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Abstract: Antibiotic-associated diarrhea (AAD) is a self-limiting disease mediated by antibiotic
therapy. In clinical practice, several types of probiotics are used in treating AAD, but minimal
research has been done on Bacteroides-based microecologics. Our aim was to evaluate the therapeutic
effects of Bacteroidetes uniformis FGDLZ48B1, B. intestinalis FJSWX61K18, Bifidobacterium adolescentis
FHNFQ48M5, and B. bifidum FGZ30MM3 and their mixture on AAD in mice. The lincomycin
hydrochloride-induced AAD models were gavaged with a single strain or a probiotic mixture
for a short period to assess the changes in colonic histopathology and cytokine concentrations,
intestinal epithelial permeability and integrity, short-chain fatty acids (SCFAs), and the diversity of
intestinal microbiota. Our data indicated that both the sole use of Bacteroides and the combination of
Bacteroides and Bifidobacterium beneficially weakened systemic inflammation, increased the recovery
rate of tissue structures, increased the concentrations of SCFAs, and restored the gut microbiota.
Moreover, the probiotic mixture was more effective than the single strain. Specifically, B. uniformis
FGDLZ48B1 combined with the B. adolescentis FHNFQ48M5 group was more effective in alleviating
the pathological features of the colon, downregulating the concentrations of interleukin (IL)-6, and
upregulating the expression of occludin. In summary, our research suggests that administration of
a mixture of B. uniformis FGDLZ48B1 and B. adolescentis FHNFQ48M5 is an effective approach for
treating AAD.
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1. Introduction

Antibiotic-associated diarrhea (AAD) is a major clinical complication caused by side
effects and the overuse of antibiotics [1,2]. AAD is estimated to typically occur in approxi-
mately 5–30% of patients during or at the end of antibiotic therapy [3], and often caused
significant changes in gut microbiota [4]. Clinical symptoms in patients with AAD vary
from mild diarrhea without complications to severe colitis, fulminant pseudomembranous
colitis, or even death [5]. A possible mechanism of AAD is the antibiotic acting directly on
the intestinal mucosa, thereby leading to the overgrowth of pathogenic bacteria such as
Clostridium difficile Staphylococcus, Candida, Enterobacteriaceae, and Klebsiella [6]. Of these, C.
difficile is the most common cause of AAD infections [7,8]. The use of antibiotics can cause
dysregulation of the metabolic activity of colonic microbiota [9]. Microbial metabolites can
modulate the metabolic integrity of epithelial cells and elicit immune reactions [10,11]. In
addition, decreased resistance to pathogens caused by AAD is associated with alterations
in the metabolism of carbohydrates, SCFAs, and bile acids [12].
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Growing evidence indicates that AAD is caused by dysbiosis of the gut microbiota
caused by antibiotic treatment [13,14]. Probiotics may maintain or recover intestinal mi-
croecology through nutritional competition, receptor competition, favoring the growth
of nonpathogenic bacteria, inhibiting mucosal adhesion of pathogens, or simulating im-
munity during or after antibiotic treatment [15,16]. Current research is mainly focused
on the genera Lactobacillus, Bifidobacterium, and Saccharomyces, which are commonly used
to prevent or treat AAD [17]. Bifidobacterium preparations are increasingly being used
in treating pediatric AAD. Pooled evidence from a systematic review, including five Bifi-
dobacterium preparations from 30 trials, showed that Bifidobacterium preparations might be
effective in preventing and treating pediatric AAD [18]. In addition, a study showed that
long-term consumption of Clostridium butyricum in combination with a B. infantis mixture
facilitated the recovery of gut microbiota and colonic tissue structure, which was a superior
response to that observed in single strains in AAD treatments [19]. All of these studies
have reinforced the potential role of probiotics in alleviating AAD.

