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Porous microspheres have the potential for use as injectable bone fillers to obviate

the need for open surgery. Successful bone fillers must be able to support

vascularisation since tissue engineering scaffolds often cease functioning soon after

implantation due to a failure to vascularise rapidly. Here, we test the angiogenic

potential of a tissue engineered bone filler based on a photocurable acrylate-based

high internal phase emulsion (HIPE). Highly porous microspheres were fabricated

via two processes, which were compared. One was taken forward and investigated

for its ability to support human mesenchymal progenitor cells and angiogenesis in a

chorioallantoic membrane (CAM) assay. Porous microspheres with either a narrow

or broad size distribution were prepared via a T-junction microfluidic device or by a

controlled stirred-tank reactor of the HIPE water in oil in water (w/o/w), respectively.

Culture of human embryonic stem cell-derived mesenchymal progenitor (hES-MP)

cells showed proliferation over 11 days and formation of cell-microsphere aggre-

gates. In-vitro, hES-MP cells were found to migrate into microspheres through their

surface pores over time. The presence of osteoblasts, differentiated from the hES-MP

cells, was evidenced through the presence of collagen and calcium after 30 days.

Microspheres pre-cultured with cells were implanted into CAM for 7 days and com-

pared with control microspheres without pre-cultured cells. The hES-MP seeded

microspheres supported greater angiogenesis, as measured by the number of blood

vessels and bifurcations, while the empty scaffolds attracted host chick cell ingrowth.

This investigation shows that controlled fabrication of porous microspheres has the

potential to create an angiogenic, bone filling material for use as a cell delivery

vehicle. VC 2018 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5008556

INTRODUCTION

Bone grafts require rapid vascularisation upon implantation to be successful.1 Vascularisation

of tissue engineered scaffolds is now recognised as a major stumbling block in producing full

thickness tissues.2 To tissue engineer full thickness tissues or complete organs, rapid vasculariza-

tion of the scaffold is essential3 since the diffusion of oxygen within the tissues becomes the limit-

ing factor (the diffusion limit is normally quoted as 100–200 lm).4 Cells that are further away

from a blood vessel than the diffusion limit are unable to survive because of hypoxia and undergo
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necrosis, releasing chemicals and enzymes into the local environment which impedes tissue

regeneration.5

An important target for tissue engineering large defects is bone, where critical size defects

can be treated with synthetic bone fillers, normally putties or pastes that are potentially injectable.

These bone fillers will need to rely on rapid in-situ angiogenesis, i.e. the stimulation of new

blood vessels from existing vasculature6 to enable nutrient supply to cells within the implanted

filler.1 Current tissue engineered solutions for bone defects usually avoid cell-based therapies,

depending instead on cells migrating from the periphery of the implantation site.7,8 This causes a

slow tissue ingrowth starting from the periphery.7 To support rapid cell ingrowth and allow vas-

cularisation, an injectable bone filler should ideally be highly porous,9,10 and in this study, we

investigate highly porous microspheres to achieve both. These porous microspheres can be used

for many applications in tissue engineering such as microcarriers for cell expansion,11 cell

implantation,12 delivery of bioactive agents,13 and building blocks for (self-assembled) scaf-

folds.14,15 The advantage of using microspheres is that they can be delivered as an injectable sub-

strate, bypassing the requirement for open surgery. As a three-dimensional (3D) cell support

matrix for cells, porous microspheres have many advantages over their non-porous counterparts;

they can provide enhanced nutrient diffusion, a 3D culture environment, and a greatly increased

surface area.16,17 There are many techniques to manufacture porous microsphere systems includ-

ing supercritical CO2,18 thermally induced phase separation,19 freeze thaw cycles,20 particle

leaching,21 and polymerised high internal phase emulsion (polyHIPE) formulations.22

PolyHIPE fabrication methods are of particular interest because of the extremely high inter-

connected porosity achievable with this system. PolyHIPEs (polymers with an open porosity

greater than 74% of the total internal volume)23,24 can be fashioned into porous microspheres

via a double emulsion.25 The HIPE emulsion is produced by the dropwise addition of the inter-

nal phase to a continuous phase. If the continuous phase is composed of suitable monomers and

cross-linkers, a highly porous foam (polyHIPE) can be produced upon curing.26 This technique

is referred to as the controlled stirred-tank reactor (CSTR) method. The interconnected nature

of a polyHIPE is formed by the contraction of the thin monomer film surrounding the droplet

phase during curing.27 Controlling the processing conditions allows precise control over the

degree of porosity within the material along with control over the interconnectivity and to some

extent pore size.28 We have recently demonstrated that the mechanical properties of this copol-

ymer system can be finely tuned by changing the monomer ratios.29 PolyHIPEs are increasingly

being used in tissue engineering applications and as cell culture substrates due to their porosity

and interconnectivity.23,30 However, little is currently known about polyHIPE microspheres’

ability to support osteoprogenitor cells or angiogenesis. The aim of this study was to identify

an easily controllable manufacturing method for highly porous microsphere scaffolds capable of

supporting mesenchymal stem cell (MSC)-like cells and to measure their vascularisation poten-

tial using a chorioallantoic membrane (CAM) assay.

RESULTS

Control of internal porosity of polyHIPE

The internal porosity of the polyHIPE can be controlled via the HIPE pre-processing

conditions. The stirring rate and temperature used during the formation of the primary emul-

sion, or water in oil (w/o) emulsion, had a direct effect on the pore size distribution of the

resulting polyHIPE. The pore size and size distribution of the polyHIPE material were mea-

sured after the emulsion was formed using different stirring rates and set temperatures (Fig. 1).

