLC and melanoma. The model was able 
to predict progressive disease in NSCLC primary tumor 
with an AUC of 0.79 and p=0.05. But, their radiomics 
based prediction model achieved poor performance on 
both pulmonary and hepatic melanoma lesions (AUC of 
0.55). The authors did not report the sensitivity and spec-
ificity of the models. These results are consistent with our 
study in terms of highlighting the potential of CT-based 
radiomics features in predicting response to immuno-
therapy. In our cohort, we assessed immunotherapy 
response by analyzing each patient’s entire (whole body) 
tumor burden. That was achieved by segmentation of all 
target lesions (defined by RECIST 1.1 and irRECIST) 
and further extraction of distinct radiomics features 

Table 5  Shared 15 features (between features obtained from patients assessed by Response Evaluation Criteria in Solid 
Tumors (RECIST) and immune-related RECIST)

Order no. Feature Level Feature name

1 Ar_F152 32 Range of sum average

2 ArV_F247 256 Average of energy

3 P_F289 256 Angular variance of homogeneity

4 P_F269 256 Range of homogeneity

5 Ar_F154 32 Range of sum entropy

6 P_F153 32 Range of sum variance

7 Ar_F188 64 Average of entropy

8 ArV_F51 8 Angular variance of sum of squares: variance

9 P_F114 16 Angular variance of sum entropy

10 ArV_F248 256 Average of entropy

11 ArV_F130 32 Average of maximum probability

12 ArV_F14 8 Average of sum entropy

13 Ar_F238 64 Angular variance of information measure of correlation 2

14 Ar_F275 256 Range of difference variance

15 Ar_F258 256 Average of information measure of correlation 2

https://dx.doi.org/10.1136/jitc-2020-001752
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as illustrated in online supplemental figures S2-4. The 
high accuracy of our model for classifying controlled 
disease and progressive disease in the RECIST and 
irRECIST based groups suggests that radiomics analysis 
has a potential role in making clinical decisions and in 
selecting patients who would likely benefit from therapy 
prior to the initiation of such treatment. Additionally, the 
radiomics approach is cost and time-effective, as it uses 

standard-of-care images that are already being obtained 
for diagnosis and follow-up.

The present study had some inherent limitations. The 
rare cancer study had a heterogeneous patient popula-
tion with biologically different diseases. However, despite 
the latter, our radiomics model was highly predictive of 
patient response to anti-PD-1 therapy. In addition, given 
the nature of the clinical trial study, the sample size was 

Figure 4  (A) The Kaplan-Meier curves for overall survival (OS) with radiomic texture features from Response Evaluation Criteria 
in Solid Tumors (RECIST) model. (B) The Kaplan-Meier curves for OS with radiomic texture features from immune-related 
RECIST model.
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relatively small. Finally, although promising, our single- 
institution cohort was retrospectively evaluated; therefore, 
validation is required, preferably prospectively with a larger 
data set acquired from multiple institutions. These valida-
tion studies using a larger prospective data set in a multi-
institutional patient population are currently underway at 
our institution to ensure reliability and generalizability of 
our model.

In summary, this study presents radiomics-based signa-
ture that can successfully predict immunotherapy response 
in patients with advanced rare cancers. The proposed 
predictive radiomics-based signature is cost-effective, non-
invasive and can potentially play a significant role in the 
clinical setting, allowing oncologists to predict treatment 
response a priori and enable better patient stratification, 
management, and clinical decision-making. Although our 
predictive models had high accuracy in retrospectively 
discriminating controlled disease and progressive disease 
to pembrolizumab, prospective studies on a larger data set 
in a more homogeneous patient population are needed to 
ensure its reliability and generalizability.
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