Bacteroides are being actively researched as next-generation probiotics (NGPs) because
of their potential benefits to human health. Some of these species can inhibit pathogenic
bacteria colonization [20] and alleviate intestinal inflammation [21]. In a recent study,
researchers determined that B. fragilis ZY -312 recovered epithelial cell organization and
barrier functions through the ERK signaling pathway, thereby improving the abundance
of specific commensal microbiota, and subsequently ameliorating diarrheal symptoms
associated with AAD [22]. Moreover, the latest study correlated data from 117 individuals
in four population-based cohorts and found that 21 bacteria species, including Bacteroides
intestinalis, B. uniformis, B. adolescentis, and B. bifidum, showed a strong correlation with
ecological recovery following antibiotic treatment [23]. In addition, a series of studies have
demonstrated that B. uniformis can reduce the expression of acyl carrier proteins, thereby
inhibiting increases in lipopolysaccharide (LPS)-induced proinflammatory cytokine levels,
and beneficially reducing inflammation [24,25].

In addition, Kern Rei Chng et al. showed that combining B. thetaiotaomicron and B.
adolescentis promoted a synergistic recovery of diversity and mucin enrichment in a mouse
model associated with microbiome recovery following antibiotic treatment [23]. They
explained that this synergistic effect was a result of the reconstruction of the food web in the
intestinal microbial ecosystem, thereby forming a positive feedback pathway, with bacteria
capable of colonization, for example, B. thetaiotaomicron provides an energy source for B.
adolescentis that cannot colonize, which in turn produces more additional short-chain fatty
acids to promote colonization. These findings provide new ideas for developing probiotics
that help in the recovery of gut microbiota following antibiotic treatment. Therefore, the
purpose of this study was to explore whether B. intestinalis FJSWX61K18, B. uniformis
FGDLZ48B1, B. adolescentis FHNFQ48M5, and B. bifidum FGZ30MM3 help alleviate AAD
and whether there is a synergistic feedback effect between these species. Specifically, this
study assessed whether a combined treatment protects against lincomycin hydrochloride-
induced intestinal injury, which is one of the causative mechanisms of AAD metabolic
dysfunction.

2. Materials and Methods
2.1. Bacterial Strains and Culture

B. intestinalis FJSWX61K18, B. uniformis FGDLZ48B1, B. adolescentis FHNFQ48M5, and
B. bifidum FGZ30MM3 (Table 1) were obtained from the culture collection of the Food
Microbiology Department, Jiangnan University (Wuxi, China). Bifidobacterium spp. were
cultured in a modified de Man, Rogosa, and Sharpe (mMRS) medium. Bacteroides spp.
were cultured in a brain heart infusion (BHI) medium. All the strains were cultured in a
Whitley DG250 anaerobic workstation.
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Table 1. Strains used in the work.

Strain Origin Region

FJSWX61K18 Human feces Jiangsu Province, China
FGDLZ48B1 Human feces Guangdong Province, China

FHNFQ48M5 Human feces Henan Province, China
FGZ30MM3 Human feces Guizhou Province, China

2.2. Animal Experimental Design

Male SPF BALB/c adult mice (20–22 g) from a single breeding colony were provided
by Zhejiang Vital River Laboratory Animal Technology Co. Ltd. (Beijing, China). They
were placed in an air-conditioned room (21–25 ◦C) with a relative humidity of 40–60% and
a 12 h light/dark cycle.

After seven days of adaptation, the mice were randomly assigned to nine groups of
10 mice each as follows (Table 2): a normal control group (Con), an antibiotic-associated
diarrhea group (Mod), and treatment groups, including B. intestinalis FJSWX61K18 (Bi), B.
uniformis FGDLZ48B1 (Bu), B. adolescentis FHNFQ48M5 (Ba), B. bifidum FGZ30MM3 (Bb), B.
intestinalis FJSWX61K18 and B. adolescentis FHNFQ48M5 (Bi + Ba), B. uniformis FGDLZ48B1
and B. adolescentis FHNFQ48M5 (Bu + Ba), and B. intestinalis FJSWX61K18 and B. bifidum
FGZ30MM3 (Bi + Bb). The mice except the Con group were gavaged with lincomycin
hydrochloride (3 g/kg) twice daily at 8:00 a.m. and 20:00 p.m. for 3 days. All mice were
assessed daily based on the scoring standard of diarrhea status from a previous study [26].
Feces were collected prior to execution, and fecal water content was measured using the
freeze-drying method.