The biggest difference in pore sizes was between 320 and 540 rpm settings (median pore sizes

of 21 lm and 10 lm, respectively), with both the median and the maximum pore size being

smaller in the 540 rpm group. An observable decrease in the pore diameter was evident between

540 and 765 rpm (median pore sizes of 10 lm and 8 lm, respectively) although the change is

less than that between 320 and 540 rpm. The final 3 speeds of 765, 870, and 1260 rpm yielded

similar resulting size distributions. For the material formed at 30 �C with the slowest stir speed

of 320 rpm, the largest pore observed was 80 lm in diameter with the pore interconnections
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measured at a maximum of 6.4 lm diameter with a median of 2 lm. In this study, we choose

the manufacturing method to produce the largest pore size, and using the data from Fig. 1, we

prepared the emulsion with a mixing speed of 320 rpm at a temperature of 30 �C.

Porous particle fabrication

Porous particles were fabricated via two techniques, either via CSTR or via a microfluidic

fabrication route. Microspheres produced by the CSTR technique produce a range of sizes,

whereas the microfluidic technique produced microspheres with a narrow size distribution (Fig.

2). Microspheres were formed from a blend of two monomers, 2-ethylhexyl acrylate (EHA) and

isobornyl acrylate (IBOA), and photopolymerization was used to polymerise the monomers into

microspheres. The bar plot summarises the size distributions from both manufacturing techni-

ques using microsphere populations of similar mean values, CSTR with 286 lm, and the micro-

fluidic with 300 lm [Fig. 2(a)]. The graph shows the wide distribution of microsphere sizes

formed by CSTR (26–583 lm) to the narrower distribution formed by T-microfluidics

(278–323 lm). Increasing the flow rate of the water allowed control over the size of the result-

ing microsphere population when using the microfluidic manufacturing technique. Microspheres

FIG. 1. (a) Box plot of the effect of changing the stir rate to produce the o/w emulsion on the pore diameter. With the

increasing stirring rate, the median pore diameter within the polyHIPE decreases initially, along with the distribution of

pore sizes. After 765 rpm, there is little effect on the pore size with the increasing stir rate. The box plot presents the inter-

quartile range with the centre line as the median, and whiskers represent the 6 1.5 IQR of the microsphere/pore diameter.

(b) The relationship between the temperature of the material during HIPE mixing and the resulting pore sizes measured in

the polyHIPE is shown on a Tukey boxplot. The temperature of the water added to the monomer is controlled at 4, 14, and

30 �C. (c) SEM micrographs of sectioned polyHIPE blocks to show internal porosity: (c-i) 320 rpm, (c-ii) 765 rpm, and (c-

iii) 1260 rpm.
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produced from a median diameter of 200 lm used the fastest flow rate of 745 ml/min to a

median 355 lm with the slowest flow rate of 125 ml/min. At slower flow rates, the spread of

microsphere sizes began to increase. SEM microscopy was carried out to analyse the micro-

sphere diameter and surface topology on the manufactured microspheres. Figures 2(c)–2(e) pre-

sent typical SEM images of microspheres produced by CSTR and [Figs. 2(f)–2(h)] highlight

FIG. 2. Comparison of the distribution of microsphere sizes formed from two techniques with a similar mean microsphere

diameter, EHA/IBOA blend polyHIPE material with 80% porosity and internally interconnected porosity between larger

pores. (a) Graph showing the microspheres from the microfluidic technique (narrow size distribution) with microsphere sizes

from the CSTR (broad size distribution). (b) Tukey boxplot showing the distribution of microspheres formed via altering the

manufacturing parameter of the water flowrate. Microspheres produced from a median diameter of 200 lm using the fastest

flow rate of 745 ml/min to 355 lm with the slowest flow rate of 125 ml/min. (c)–(e) PolyHIPE microspheres formed from the

CSTR technique. SEM micrographs showing the range of sizes present in a microsphere population produced from this tech-

nique. (f)–(h) Microspheres produced by the microfluidic technique. SEM micrographs of microspheres produced by the

microfluidic technique, and microspheres can be produced in different sizes with a narrow size distribution.
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microspheres produced by T-junction microfluidic. A difference in surface topography is seen

between the two techniques with the microspheres produced by the microfluidic method having

a smoother surface than those produced by CSTR which have a rougher surface. For both

manufacturing methods, the resulting microsphere surfaces are dominated by largest open pores

when considering the volume of pores compared to the number of pores. From this experiment,

the parameters were chosen to manufacture microspheres with a median diameter of 200 lm for

the ingrowth experiment later in this study.

Both techniques produce microspheres containing internal pores of similar diameter and

diameter distribution (Fig. 3). Microspheres produced by both techniques were sectioned and

analysed to determine if the manufacturing method influenced the resulting internal pore sizes.

The two distributions obtained from each manufacturing method share a similar range of pore

sizes with a slight shift to lower pore sizes in those produced via CSTR [Fig. 3(a)]. This

FIG. 3. Comparison of the effect of the production technique on the internal porosity of polyHIPE microspheres from the

same HIPE monomer batch. (a) Histogram of the distribution of pore diameters inside microspheres formed from microflui-

dics and CSTR. Microspheres formed from CSTR appeared to have a higher proportion of smaller pores than microspheres

from the microfluidic technique. (b) Histogram of pore volumes displaying the volume multiplied by frequency to show the

distribution of total volumes at each size pore. (c) SEM micrograph of a sectioned microsphere formed via the CSTR

method. (d) Optical image of a 10 lm thick slice of a polyHIPE microsphere formed by CSTR and sectioned using a micro-

tome. Uniform porosity can be observed throughout the microsphere along with a degree of interconnectivity. (e) SEM

micrograph of a sectioned microsphere formed via the T-junction microfluidic device.
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difference is seen most strongly at the 4 to 6 lm pore sizes, with these being more abundant in

microspheres prepared by CSTR. Therefore, the microfluidic technique was used for micro-

spheres fabricated for further analysis and cell culture. The total volume of the pores against

the pore size is shown in Fig. 3(b). Despite a higher incidence of small pores, the overall vol-

ume represented remains equal across all pore sizes. SEM and optical images of thin sections

of microspheres prepared using a microtome [Figs. 3(c)–3(e)] show that the porosity is consis-

tent throughout the whole structure, and there are regions of interconnectivity between pores.

