
ARTICLE

Spotted lanternfly predicted to establish in
California by 2033 without preventative
management
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Models that are both spatially and temporally dynamic are needed to forecast where and

when non-native pests and pathogens are likely to spread, to provide advance information for

natural resource managers. The potential US range of the invasive spotted lanternfly (SLF,

Lycorma delicatula) has been modeled, but until now, when it could reach the West Coast’s

multi-billion-dollar fruit industry has been unknown. We used process-based modeling to

forecast the spread of SLF assuming no treatments to control populations occur. We found

that SLF has a low probability of first reaching the grape-producing counties of California by

2027 and a high probability by 2033. Our study demonstrates the importance of spatio-

temporal modeling for predicting the spread of invasive species to serve as an early alert for

growers and other decision makers to prepare for impending risks of SLF invasion. It also

provides a baseline for comparing future control options.
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N iche models are useful for estimating the potential future
distribution of invasive species, based on climatic condi-
tions in their native range and similar conditions in an

introduced range1–3. However, these models are not temporally
dynamic and typically do not integrate information about species’
biology4, and therefore they cannot predict the timing of arrival
or simulate how a species may disperse to new areas, like process-
based models can5,6. Models that are both spatially and tempo-
rally dynamic are needed to forecast where and when the spread
of non-native pests and pathogens is likely to occur, to provide
advance information for natural resource managers who are
trying to proactively minimize ecological and economic impacts.

In the United States, an invasive pest of high management
concern is the spotted lanternfly (SLF, Lycorma delicatula), a
planthopper native to Asia that can kill plants directly by feeding
on phloem and indirectly by facilitating the growth of a light-
blocking leaf mold7. SLF was first detected in Pennsylvania in
2014 and has since spread to eleven surrounding states. The
species feeds in high densities on a wide range of commercially
valuable plants, including fruit trees, hops (Humulus sp.), and
grapes (Vitis sp.)8,9, and poses a threat to the vineyard-based
economies of the western US. Using niche modeling, researchers
have identified the grape-growing regions of California and
Washington as highly suitable, climatically, for SLF invasion1.
When SLF might be expected to reach the region, however,
remains unknown.

US grape production is valued at ~$6.5 billion (accounting for
36% of the annual production value of all non-citrus fruit grown
in the US), with more than one million acres in grape
production10. California alone produces 82% of the US grape
crop10. Federal and state agencies tasked to protect US agri-
cultural and forestry products from pests like SLF have many
potential control options to consider, from eradication and con-
tainment to a slow-the-spread management regime. To prepare
control plans, resource managers must be able to predict how SLF
would spread if left uncontrolled and when it would likely reach
vulnerable areas. Essentially, they must be able to answer the
question: if all efforts to contain or eradicate SLF in the eastern
US were stopped, when would the species reach the western US?

We used process-based modeling to address this question,
simulating the spatial and temporal dynamics of SLF spread in
the US and forecasting the timing of its arrival across the country.
Specifically, we used a model called PoPS, Pest or Pathogen
Spread11, to predict the spread of SLF at yearly time steps from its
current introduced range in the Mid-Atlantic US over the next
thirty years, forecasting where and when the pest would establish
assuming no control to limit its spread. This simulation will
provide a baseline for decision-makers to compare with other
simulations that test different management strategies.

We compared our predictions to a map of potential SLF dis-
tribution generated through niche modeling1. We also used
county-level economic data for grapes and eight other com-
modities to identify, by year, the financial risk of SLF invasion in
the US.

Results
Model outputs and crop hosts. We predict that SLF has a low
probability of first reaching the grape-producing counties of
California by 2027 and a high probability in some California
counties by 2033 (Fig. 1 and Supplementary Movies 1 [Graphics
Interchange Format (GIF) image of mean county-level prob-
ability] and 2 [GIF of max county-level probability]). SLF will
likely spread through the grape-producing region of the state by
2034, placing over 1 billion acres of grape vineyards at risk
(Fig. 2). In addition to grapes (Vitis sp.), many other crops are
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Fig. 1 Spread probability over time using the mean of all raster cells in a
county. By 2027 there is a low probability of SLF infestation in California,
and by 2033 the first county in California has a high probability of SLF
occurrence.
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considered at risk from SLF infestation, including almonds
(Prunus subgenus Amygdalus sp.), apples (Malus sp.), walnuts
(Juglans sp.), cherries (Prunus subgenus Cerasus sp.), hops
(Humulus sp.), peaches (Prunus subgenus Amygdalus sp.), plums
(Prunus subgenus Prunus sp.), and apricots (Prunus subgenus
Prunus sp.; Figs. 2 and 3) that are included in the National
Agricultural Statistics Service 5-year census8,12. For the top grape-
producing counties in California, we plotted the probability of
SLF arrival over time (Fig. 4).