Table 2. Animal experimental design.

Groups Modeling Period (3 Days) Recovery Period (3 Days)

Con PBS PBS

Mod lincomycin hydrochloride
(3 g/kg) twice daily PBS

Bi lincomycin hydrochloride
(3 g/kg) twice daily 5 × 108 CFUs of B. intestinalis FJSWX61K18

Bu lincomycin hydrochloride
(3 g/kg) twice daily 5 × 108 CFUs of B. uniformis FGDLZ48B1

Ba lincomycin hydrochloride
(3 g/kg) twice daily 5 × 108 CFUs of B. adolescentis FHNFQ48M5

Bb lincomycin hydrochloride
(3 g/kg) twice daily 5 × 108 CFUs of B. bifidum FGZ30MM3

Bi + Ba lincomycin hydrochloride
(3 g/kg) twice daily

5 × 108 CFUs of B. intestinalis FJSWX61K18 +
5 × 108 CFUs of B. adolescentis FHNFQ48M5

Bu + Ba lincomycin hydrochloride
(3 g/kg) twice daily

5 × 108 CFUs of B. uniformis FGDLZ48B1 +
5 × 108 CFUs of B. adolescentis FHNFQ48M5

Bi + Bb lincomycin hydrochloride
(3 g/kg) twice daily

5 × 108 CFUs of B. intestinalis FJSWX61K18 +
5 × 108 CFUs of B. bifidum FGZ30MM3

Finally, all the mice were anesthetized with isoflurane. The serum was separated from
centrifuged blood samples (3000 rpm, 15 min) and frozen at −80 ◦C. Feces from the colon
and cecum of each mouse were collected and frozen at −80 ◦C. A portion of each colon
was fixed with paraformaldehyde (4%), and the remainder was stored at −80 ◦C.

2.3. Ethics Statement

All experiments involving animals were conducted in accordance with the ethical
policies and procedures approved by the Committee of Ethics of Jiangnan University, China
(Approval no. JN. No 20210615b1000718(185)). The use and care of laboratory animals
were in accordance with the guidelines established by the European Community (Directive
2010/63/EU). We strove to maximize the health of the mice and reduce their suffering.
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2.4. Histological Colon Observations

Colon tissue sectioning and staining methods were performed as described by Sun
et al. [27]. The colon samples were fixed with 4% paraformaldehyde, then dehydrated with
different levels of ethanol and embedded in paraffin. Next, the paraffin sections (5 µm)
were deparaffinized and stained with hematoxylin and eosin. A pathological section
scanner was used to capture images.

2.5. Biochemical Analyses of the Colon and Serum

The colon tissue was broken in cold saline and centrifuged (3000× g, 4 ◦C, 10 min).
A BCA protein assay kit (Beyotime Biotechnology Inc., Shanghai, China) was used to
determine the protein content of the supernatant. The levels of IL-1β, IL-6, IL-17, and
TNF-α were measured using the corresponding ELISA kits (R&D Systems China Co., Ltd.,
Shanghai, China). Serum LPS levels were determined using ELISA assay kits (Shanghai
Enzyme-linked Biotechnology Co., Ltd., Shanghai, China).

2.6. Analysis of SCFAs

All caecal contents of each mouse (20–50 mg) were collected and stored at−80 ◦C. The
extraction and determination of butyric acid, acetic acid, propionic acid, and isobutyric acid
were conducted using a previously described method [28]. Gas chromatography—mass
spectrometry (Shimadzu Corporation, Japan) was used to analyze the concentrations of
SCFAs.

2.7. Real-Time PCR Analysis

Total RNA from the colon tissue was extracted, and cDNA was synthesized using a Re-
vertAid First Strand cDNA Synthesis Kit (Vazyme Biotech Co., Ltd.; Nanjing, China). Gene
expressions of Mucin-2, occluding, and sodium-hydrogen exchange protein (NHE)3 were
detected using real-time quantitative polymerase chain reaction [29]. mRNA expression
was determined using a real-time quantitative PCR instrument (CFX Connect; Bio-Rad),
as well as a universal iTaq SYBR green Supermix and associated primers (Table 3). The
conditions were 40 cycles of 95 ◦C for the 30 s, 95 ◦C for 5 s, and 60 ◦C for 30 s. The β-actin
gene was used as a reference gene for the calculation of quantitative expression of the
target gene. The expression of genes was calculated using the 2−∆∆Ct method with the
control group as the base.