Metabolic activity of human embryonic stem cell-derived mesenchymal progenitor

(hES-MP) cells cultured on the polyHIPE microspheres

Cells were seeded on acrylic acid coated microspheres (40–600 lm) prepared via CSTR,

and their viability was measured at several time points using a resazurin salt assay (Fig. 4). A

significant increase in cell activity was observed over the 11 days, particularly between days 4

and 11 for both media. No difference in cell activity was observed at any time point between

the osteogenic and growth media used in culture. After the third day in culture, it was observed

that the microspheres began to form aggregates with cells forming bridges between micro-

spheres [Fig. 5(a)]. Viability increased up to day 11 by which point all the microspheres had

been incorporated into larger aggregates of proto-tissue. A steady increase in cell viability was

found on the acrylic acid coated polyHIPE material further establishing this material’s potential

in bone tissue engineering.

Aggregate formation via cell matrix encapsulation of the microspheres

Images of microspheres taken at two time points using a confocal imaging system showed

the formation of cell-initiated aggregations during in-vitro culture. It is possible to see both the

increasing size of the aggregations and the increasing numbers of cells present on and around the

structures. Initial formation of many smaller units of a few microspheres is observed at day 3 of

culture. These smaller units gradually combine to form larger agglomerations over the 14 days in

culture. The extracellular matrix (ECM) holding the microspheres together can be observed in

Fig. 5(b) and in false colour in Fig. 5(d). The ECM spans the distance between the two micro-

spheres with a fibrous appearance. Cells are observable within all the large pores of all the micro-

spheres after 60 days in culture in osteogenic media [Figs. 5(e) and 5(f)]. To ensure a repeatable

and controllable test of cell ingrowth monodisperse microspheres were used and cells were

observed in increasing numbers inside the microspheres over the culture period [Fig. 5(g)]. The

number of cells within microspheres cultured in osteogenic media increased at a faster rate than

FIG. 4. Cell metabolic activity for 11 days of cell culture on the microspheres via Resazurin assay, mean 6 95% confidence

intervals. Similar growth profiles for both growth media and osteogenic media. ANOVA multiple comparison was used to

determine no difference (p> 0.05) between each media at each time point. All graphs showing mean 6 standard deviation

(SD), n¼ 3.
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FIG. 5. Initially many aggregations of a few microspheres were found at day 3 (a), and by day 14 (c), the cells had

formed into a larger structure. Images [(a) and (c)] are confocal z-stack images of nuclei (blue) and actin (green). [(b)

and (d)] SEM image of the 50 lm thick section of polyHIPE microspheres fixed after culture in osteogenic media. (b)

Non-processed, SEM image of the ECM binding two microspheres together along with the cells and ECM extending

out beyond the microspheres. (d) False colour SEM image of (b) highlighting the ECM-resembling material in orange.

(e) H&E stain of the 20 lm thick section of microsphere-cell agglomeration, after 60 days in osteogenic culture

medium. (f) Higher magnification image of a single microsphere from (e). (g) Plot of the number of cells found within a

microsphere cross-section over the culture period, used as a measure of cell ingrowth into microspheres. (h) Plot of the

cell depth of 5 cells closest to the centre of the microsphere, showing cell ingrowth into the microsphere as the time in

culture increased. All graphs showing mean 6 standard deviation (SD).
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those cultured in growth media. There was comparatively less ingrowth observed into micro-

spheres cultured in growth media over the entire experiment with internal cell numbers remaining

consistent. Cells grew further into the microsphere over the course of the experiment as can be

seen in [Fig. 5(h)] with cells being close to the centre point of 100 lm after 30 days.

Staining and optical analysis on sections of the microspheres showed the presence of cal-

cium and collagen (Fig. 6). Second harmonic generation (SHG) confocal imaging showed the

presence of mature collagen within the microspheres cultured in osteogenic media [Fig. 6(a)].

A measure of the total fluorescence showed a significantly higher amount in microspheres and

cells cultured in osteogenic compared to growth media [Fig. 6(c)]. Alizarin red confirmed that

an early bone-like matrix was formed, indicating deposits of calcium within the microspheres

cultured in osteogenic media [Fig. 6(b)].

FIG. 6. Sections of microspheres chemically or optically measured to assess the presence of calcium and collagen deposits.

(a) Second harmonic generation using a confocal microscope is shown in green, and the superimposed image of the micro-

sphere is shown in blue. (b) Alizarin red stain for calcium shows the presence of calcium within microspheres cultured in

osteogenic media. (c) Graph of corrected total cell fluorescence (CTCF), a measure of the intensity of the SHG signal from

both samples, showing a statistical difference. Analysed with T-test, showing mean 6 standard deviation (SD).
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Angiogenic potential of microspheres assessed in a chick CAM assay

A CAM assay was used to determine the ability of the microspheres to stimulate angiogen-

esis when implanted with and without cells. Microspheres with cells had been pre-cultured

for 21 days before implantation and had formed into agglomerations similar to those found in

Fig. 5. Microspheres without cells and hES-MP cells without scaffold support were also tested.

After implantation and incubation for 7 days, the implantation site was exposed and imaged and

the area was extracted for histological analysis.

The level of vasculature around microspheres pre-cultured with cells was significantly

greater than that of either unseeded microspheres or the hES-MP cell culture (Fig. 7). The

numbers of blood vessels and vessel bifurcations around the implant site were counted. The

FIG. 7. (a) Mean number of blood vessels and vessel bifurcations around the implant. Significant differences in the vessel

number were found between the pre-seeded microspheres when compared to the other three implant types and control.