Model comparison to previous MaxEnt suitability. Running our
model until 2050, we found that our results generally agreed with
those produced by the MaxEnt model of Wakie et al.1; Fig. 5.
Both models agreed that SLF would be unlikely in 47.3% of pixels
nationwide; they also agreed that SLF would have some prob-
ability of occurring in 32.4% of pixels nationwide (see legend in
Fig. 5 for details). In 15.6% of pixels nationwide, the MaxEnt

model predicted SLF presence, but PoPS did not; of these pixels,
72.6% (11.3% of total pixels) were classified by Wakie et al.1 as
low risk, 22.0% (3.4% of total pixels) as medium risk, and 5.4%
(0.8% of total pixels) as high risk. In 4.7% of pixels nationwide,
PoPS predicted SLF presence, but the MaxEnt model did not; of
these pixels, 41.6% (2.0% of total pixels) were classified by PoPS
as low risk, 44.3% (2.1% of total pixels) as medium risk, and
14.1% (0.7% of total pixels) as high risk.

Discussion
Niche modeling (often with MaxEnt) is a very common technique
used to examine the potential range of an introduced
species2,3,13,14, but it has limited utility for management planning,
because it cannot predict the likely timing of species establish-
ment. Temporal estimates of pest or pathogen spread are cur-
rently rare (except see refs. 5,6,11,15), even though predicting the
timing of pest or pathogen arrival is essential for management

Fig. 2 Crops at risk from SLF and total value. a–i Probability of SLF establishment over time for major crops. j The economic value of each crop. All acreage
and economic data are from the USDA National Agricultural Statistics Service 2017 census10.
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grapes (1,121,670 acres) almonds (1,252,138 acres)

apples (366,592 acres) walnuts (407,912 acres)
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Fig. 3 Crop production for top at-risk commodities. USDA county-level production data in acres for crops from the National Agricultural Statistics Service
Census 2017 by county (a) grapes, b almonds, c apples, d walnuts, e cherries, f hops, g peaches, h plums, i apricots10.
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planning. Here we show that spatial–temporal modeling can
produce similar spatial predictions to niche modeling, with the
important added value of identifying the year at which a pest is
likely to reach a particular location and possibly impact eco-
nomically valuable commodities. Our analysis of SLF spread in
the contiguous US highlights the large acreage of at-risk com-
modities that are likely to be infested if SLF were allowed to

spread uncontrolled, providing a reasonable baseline to compare
to different management scenarios and guidance for identifying
locations for early surveillance.

If SLF spread were unmitigated, we expect the pest to establish
across much of the US by 2037. The main pathway to the West
Coast is accidental human-mediated transport, given that SLF
lays its eggs on shipping material, stone, railroad cars, and even

Fig. 4 Probability of SLF establishment in grape-growing counties. a Mean probability of SLF establishment over time (average of all pixel probabilities in
the county), based on PoPS output, in the three grape-producing California counties with production >100,000 acres, plus Sonoma and Napa Counties,
which produce high-value wine grapes. Asymptotes do not reach 100% probability, because some pixels in each county are unsuitable for SLF and have a
0% probability of establishment; asymptotes are reached when all suitable pixels in a county are predicted to be infested by SLF. Dotted lines represent
standard deviation across runs. b Grape acreage under production based on the USDA National Agricultural Statistics Service 2017 census10, highlighting
the eight counties with the most grape production.