Table 3. Primer sequences used for qPCR analysis.

Gene Forward (5′ to 3′) Reverse (5′ to 3′)

β-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
Mucin-2 CAACAAGCTTCACCACAATCTC CAGACCAAAAGCAGCAAGGTA
Occludin CACACTTGCTTGGGACAGAG TAGCCATAGCCTCCATAGCC

NHE3 TGGCCGGGCTTTCGACCACA GGGACCCACGGCGCTCTCCCT

2.8. Preparation of Total DNAs and HIGH throughput Sequencing Analysis

Colon contents were used to extract total genomic DNA using the FastDNA® Spin kit
(MP Biomedicals Ltd., Santa Ana, CA, USA). Sequencing of the gut microbiota genomes
and data processing were performed as described in recent studies [30,31].

2.9. Statistical Analysis

Data are expressed as the mean ± standard error of the mean (SEM). All results were
analyzed using one-way analysis of variance (ANOVA), followed by Dunnett’s multiple
comparisons test using GraphPad Prism software version v8.0.2(263).
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3. Results
3.1. Effects of Different Treatments on Diarrhea Status Scores and Water Content in Feces

Initially, after the administration of lincomycin hydrochloride, all mice except the
control group showed mental depression, a red anus, and diarrhea. Compared with the
control group, the diarrhea status scores and stool water content of the model group was
significant, which suggested that the AAD mouse model was successfully established. As
shown in Figure 1B, a significant decrease in diarrhea status scores was observed in the Bu,
Bi + Ba, and Bu + Ba groups. Among them, the Bu + Ba group showed a better result than
the Bu group. Furthermore, the Bi + Ba and Bu + Ba groups exhibited significantly reduced
stool water content. Although the Bi or Bu groups also showed a significant decrease, the
effect was not as great as the mixed bacteria group (Figure 1C).
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3.2. Effect of Different Treatments on Histopathological Structure of Colon Tissues

As shown in Figure 2, the colons of mice in the control group exhibited normal
histological features. The mucosal epithelium remained intact, and the intestinal glands
were abundant and closely arranged. Compared with the control group, the colonic
mucosa of AAD mice showed a small inflammatory cell infiltration and mild edema in the
submucosa. There was a slight reduction in the number of cupped glandular cells. These
pathological characteristics were also observed in most treatment groups. However, no
significant histopathological lesions were observed in mice treated with Bu or Bu + Ba,
thereby indicating that it may reduce intestinal inflammation.
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Figure 2. Histological examination of the representative image of H&E staining (scale bar = 100 µm).
Yellow arrow—depletion of goblet cells; green arrow—mucosal edema; and black arrow—
inflammatory cellular infiltration.

3.3. Effects of Different Treatments on Proinflammatory Cytokine Expression

To compare the immunomodulatory effects of different strains on AAD mice, cytokines
were detected in colonic tissues by ELISA (Figure 3). The levels of IL-6 in the model group
were significantly higher than those in the control group. Among the tested strains, the
Bu + Ba group showed reduced levels of IL-6. Although the levels of IL-1β, IL-17, and
TNF-α in the colonic tissues of mice were not significantly different from those in the
control group, they showed a modest increase, whereas the Bu + Ba treatment decreased
these proinflammatory inflammatory factors.
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3.4. Effects of Different Treatments on Intestinal Barrier Integrity

To analyze the regulation of different treatments on the intestinal barrier, serum LPS
levels were determined. As shown in Figure 4, the level of LPS was significantly higher in
the model group, whereas the Bi + Ba and Bi + Bb groups showed decreased LPS levels in
the serum. Moreover, the Bi + Ba group showed a significant difference compared with
the model group. Compared with the control group, the mRNA expression of occludin
and Mucin-2 significantly decreased in the model group. However, the Bu + Ba treatment
enhanced the expression of occludin in the colon to the level of the control group. In
addition, Bi + Ba and Bu + Ba also increased the Mucin-2 expression. In the model group,
diarrhea induced a significant decrease in the expression of NHE3 in the colonic tissues of
the mice, whereas a supplementation with Bi, Bi + Ba, and Bu + Ba significantly increased
this expression up to the level of the control group.
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between groups.