Optical images from a handheld USB microscope of the implant site within the CAM models after 7 days of incubation. (b)

Control was from a CAM which had been opened for implantation and then closed. (c) CAM seeded with hES-MP cells

without microspheres. (d) Microspheres that were not pre-cultured with any cells. (d) Microspheres were seeded with hES-

MP cells for 21 days before implantation into the CAM. One-way ANOVA, mean 6standard deviation. n¼ 6. Significance

is indicated by the following symbols: * for significance compared to control, # for significance compared to hES-MP con-

trol, and � for significance to unseeded microspheres.
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pre-seeded microspheres showed a significant increase in both the number of blood vessels pre-

sent (which were approximately double those seen in the absence of cells) and the branches on

each vessel when compared to all the other samples. This confirms the results observed visually

in Figs. 7(b)–7(d). There was no statistical difference in the vessel number or bifurcations

between un-seeded microspheres and control CAMs or hES-MP implanted CAMs.

Cell migration into microspheres implanted in the CAM assay

Sections of microspheres extracted from the CAM assays after 7 days and stained with

haematoxylin and eosin (H&E) or 40,6-diamidino-2-phenylindole (DAPI) show cells within the

pores of all microspheres, even those that were not implanted with hES-MP cells (Fig. 8).

Microspheres implanted without cells showed ingrowth from cells in the CAM over the 7-day

incubation period, and cells were present throughout the microsphere [Figs. 8(c) and 8(d)]. The

cells seen are native CAM cells growing within the pores of the microsphere, as no other cells

were added to these microspheres before implantation. A morphological difference can be

observed between the cells within the pores of the microspheres, depending on the implantation

condition (blue and red arrows, Fig. 8).

DISCUSSION

This study shows that it is possible to manufacture highly porous microspheres to deliver

MSC-like cells and stimulate angiogenesis, indicating that these microspheres can be developed

for injection into complex non-healing bone fractures to accelerate healing. A major problem in

the stimulation with the difficulty in healing bone fractures is the lack of a blood supply to

FIG. 8. H&E staining of 10 lm thick sections of scaffolds and tissue extracted from the implant area. (a) Staining of the

implant area of the control CAM assay. (b) Images from the seeded microspheres, cells can be observed within the pores of

(b). The blue arrow points to a cell within a pore, which from seeding and previous staining and morphology is expected to

be an osteoblast. (c) Images of the unseeded microspheres embedded in CAM tissue. The red arrow points to a chicken cell

which has entered an unseeded microsphere during the CAM culture. (d) DAPI staining of the nucleus material. Confocal

z-stack images of a microsphere from the implant site which had been implanted into the CAM without the addition of any

cells. Cells can be observed saturating the internal porosity.

026103-10 Paterson et al. APL Bioeng. 2, 026103 (2018)



support new bone growth. MSC cells can act as pericytes (helper cells) to stabilise microvascu-

lature tube formation and sprouting.31 However, a methodology for delivering these cells and

keeping them in a protective environment such that they can stimulate new blood vessel growth

is needed. We report evidence based on the chick CAM assay that MSC-like cells delivered on

their own did not deliver significant angiogenic benefits, but when delivered in highly porous

microspheres, they stimulated new blood vessel growth.

The requirements for microspheres for bone repair are that they are highly porous, repro-

ducible in their manufacture, capable of being injected, can support osteogenic cell growth, and

stimulate angiogenesis. Therefore, we used a polyHIPE double emulsion microfluidic technique

to manufacture the particles. While not degradable using the chemistry proposed here, this tech-

nology could be translated to degradable polymers, for example, recently highlighted biodegrad-

able thiol-ene32 and polypropylene fumarate dimethacrylate-based polyHIPEs.33 Additionally,

biodegradable porous particles have been produced by, e.g., emulsion templating (polypropyl-

ene glycol)34 and by freeze drying (gelatin).35

The polymer blend we used was previously reported by our group36 as having a stiffness

of 28.4 6 3.6 MPa. This choice of stiffness was selected to ensure maximum stiffness without the

material becoming too brittle to handle and post-process. This material stiffness was aimed to

support differentiation to osteoblasts.29 Our previous study demonstrated that the stiffer composi-

tion (25–50 MPa) of this material blend better supported higher osteogenic differentiation [as

measured in alkaline phosphatase (ALP) production] compared to lower stiffness compositions

(1–10 MPa). Furthermore, the study indicated that plasma coating with acrylic acid significantly

increased ALP production. The microspheres received the same plasma coating treatment.

It was possible to control the porosity and pore size of the resulting polyHIPE material by

altering conditions during the initial emulsion formation stage prior to the double emulsion step

to form the microspheres. The stir rate of the solution during water addition and the tempera-

ture of this water were found to change the pore sizes observed in the polyHIPE material. The

surface porosity of a polyHIPE has been shown to influence the cell attachment and cell differ-

entiation of hES-MP cells.37 The internal pore size has also been shown as important in control-

ling cell differentiation.38 The internal porosity of these particles is importantly interconnected

to enable ingrowth. This ability to change the pore size is a function of the emulsion stability,

with more stable emulsions able to maintain smaller water droplets (increased surface area

between the two phases). The emulsion stability is dependent on a range of factors including

the shear rate applied to the solution during emulsion mixing and the temperature during the

HIPE formulation.39 Larger voids and interconnecting windows in the polyHIPE can be created

through a controlled destabilisation of the emulsion by increasing the temperature of the droplet

phase to 80 �C.40

The T-junction microfluidic method produced a comparatively monodisperse size population

of microspheres, whereas the CSTR produced a wider range of sizes. The CSTR production

method relies on stirring the emulsion in an excess of water to produce the double emulsion.

Production of microspheres in these turbulent flow conditions will result in a highly polydis-

persed sphere size. In contrast, the T-junction microfluidic method produces spheres via budding

off in a highly controlled constant flow, thus greatly improving the sphere size distribution.