Fig. 5 MaxEnt and PoPS model comparison. Comparison of SLF risk predicted by the MaxEnt model of Wakie et al.1 versus PoPS output for the year 2050.
The percentage of total land area in each risk category is provided in parentheses in the legend.
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vehicles7. Railroads present a high-risk pathway for long-distance
SLF dispersal7,16,17, and so our analysis simulated accidental
transport along these rail networks, a modification of our original
PoPS model.

By knowing the timing of arrival of a potentially damaging
insect such as SLF, decision-makers can identify places to enact
surveillance and information campaigns (particularly around rail
hubs) and growers can begin to compare alternative management
scenarios and prepare the necessary precautions to prevent local
pest populations from damaging valuable crops. We are working
with multiple state Departments of Agriculture and the US
Department of Agriculture’s Animal and Plant Health Inspection
Service (USDA APHIS) to run custom scenarios in PoPS for
individual states; these tailored modeling efforts account for state-
specific management budgets and strategies so that managers can
compare the potential effectiveness of different treatment strate-
gies that are realistic for them.

Although the potential impacts of SLF on many hosts are largely
unknown, grape vineyards can be completely lost when impacted
by both heavy feeding by SLF and low winter temperatures. Esti-
mates of when and where SLF will arrive can be used to prioritize
removal of tree of heaven (Ailanthus altissima), SLF’s presumed
primary host. For example, in the next 10 years, removing tree of
heaven near vineyards in the eastern US (Fig. 3) might be prior-
itized, followed by removal near vineyards in California just before
the pest is expected to reach the state. Such management action
would likely adjust the probability estimates we forecasted (Fig. 2),
by reducing the acreage of commodities in high-probability areas

(Fig. 3). If the tree of heaven removal is successful at slowing
spread, SLF arrival probabilities in Fig. 2 would be shifted to the
right, i.e., later in time; if removal prevented SLF from arriving to
specific counties, these probabilities in Fig. 2 would also be shifted
down, i.e., lower probabilities at all time steps.

Methods
Model structure. We used the PoPS (Pest or Pathogen Spread) Forecasting
System11 version 2.0.0 to simulate the spread of SLF and calibrated the model (Fig. 6)
using Approximate Bayesian Computation (ABC) with sequential Markov chain and
a multivariate normal perturbation kernel18,19. We simulated the reproduction and
dispersal of SLF groups (at the grid cell level) rather than individuals, as exact
measures of SLF populations are not the goal of surveys conducted by USDA and
state departments of agriculture. Reproduction was simulated as a Poisson process
with mean β that is modified by local conditions. For example, if we have 5 SLF
groups in a cell, a β value of 2.2, and a temperature coefficient of 0.7, our modified β
value becomes 1.54 and we draw five numbers from a Poisson distribution with a λ
value of 1.54. β and dispersal parameters were calibrated to fit the observed patterns
of spread. For this application of PoPS, we replaced the long-distance kernel (α2)
with a network dispersal kernel based on railroads, along which SLF and tree of
heaven are commonly observed7. For each SLF group dispersing, if a railroad is in
the grid cell with SLF, we used a Bernoulli distribution with mean of γ (probability of
natural dispersal) to determine if an SLF group dispersed via the natural Cauchy
kernel with scale (α) or along the rail network. This network dispersal kernel
accounts for dispersal along railways if SLF is present in a cell containing a rail line.
The network dispersal kernel added three new parameters to the PoPS model: a
network file that contained the nodes and edges, minimum distance that each railcar
travels, and the maximum distance that each railcar travels. Unlike typical network
models, which simulate transport simply between nodes, our approach allows for
SLF to disembark a railcar at any point along an edge, more closely mimicking their
actual behavior. This network therefore captures the main pathway of SLF long-
distance dispersal, i.e., along railways.