3.5. Effects of Different Treatments on SCFA Production

After treatment with lincomycin hydrochloride, the concentrations of acetic acid,
propionic acid, isobutyric acid, and isovaleric acid in the caecal specimens of the model
group mice were significantly reduced (Figure 5). Compared with the model group, the Bi
and Bu groups had significantly increased acetic acid, propionic acid, and isobutyric acid
concentrations. The Bi + Ba treatment significantly increased propionic acid, isobutyric acid,
and isovaleric acid, but did not significantly increase the level of acetic acid. Significant
increases in acetic acid, propionic acid, isobutyric acid, and isovaleric acid concentrations
were also observed in the Bu + Ba group. The Bi + Bb group showed significantly increased
levels of propionic acid, isobutyric acid, and isovaleric acid in the caecal specimens. These
results also indicated that the gavage of Bacteroides and the mixture of probiotics most
strongly benefitted the recovery of SCFA concentrations in AAD mice.
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3.6. Effect of Different Treatments on the Composition and Diversity of Gut Microbiota

The evenness and Shannon indexes presented the evenness and diversity of the
gut microbiota, respectively. The results showed that the evenness and diversity were
significantly reduced following the lincomycin hydrochloride treatment (Figure 6A,B).
Compared with the model group, the Bi + Ba, Bu + Ba, and Bi + Bb groups showed
increased evenness index, and there was a significant difference in the increase in the
Bu + Ba group. The highest Shannon index values were observed in the Bi + Ba and
Bu + Ba groups. The Bi and Bi + Bb groups also exhibited a significant increase. The
purpose of the β-diversity analysis was to determine the similarities among the groups,
and the principal component analysis (PCoA) of community β-diversity and clustering of
distance based on the Jaccard index analysis indicated that the clusters of the microbial
compositions of the Bi, Bu, Bi + Ba, Bu + Ba, and Bi + Bb groups were closer to the control
group than the model group; this indicated that all these treatment groups potently restored
the intestinal microbiota disorder (Figure 6C,D). In conclusion, the mixture of Bacteroides
and Bifidobacterium most positively impacted the recovery of flora diversity in AAD mice,
with the Bu + Ba group facilitating the best recovery rate.
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3.7. Spearman’s Correlation Analysis of Physiological and Anti-Inflammatory Effects

In this study, Spearman’s correlation coefficient was used to express the correlation
between the two indicators. As shown in Figure 6E, the water content in the stool was
negatively correlated with the Shannon index and the concentrations of isobutyric acid,
and positively correlated with the levels of IL-6. In addition, the concentration of acetic
acid was positively correlated with occludin. The evenness index was negatively correlated
with the diarrhea status scores.

4. Discussion

This study aimed to determine whether Bifidobacterium strains, Bacteroides strains, and
their mixture help alleviate AAD. We successfully established an AAD mouse model via
gavage of lincomycin hydrochloride and explored the AAD-alleviating effects of these
strains in animal models. The mice from the model group showed diarrhea-like symptoms
and an increase in stool water content, as described in a previous study [26]. Notably, the
establishment of this model resulted in mild signs of colonic inflammatory cell infiltration.
These results suggested the induction of low-grade colonic inflammation in AAD mice. Our
data demonstrated that Bacteroides and the combination of Bacteroides and Bifidobacterium
alleviated the symptoms of AAD, and that the probiotic mixture groups facilitated the
strongest recovery rate following AAD. The combination amplifies the benefits of probi-
otics to treat AAD, thereby enhancing our understanding of the potential mechanisms of
bacterial interactions over the immune–metabolic axis.