Microspheres produced in a broad distribution of sizes would allow for a higher random packing

density which could reduce the size of the voids between microspheres, and this could reduce the

space available for vascularisation to occur. For microsphere populations featuring a narrow size

distribution, the lower packing density would allow the engineering of pore diameters between the

microspheres to best manage the void size between adjacent microspheres. While it is more diffi-

cult to produce a defined microsphere size distribution via the CSTR method, it is still possible to

approximately control the median microsphere size. The microsphere sizes produced at a particular

stir rate appear to form a skewed distribution as also noted by Zhang et al.41 Other groups

similarly reported that the average microsphere diameter decreased with the increasing stirring

rate.42,43 Producing microspheres via a microfluidic device however may not be suitable for

less stable HIPE solutions. Indeed, Choi et al. demonstrated that a polylactic-co-glycolic acid
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(PLGA)-based emulsion began to separate out into multiple phases soon after formation and this

phase separation was exploited to produce microspheres with variable pore sizes.22

Using either CSTR or T-microfluidics to form particles did not significantly alter the inter-

nal pore size of the resulting microsphere, as the pore size is determined at the HIPE formation

stage. There was no significant difference between the internal porosity when the emulsion was

subjected to different water stirring rates, or water temperature, during the w/o/w fabrication

process. These observations concur with the results reported by Bou et al.44 This allows the

control of the pore size independent of conditions or techniques used to tune the microsphere

size.

In contrast, there is a clear difference in the surface pore architecture of the microspheres

produced by the two methods. In the CSTR method, the emulsion droplets are continuously sur-

rounded by water, while in the T-junction microfluidic set-up, the emulsion is dispensed

through a small diameter (0.15–0.5 mm) metal syringe, which will influence the surface porosity

of the HIPE. This surface roughness plays an essential role in the attachment of cells.45 Both

the small diameter of the syringe and the contact of the HIPE with the metal can influence the

final surface porosity of the produced polyHIPE microspheres. Indeed, the surface porosity of

polyHIPEs is highly affected when curing them on different surface energy materials.24 Surface

destabilisation of the emulsion could be occurring at the emulsion syringe interface depending

on the surface energy, where a preferential wettability of the oil phase may be creating a thin

monomer film around the HIPE droplet, resulting in a surface skin upon polymerisation. The

surface porosity of the polyHIPE is dependent on the material that the HIPE is in contact with

during polymerisation.24

This investigation found that tailored porous microspheres were able to support hES-MP

cell growth over 11 days in culture. Microspheres were found to aggregate over time as cells

and extracellular materials were observed binding the microspheres together. Multiple small

aggregate nuclei were formed after a few days, which then increased in size, as single micro-

spheres and other small aggregates combined. Aggregates remained as a solid structure and

cells continued to proliferate on the exterior. The process of cells and microspheres combining

after a period of time to form large cell-microsphere aggregates has been observed by a number

of studies.46,47 Reis et al. have shown that it is possible to form aggregates in a faster fashion

by increasing the cell and microsphere contact area by growing them within an Eppendorf

tube.15 This suggests that forcing microspheres together, such as would occur within a closed

wound, would allow aggregate formation to occur more rapidly than observed in vitro.

Cells were observed within the microspheres’ internal porosity after culturing with hES-MP

cells in osteogenic culture media. These cells have migrated into the microsphere from the

external surface, passing through the interconnecting regions between the pores. Cells were

observed growing in the centre of microspheres, up to 90 lm from the surface. Sections of the

samples after 60 days show that almost every pore larger than 15 lm has been inhabited by a

cell. We have calculated that after 30 days in osteogenic media, the total number of cells per

microsphere is roughly 100. This number was obtained by using the number of cells in a 20 lm

thick slice and extrapolating the cell number to the total volume of the microsphere. Studies

have demonstrated that the optimal pore size for ingrowth is>100 lm (Refs. 48 and 49),

whereas the average porosity within the polyHIPE studied here was 25 lm, with few intercon-

necting channels between the pores being larger than 7 lm. Lu et al. studied the culture of

osteoblasts in porous ceramics and found that within their interconnected porous system,

osteoblasts/bone ingrowth required interconnecting pores larger than>20 lm in diameter50

which is larger than those in the polyHIPE material. Previous studies on hES-MP cells grown

on polyHIPEs have focussed on scaffolds with larger pore sizes.51 Smaller pores (�50 lm) are

reported to stimulate the production of osteoblast-like cells in-vitro.30 Consequently, we concen-

trated on microparticles with smaller pore sizes, comparable to the polypropylene glycol-based

particles studied by Moglia et al.,34 to facilitate osteogenic differentiation in-vitro. Intranuovo

et al.52 demonstrated in their paper that a coating gradient exists when using plasma based coat-

ing techniques in large (1 cm diameter by 5 mm height) porous scaffolds (�250 lm pore sizes).

This can be exploited to enhance the ingrowth of cells within these large scaffolds. In our case,
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the individual scaffolds are much smaller (200 lm spheroids), and it is unlikely that a discern-

ible gradient is established in these spheroids.

hES-MP cells cultured on microspheres within osteogenic media were found to produce

both mature collagen and calcium after 28 days in culture, which indicates that the cells have

become osteoblastic in nature.53,54 Using SHG confocal imaging, collagen was shown within

the pores of the microsphere. Alizarin red staining of the microspheres also showed deposits of

calcium within the pores of the microspheres. These pores are known to contain cells, as can

be seen in the H&E staining, and this suggests that the cells that have entered the microspheres

have begun to differentiate into osteoblasts. When cultured in growth media, cells were not

observed within the microsphere pores and no osteoblast indicators were observed.