Fig. 6 Model structure for spotted lanternfly (SLF, Lycorma delicatula). Unused modules in the PoPS model are gray in the equation. a The number of
pests that disperse from a single host under optimal environmental conditions (β) is modified by the number of currently infested hosts (I) and
environmental conditions in a location (i) at a particular time (t); environmental conditions include seasonality (X) and temperature (T) (see
supplementary Fig. 3 for details on temperature). Dispersal is a function of gamma (γ), which is the probability of short-distance dispersal (alpha-1, α1) or
long-distance via the rail network (N (dmin, dmax)). For the natural-distance Cauchy kernel, the direction is selected using 0-359 with 0 representing North.
For the network kernel, the direction along the rail is selected randomly, and then travel continues in that direction until the drawn distance is reached.
Once SLF has landed in a new location, its establishment depends on environmental conditions (X, T) and the availability of suitable hosts (number of
susceptible hosts [S] divided by total number of potential hosts [N]). b We used a custom host map for tree of heaven (Ailanthus altissima) to determine
the locations of susceptible hosts. The number of newly infested hosts (ψ) is predicted for each cell across the contiguous US.
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Spotted lanternfly model calibration. We used 2015–2019 data (over 300,000
total observations including both positive and negative surveys) provided by the
USDA APHIS and the state Departments of Agriculture of Pennsylvania, New
Jersey, Delaware, Maryland, Virginia, and West Virginia to calibrate model para-
meters (β, α1, γ, dmin, dmax). The calibration process starts by drawing a set of

parameters from a uniform distribution. Simulated results for each model run are
then compared to observed data within the year they were collected, and accuracy,
precision, recall, and specificity are calculated for the simulation period. If each of
these statistics is above 65% the parameter set is kept. This process repeats until
10,000 parameter sets are kept; then, the next generation of the ABC process
begins: the mean of each accuracy statistic becomes the new accuracy threshold,
and parameters are drawn from a multivariate normal distribution based on the
means and covariance matrix of the first 10,000 kept parameters. This process
repeats for a total of seven generations. Compared to the 2020 and 2021 obser-
vation data (over 100,000 total observations including both positive and negative
surveys), the model performed well, with an accuracy of 84.4%, precision of 79.7%,
recall of 91.55%, and specificity of 77.6%. In contrast, a model run using PoPS’
previous long-distance kernel (α2) instead of the network dispersal kernel had an
accuracy of 76.5%, precision of 68.1%, recall of 92.68%, and specificity of 57.2%.

We applied the calibrated parameters and their uncertainties (Fig. 7) to forecast
the future spread of SLF, using the status of the infestation as of January 1, 2020 as
a starting point and data for temperature and the distribution of SLF’s presumed
primary host (tree of heaven, Ailanthus altissima) for the contiguous US at a spatial
resolution of 5 km.

Weather data. Overwinter survival of SLF egg masses, and therefore spread, is
sensitive to temperature (see ref. 2). To run a spread model in PoPS, all raw
temperature values are first converted to indices ranging 0–1 to describe their
impact on a species’ ability to survive and reproduce. We converted daily Daymet20

temperature into a monthly coefficient ranging 0–1 (Supplementary Fig. 1) and
then rescaled from 1 to 5 km by averaging 1-km pixel values. We used weather data
1980–2019 and randomly drew from those historical data to simulate future
weather conditions in our simulations, to account for uncertainty in future weather
conditions.

Tree of heaven distribution mapping. SLF is known to feed on >70 species of
mainly woody plants7, but tree of heaven is commonly viewed as necessary, or at
least highly important, for SLF spread. Young nymphs are host generalists, but
older nymphs and adults strongly prefer tree of heaven (in Korea21; in Pennsyl-
vania, US22), and experiments in captivity23 and in situ9 have shown that adult
survivorship is higher on the tree of heaven and grapevine than other host plants,
likely due to the presence and proportion of sugar compounds important for SLF
survival23. Secondary compounds found in tree of heaven also make adult SLF
more unpalatable to avian predators24, and researchers have hypothesized that
these protective compounds may be passed on to eggs21. For these reasons, tree of
heaven is widely considered the primary host for SLF and linked to SLF spread1,25.