In a previous study, the authors noted that the growth of some species depends on
the presence of other species based on bacterial food webs [23]. We combined the selected
strains based on the dependence patterns between microorganisms. During the recovery
period following antibiotic treatment, some Bacteroides can more effectively colonize the
epithelial mucosa owing to their mucin-degrading ability [32,33]. Because they also break-
down dietary carbohydrates of plant and animal origin, they act as keystone species to
promote the growth of other species [34]. Other species, such as Bifidobacterium, can use the
monosaccharides produced by degradation to grow and produce large amounts of SCFAs,
which promote the growth of colon cells and thus increase mucin production [35]. From
the perspective of diversity and biomass, this positive feedback loop may lead to a faster
ecological recovery. In addition, the combined treatment may modify the metabolic path-
ways of microorganisms, thereby, altering the nutrients available in the intestinal lumen
and improving their accessibility to the host. Our results confirmed that their combination
reduced diarrhea status scores and water content in stools. This was accompanied by
an improvement in energy metabolic pathways and the restoration of intestinal immune
homeostasis [36]. Notably, Bacteroides play a greater role than Bifidobacterium in restoring
metabolic alterations.

Changes in cytokines have also been associated with the use of antibiotics, such
as tumor necrosis factor and interleukins, both of which act as communicators between
immune cells and mirror the inflammatory profile of the host. As noted above, the colonic
tissue showed mild edema and inflammatory infiltration in AAD mice. Therefore, we next
assessed the levels of inflammatory cytokines in colonic tissue and found increases in the
concentrations of inflammatory factors, including IL-6 and IL-17. Excessive amounts of
proinflammatory cytokines can cause disturbances in the immune response, which in turn
can lead to an inflammatory response [37]. The Bu + Ba group decreased the production
of IL-6 to relieve intestinal inflammation. This result was consistent with a previous
report [19], in which C. butyricum combined with the B. infantis probiotic mixture inhibited
the AAD-induced inflammatory response by balancing the levels of proinflammatory
cytokines and anti-inflammatory cytokines.

Compared with normal control animals, AAD mice exhibited defective gastrointestinal
integrity and abnormal tight junction protein expression. These findings indicate that the
defective intestinal barrier provides pathogens with access to the host, and this is likely
the primary cause of diarrhea in AAD mice [22]. Occludin and Mucin-2 are two important
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intestinal barrier-related genes. Our results indicated that the mixture of probiotics restored
their expression, and maintained the integrity and permeability of the intestinal barrier.
Studies have shown that epithelial cells are surrounded by mucus and tight junctions of
the gastrointestinal tract, known as the first barrier of the intestine [38]. Probiotics have
beneficial effects in improving the barrier function of the intestinal mucosa. In addition, a
previous study showed that a daily gavage of 109 CFU of B. fragilis ZY-312 was associated
with increases in mucin synthesis, ZO-1, and epithelial cell proliferation in the colon [22].
NHE3 is one of five plasma membrane Na+/H+ exchangers and plays an important role in
fluid reabsorption and acid-base balance [39]. B. subtilis CU1 may increase the ability of
the colon to absorb excessive water in the presence of diarrhea by acting on the expression
of NHE3 [40]. In our study, treatment with Bacteroides stains increased the expression of
NHE3 and thus promoted fluid absorption. Owing to the critical role of intraluminal solute
concentration in the development of diarrhea, using probiotics to facilitate changes in
intestinal electrolyte transporters may be an effective mechanism for treating AAD.

In this study, 16S rRNA sequencing was performed to determine the microbial compo-
sition of the mouse guts. Increases in the evenness index and Shannon index showed that
Bacteroides and a mixture of probiotics enhanced the diversity of the microbial community.
β-Diversity and distance clustering indicated that the lincomycin hydrochloride treatment
significantly altered the overall structure of the microbial community. The mixture of
probiotics and Bacteroides attenuated these changes, which resulted in a structure similar
to that of the control group, as well as improved the intestinal lumen environment. The
multiple effects of antibiotics on the gut microbiota include a reduction in the diversity
and evenness of gastrointestinal microorganisms [41]. These drastic changes lead to the
exhaustion of the normal intestinal microbiota residents and the chances for pathogens
to colonize. Probiotics can inhibit intestinal pathogens by producing antimicrobial com-
pounds, compete for rejection by consuming limited nutritional resources or adhering to
epithelial cells, or stimulate intrinsic microbial activity [42]. Zhang et al. [22] observed
overgrowths of Klebsiella and Enterobacter in an AAD rat model and demonstrated that an
oral treatment with the B. fragilis strain ZY -312 alleviated antibiotic-associated syndromes
by restoring intestinal microbiota diversity.