An enhanced vascularisation response was observed in the CAM assay after 7 days for

microspheres pre-cultured with hES-MP cells in osteogenic media, when compared to either

cells or microspheres in isolation. This suggests that cells bound to the microspheres act syner-

gistically to stimulate angiogenesis. However, microspheres contained cells cultured in osteo-

genic media, whereas the cells in the control were cultured in growth media, and therefore, the

cells introduced to the CAM assay are likely to be different. The microspheres were agglomer-

ated within a microtissue, and it is likely that a significant sub-population of cells reside within

a hypoxic environment. This could stimulate the endogenous release of angiogenic growth

factors from the hypoxic cells.55 It is also possible that the microspheres provide physical pro-

tection to cells, which would keep cells in a concentrated area instead of dispersing in the

CAM. Early differentiation (days 4–14) of MSC cells into osteoblasts is typically marked by an

upregulation of vascular endothelial growth factor (VEGF) from the cells.56 This upregulation

may be partially responsible for the increased vascular response, in addition to the potential

presence of hypoxic cells. We can conclude that while it is not the microspheres themselves

which cause the angiogenic response, they are potentially involved in enabling the cells to pro-

mote blood vessel formation.

The packing of spherical objects such as microspheres will include voids although these

gaps are unlikely to be large enough for blood vessel ingrowth. In this regard, as the micro-

spheres are not fixed in place, it could be possible for the growing vasculature to displace the

microspheres to grow. The microspheres were designed to be 200 lm in diameter to ensure that

cells would be able to receive nutrients as they were well within the diffusion range.

In the CAM assay, microspheres implanted without cells did not produce a vascularisation

response. However, the microspheres were found to recruit local cells from the developing

chick, which fully infiltrated the internal porosity of the scaffold over the 7-day study. This

must have occurred through the small,>7 lm diameter, interconnecting windows between the

pores. This in-vivo finding suggests that empty microspheres may recruit cells from within the

human body if implantation occurred without pre-culturing with cells.

CONCLUSION

Two methods of manufacturing microspheres were compared which differed in the particle

size distributions but both achieved microspheres with an extensive interconnected pore distri-

bution. The particles were coated with acrylic acid to improve hES-MP adhesion and conse-

quent proliferation. hES-MPs were observed migrating into the microspheres and showed indi-

cations of differentiation into osteoblasts. These particles preloaded with hES-MPs were found

to be angiogenic in a chick CAM assay. Interestingly, this result was only observed when hES-

MPs and microparticles were used in combination. We suggest that this is a promising approach

for an injectable scaffold to deliver MSC and inducing angiogenesis in non-healing bone frac-

tures or in reconstructive surgery.

METHODS

All chemicals were purchased from Sigma-Aldrich, UK, and used as supplied unless other-

wise stated.
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High internal phase emulsion (HIPE) preparation

A HIPE is formed by mixing two immiscible liquids to form a stable emulsion, and the

EHA/IBOA copolymer HIPE was prepared according to a published procedure.29 Briefly, a

HIPE was prepared by mixing the monomers isobornyl acrylate (IBOA, 3.66 g) and 2-

ethylhexyl acrylate (EHA, 1.56 g) with the crosslinker trimethylolpropane triacrylate (TMPTA,

1.41 g) using an overhead stirrer. The surfactant Hypermer B246 (0.21 g, Croda) was added,

and the solution was mixed until it was dissolved. The photoinitiator diphenyl(2,4,6-trimethyl-

benzoyl)phosphine oxide/2-hydroxy-2-methylpropiophenone blend (0.35 ml) was added before

the addition of water.

To prepare a HIPE with an aqueous content of 80%, 28 ml of deionised water was added

over 5 min in a drop-wise fashion into a 100 ml capacity beaker containing the oil phase, stirred

at a specific stirring speed using an overhead stirrer (Lab Egg, IKA). The emulsion was stored

in an amber glass vial (Supelco) and used within 6 h of preparation. The stirring speeds used to

investigate processing conditions were 320, 540, 765, 870, and 1260 rpm. To investigate the

effect of temperature on porosity, the aqueous temperature was stabilised at 4, 15, and 30 �C
before addition to the monomer.

PolyHIPE microsphere manufacture via CSTR

Using a stirred tank reactor is a popular method of producing particles of one phase in the

second immiscible phase. A 100 ml capacity beaker (50 mm diameter and 70 mm height) con-

taining deionised water (40 ml) was set stirring at a defined rate using an overhead stirrer (Lab

Egg, IKA). HIPE (2 ml) was added to the beaker in a drop-wise fashion with continuous stirring

at room temperature. The resulting double emulsion (w/o/w) was left stirring for 2 min

(350 rpm). Stirring was subsequently stopped, and the microspheres were cured immediately

using the UV output of a mercury lamp (Omnicure S1000, 100 W).

PolyHIPE microsphere manufacture via T-junction microfluidic

As the alternative fabrication method, a microfluidic system was developed based on the

one previously described.25 Briefly, a small internal diameter (0.15–0.51 mm, Nordson EFD)

dispensing tip was used to inject the photocurable HIPE into a 6 mm diameter silicone tube

(Advanced Fluid Solutions) through which a continuous flow of deionised water was driven via

a peristaltic pump (Masterflex L/S tubing pump, Cole-Palmer). The resulting droplets were

immediately cured by the UV output of a mercury lamp (Omnicure S1000). The monomer flow

rate was 3 ml/h (syringe pump, GeniePlus, Kent Scientific), while the water flow rate was set at

300 ml/min. A continuous stream of microspheres was produced, which were then collected in

a 40 lm sieve (40 lm cell strainer, BD Falcon). The system ran for 30 min to stabilise before

any microspheres collected were utilised. The flow rate was altered to the following settings to

examine the water flow rate impact on the microsphere size and distribution: 125, 250, 375,

500, 620, and 745 ml/min.