We, therefore, used tree of heaven as the host in our spread forecast. We
estimated the geographic range of tree of heaven using the Maximum Entropy
(MaxEnt) model26,27. We chose to use niche modeling because tree of heaven has
been in the US for over 200 years and is well past the early stage of invasion at
which niche models perform poorly; instead, tree of heaven is well into the
intermediate to equilibrium stage of invasion, when niche models perform well28.
We obtained 19,282 presences for tree of heaven in the US from BIEN29,30 and
EDDmaps31 and selected the most important variables from an initial MaxEnt
model of all 19 WorldClim bioclimatic variables32. Our final climate variables were
mean annual temperature, precipitation of the coldest quarter, and precipitation of
the driest quarter. Given that tree of heaven is non-native and invasive in the US,
prefers open and disturbed habitat, and is commonly found along roadsides and in
urban landscapes33, we also included distance to major roads and railroads as an
additional variable in our model, to account for the presence of disturbed habitat as
well as approximate urbanization and anthropogenic degradation. For each 1-km
cell in the extent, we calculated distance to the nearest road and nearest railroad
using the US Census Bureau’s TIGER data set of primary roads and railroads34. We
used our final MaxEnt model to generate the probability of the presence of tree of
heaven for each 1-km cell, then reset all cells with a probability ≤0.2 to a value of 0
to minimize overprediction of the tree of heaven locations (because cells ≤0.2
contained less than 1% of the presences used to build the model). We rescaled the
remaining probability values 0–1. We used 10% of the tree of heaven presence data
to validate the model, which performed well: 95% of the validation data set
locations had a probability of presence greater than 65%. We then rescaled the
1-km MaxEnt output to 5 km using the mean value of our 1-km cells, in order to
reduce computational time.

Forecasting spotted lanternfly. We used the Daymet temperature data and dis-
tribution of tree of heaven to simulate SLF spread with PoPS, assuming no further
efforts to contain or eradicate either tree of heaven or SLF. We ran the spread
simulation 10,000 times from 2020 to 2050 for the contiguous US. After running all
10,000 iterations, we created a probability of occurrence for each cell for each year
by dividing the number of simulations in which a cell was simulated as being
infested in that year by 10,000 (the total number of simulations). This gave us a
probability of occurrence per year. We downscaled our probability of occurrence
per year from 5 km to 1 km and set the probability to 0 in 1-km pixels with no tree
of heaven occurrence.

Fig. 7 Parameter distributions. a Reproductive rate (β), b natural dispersal
distance (α1), c percent natural dispersal (γ), d minimum distance (dmin),
e maximum distance (dmax).
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Data for mapping and comparison. We compared our probability of occurrence
map in 2050 to the SLF suitability map created by Wakie et al.1 using niche modeling
to see how well the two modeling approaches would agree if SLF were allowed to
spread unmanaged (Fig. 5). Wakie et al.1 categorized pixels below 8.359% as unsui-
table, between 8.359% and 26.89% as low risk, between 26.89% and 51.99% as
medium risk, and above 51.99% as high risk. To facilitate comparison, we used this
same schema to categorize pixels as low, medium, or high probability of spread.

We converted the yearly raster probability maps to county-level probabilities in
order to examine the yearly risk to crops in counties. We performed this
conversion using two methods: (1) the highest probability of occurrence in the
county (Supplementary Movie 2) and (2) the mean probability of occurrence in the
county (Fig. 1 and Supplementary Movie 1). The first method provides a simple,
non-statistical estimate of the probability of SLF presence by assigning the county
the value of the highest cell-level probability; the second accounts for all of the
probabilities of the cells in the county and typically results in a higher county-level
probability. We used USDA county-level production data10 for grapes, almonds,
apples, walnuts, cherries, hops, peaches, plums, and apricots to determine the
amount of production at risk each year (Fig. 2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The SLF occurrence data that support the findings of this study are owned by USDA
APHIS and made available to us through a cooperative agreement and are protected by
confidential agreements with property owners, so cannot be made publicly available.
These data can be obtained from USDA APHIS if the researcher obtains a cooperative
agreement with USDA APHIS that allows them access to these data. The other data we
used are publicly available and can be downloaded from iNaturalist, EDDMaps, DayMet,
BIEN, and the US Census Bureau.

Code availability
We used the R version of PoPS (https://github.com/ncsu-landscape-dynamics/rpops) and
specifically version 2.0 (https://zenodo.org/record/5781384) which includes the network
kernel that allowed for simulating the movement of spotted lanternfly along rail lines.
This repository uses renv which allows the exact versions of each package used for this
analysis to be installed.
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