The majority of intestinal SCFAs originated from the fermentation and catabolism of
indigestible carbohydrates by microorganisms in the colon via different pathways. SCFAs
have reportedly been associated with the preservation of intestinal homeostasis. Acetic
acid has been demonstrated to be critical in inhibiting intestinal pathogens [43], and the
production of butyric acid may lead to an increase in mucin production and promote
tight junction integrity [44]. The study also detailed a strong correlation between SCFA
levels in feces and the abundance of Bacteroides [45]. The genus Bacteroides exhibits a high
degree of adaptability to the nutritional requirements of the intestinal environment, and
can use dietary or host-derived glycans depending on nutritional utilization [46]. Thus,
they facilitate the growth of other species that can produce SCFAs [47]. As shown in
Figure 5, our results confirmed this view again, and showed that the mixture of Bacteroides
and Bifidobacterium most strongly improved restoration. The inhibitory effect of SCFAs on
the production of proinflammatory mediators by neutrophils downregulates the proinflam-
matory cytokines [48]. SCFAs have reportedly inhibited the production of TNF-α, IL-2, and
IL-1β by modulating the NF-κB pathway, thus resisting host inflammation [49]. Therefore,
the high concentrations of SCFAs in the Bu + Ba group could be a potential mechanism
for protecting against intestinal inflammation in AAD mice. We further analyzed the
correlation between the mitigating effects of SCFAs and AAD, and the results validated
our conclusions.

Unlike Lactobacillus and Bifidobacterium, whose entire species are Generally Regarded
as Safe (GRAS) in the USA or licensed for consumption by the European Food Safety
Authority [50], the health-promoting properties of Bacteroides are strongly dependent on
the strain. Although several studies have considered Bacteroides as potential candidates
for next-generation probiotics, the roles of different Bacteroides species in human health
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and disease are controversial. Researchers have found that B. fragilis containing virulent
fragilysin genes accelerates inflammation [51]. Additionally, B. fragilis YCH46 produces
fibrinogen-degrading proteases that may disrupt defense systems and enhance infection
through a bacterial invasion of the injured tissue [52]. To date, only B. xylanisolvens DSM
23964 has been authorized by the European Commission to supplement pasteurized
milk products according to the Novel Food Regulation No. 258/97 [53]. Therefore, it is
necessary to conduct a comprehensive safety evaluation of Bacteroides and justify its use
under the precondition of avoiding its pathogenicity. However, we also enabled a rational
manipulation of the abundance of Bacteroides via diet. Previous studies have indicated
that alginate from Laminaria japonica increases the relative abundance of Bacteroides species.
Among them, B. finegoldii responded more positively to the intervention [54]. Another study
elucidated the basis for proliferating of Bacteroides in response to fructans, and revealed
a fructose-binding hybrid two component signaling sensor that controlled the fructose
utilization site in B. thetaiotaomicron [55]. In summary, we suggest that further attention
should be paid to screening and safety assessments of Bacteroides and the interactions
between Bacteroides and other intestinal microorganisms and dietary factors.

5. Conclusions

Collectively, Bacteroides and the mixture of Bifidobacterium and Bacteroides protected
against antibiotic-associated diarrhea in our study. B. uniformis FGDLZ48B1 + B. adolescentis
FHNFQ48M5 had the best protective effect against diarrhea in mice with AAD. Specifically,
Bu + Ba decreased the levels of inflammatory cytokines and increased the production of
SCFAs, and then restored the integrity of the intestinal barrier by promoting the expression
of tight junction proteins. Furthermore, Bu + Ba also changed the composition and structure
of the intestinal microbiota of mice, thereby promoting the specimens’ recovery from AAD.
However, additional studies are needed to evaluate the safety of B. uniformis FGDLZ48B1
in the human environment.
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