Imaging of polyHIPE samples

SEM analysis was performed on sectioned and whole microspheres along with sectioned

microspheres cultured with human embryonic stem cell-derived mesenchymal progenitor (hES-

MP) cells. Samples were mounted on aluminium stubs using adhesive carbon tabs and sputter

coated with gold (SC500, emscope) with a current of 15 mA for 2 min at 0.05 atm. Images were

then acquired using a scanning electron microscope (Philips/FEI XL30 ESEM) operating with

an electron beam energy of 15.0 kV. To determine the pore size, microspheres were sectioned

using a cryostat (Leica CM1860 UV) to 40 lm sections in Tissue Freezing Medium (Leica)

which was allowed to evaporate for mounting and gold coating. At least 50 pore sizes were

measured from each of the 3 SEM micrographs of a sample using ImageJ software (NIH). At

least two independent samples were analysed.
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PolyHIPE microspheres were imaged using a reflected light optical microscope (Miotic B5

professional series) and measured in ImageJ using a calibrated scale from a stage micrometre

(imaging apparatus). All microspheres in each image were measured using ImageJ until

n> 200. A histogram was used to compare microspheres manufactured by both methods.

Plasma polymerisation of acrylic acid onto the polyHIPE material

Data from our laboratory on scaffolds of similar chemistry indicated that plasma coating

with acrylic acid enhances cell adhesion on the HIPE material.29,57 Therefore, in preparation

for cell culture, the surface chemistry of the polyHIPE microspheres was modified by induc-

tively coupled plasma polymerisation of acrylic acid. The plasma polymerisation was carried

out in a custom-made apparatus consisting of a cylindrical borosilicate glass chamber with

stainless steel endplates connected to the vacuum pump (RV8, Edwards). Chamber pressure

was monitored by a Pirani gauge (APG-L-NW25 Edwards) and manually controlled by a needle

valve regulating the flow of monomer vapour (Edwards LV10K). The flow of monomer vapour

(acrylic acid) was established through the chamber at 2.4 cm3/min. The electromagnetic field

was generated by a coil wrapped around the chamber connected to a radiofrequency generator

(Coaxial power systems limited). The power to the coil was manually adjusted to 15 W, and the

polymerisation was allowed to proceed under these conditions for 20 min. Microspheres were

spread out evenly on aluminium foil within the chamber.

Preparation and culture of hES-MP cells

hES-MP cells (Y10090 Cellartis hES-MP 002.5) were maintained and passaged in a growth

medium composed of alpha minimum essential medium eagle (MEM) basal medium (aMEM,

Lonza) supplemented with human basic fibroblast growth factor (bFGF) at 4 nM (Life technolo-

gies), 100 mg/ml penicillin-streptomycin, 10% foetal calf serum (FBS, Labtech), and L-gluta-

mine at 2 mM concentration. hES-MP cells were cultured in T-75 flasks that had previously

been coated with 0.1% bovine gelatine solution for 20 minutes before rinsing. Separate media

were prepared with supplements to promote osteogenesis. Ascorbate 2 phosphate at 50 lg/ml,

beta-glycerol phosphate at 5 nM, and dexamethasone at 10 nM were added to induce osteogenic

differentiation termed “osteogenic media.”

hES-MP cell in-vitro culture on polyHIPE microspheres

Microspheres were tested to investigate their ability to support a cell population and to deter-

mine differentiation. The samples were sterilised in 70% ethanol for 30 min, then washed 3 times

in deionised water, and soaked in aMEM media for 1 h. 100 000 hES-MP cells were suspended

via gentle pipetting and added to a T-25 flask (Greiner bio-one) containing 0.1 g of microspheres

in designated media (growth and osteogenic media). The T-25 flask was kept vertical to allow

cells the longest opportunity to attach to the microspheres. The flask was placed on a rocking

platform for 45 min at 12 oscillations per minute. The T-25 flasks were then incubated for a fur-

ther 2 h at 37 �C before microspheres were transferred to a new T-25 flask. The microspheres

were then rinsed with phosphate buffered saline (PBS) to remove unattached cells before adding

new medium. Media were replaced every 2 days by removing 80% of the medium and replacing

it with fresh medium. Cells were cultured for 11 days, and samples were taken at days 4, 7, and

11 for confocal microscopy and cell activity measurements using Resazurin salt assay.

CAM preparation, implantation, and extraction

The CAM assay was used to assess the vascularisation response of the microspheres in an

in-vivo environment. This assay was performed according to the published procedure58 and

consistent with the Home Office, UK guidelines. Fertilised chicken eggs (Gallus domesticus)

purchased from Medeggs were incubated from day 2 of fertilisation until day 8 at 37 �C in a

humidified egg incubator (R-COM Suro20). At day 8, a window was cut into the shell of the

egg (5 mm2) and the implants were injected into the opening using a 5 ml syringe with a
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1.1 mm internal diameter needle tip. Masking tape was used to secure sterilised (in ethanol,

30 min) parafilm over the implantation site to prevent infections.

Each egg was implanted with one of the following samples or controls. 0.5 g of polyHIPE

microspheres cultured as above for 3 days in osteogenic media with hES-MP cells were washed

and injected in PBS for implantation. 0.5 g of polyHIPE microspheres soaked in osteogenic

media for 3 days without cells were washed and injected in PBS for implantation. 100 000 hES-

MP cells cultured in growth media (P4) were injected in PBS into the egg. A control was used

where the egg was opened and then resealed without the addition of any foreign objects.

The chicken eggs were incubated until day 14 when the scaffolds were retrieved and the eggs

were terminated. The chicken eggs were removed from the incubator immediately prior to process-

ing. Angiogenesis was quantified by light microscopy just before scaffold retrieval (Miotic) and

using histological images of the retrieved scaffolds. Data on the density and bifurcations of the

blood vessels were obtained by analysing a 2 cm2 area around the implant over a series of images.

Resazurin salt assay for assessing hES-MP cell activity on microspheres

Cell activity of hES-MP cells on polyHIPE microspheres was determined using the

Resazurin salt assay. Resazurin sodium salt (5 mg/ml in PBS, 4 ml) was added to each T-25

flask for 4 h at 37 �C with the flask turned onto one side to avoid measurements from cells

deposited on the base plastic. The solution was removed with 200 ll added to a 96 well plate in

triplicate. Fluorescence was measured using a fluorescence plate reader (FLX800, BIO-TEK

Instruments, Inc.) with excitation at 570 nm and peak emission measured at 585 nm.

Histology of in-vitro and CAM samples

Histology was performed on microspheres cultured in-vitro with hES-MP cells and with

scaffolds retrieved from the CAM assay. Scaffolds were fixed in 3.7% paraformaldehyde in

deionised water for at least 30 min. The samples were placed into cryosectioning moulds and

surrounded by optimal cutting temperature (OCT) compound (Leica). These were frozen by

submersion into a bath of liquid nitrogen. Sections were cut with the cryostat Leica

CM1860UV (Leica). Samples were then stained with haematoxylin and eosin solutions (H&E),

using the standard protocol for frozen sections. Slides were then imaged using a light micro-

scope (Motic).

Fluorescent labelling of f-actin and nuclei of cells on scaffolds for imaging

Samples from both the in-vitro culture of hES-MP cells on microspheres and the scaffolds

from the CAM assay were stained for f-actin and cell nuclei for fluorescence imaging. Samples

were washed 3 times in PBS, fixed in 3.7% formaldehyde solution for 50 min, and then washed

with PBS. Samples were permeabilised for 15 min in a solution of PBS and 0.1% triton X-100

and then washed 3 times with PBS. DAPI and fluorescein isothiocyanate (FITC)-conjugated

phalloidin stains were made up at a concentration of 1:1000 in PBS and added to the samples

for 1 h at 4 �C. Samples were washed with PBS, then stored in PBS, and imaged using a confo-

cal microscope.

Confocal microscopy of polyHIPE microspheres from culture

Microspheres cultured both in-vitro with hES-MP cells and those removed from the CAM

assay were imaged using a confocal microscope. Images of 1756� 1756 and 1024� 1024 pix-

els were obtained using a Zeiss LSM 510META upright confocal microscope and either a

10� objective (Achroplan 10�/0.3 W, Carl Zeiss ltd) or a 40� objective (Achroplan 40�/

0.75 W, Carl Zeiss Ltd). DAPI was excited using a 760 nm two-photon Ti-Sapphire laser (16%

transmission) and emission detected between 435 and 485 nm. FITC Phalloidin was excited

using a 488 nm laser (4% transmission) and emission detected above 505 nm. Z-stack images

(1024� 1024 pixels) were obtained using the same settings as single plane images, but repeated

images were obtained of the same area, translated 11 lm in the z direction after each capture.
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SHG collagen imaging

Second harmonic generation (SHG) is a fluorescent imaging technique allowing the imag-

ing of mature collagen fibres within a sample. Samples were sectioned using microtome (40 lm

thick) from frozen sections of day 30 microsphere cultures. Samples were from microspheres

cultured in growth media and osteogenic media. An oil immersion lens (�40) was used, and

the sample was excited with a Ti-Sapphire 2-photon laser at 950 nm and the second harmonic

generated signal detected between 469 and 480 nm. Images were taken at 512� 512 pixels.

The SHG images of collagen were analysed to determine the significant difference in inten-

sity between samples. The images for the analysis had been maintained at original intensity for

comparison. ImageJ was used to measure fluorescence. ImageJ was used to find the area, inte-

grated density, and the mean grey value of the regions of interest (microsphere location). Control

regions were obtained from a non-fluorescent area. The corrected total fluorescence (CTF) was

calculated by the following formula:

CTF ¼ Integrated Density� Area of selected fluorescenceð
�Mean fluorescence of background readingsÞ:

Alizarin red stain for calcium

The presence of calcium deposits is detected using an alizarin red stain. 1 ml of 1 mg/ml

alizarin red in dH2O, adjusted to pH 4.1 by adding ammonium hydroxide, was added to the

sample for 20 min. The sample was washed with dH2O until all unstained dye was removed.

Samples were then rehydrated as above and then fixed.

Measuring cell ingrowth as a function of time

To understand the behaviour of cell ingrowth into the microspheres over time in culture, a time

course study was conducted. Uniform microspheres were produced to keep the diameter of micro-

spheres constant. Samples were taken at days 1, 4, 7, 11, 15, 20, 25, and 30 fixed in 3.7% formalde-

hyde solution for 1 h and then sectioned and stained with H&E as above. The number of cells in each

microsphere section was counted; cells at the surface were not included in the count. The 5 cells clos-

est to the centre point of 100 lm were measured using imageJ from the middle of the cell to the clos-

est edge. Samples were left in osteogenic media until day 60 for sectioning and imaging.

SEM preparation of hES-MP cell culture on polyHIPE microspheres using

hexamethyldisilazane

Cells within sectioned microspheres underwent SEM analysis to determine the cell struc-

ture and location within the microsphere. After samples were sectioned and placed on 12 mm

glass coverslips, PBS was used to remove the tissue freezing media. Samples were then treated

with the following solutions to dehydrate the sample for SEM: 15 min in each solution of 35%,

60%, 80%, 90%, and 100% ethanol in distilled water, hexamethyldisilazane (HDMS) and

ethanol (1:1 weight concentration) for 1 h, and then 100% HMDS for 5 min twice.

Hexamethyldisilazane was then removed, and the samples were allowed to air-dry for 1 h.

Samples were then gold coated and imaged using an SEM.

Statistics

Statistical analysis was performed with GraphPad Prism using two-way analysis of variance

(ANOVA) and plotted as mean 6 standard deviation, unless otherwise stated. For in-vitro
polyHIPE cultures with hES-MP cells, n¼ 3. For In-vivo CAM assay, n¼ 6. Data were tested

for normal distribution using GraphPad Prism. A statistical correction factor of 2=�3 was used

to derive the actual values of the pores from the measured diameters.59 This corrects for the

measured diameter of a pore not being the actual midpoint of the pore, as a section will not cut

each pore directly into half.
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