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Abstract: Metabolic adaptation to increased oxidative phosphorylation (OXPHOS) has been found in
gastrointestinal stromal tumor (GIST) upon imatinib treatment. However, the underlying mechanism
of imatinib-induced OXPHOS is unknown. Discovering molecules that mediate imatinib-induced
OXPHOS may lead to the development of therapeutic strategies synergizing the efficacy of imatinib.
In this study, we explored the role of microRNAs in regulating OXPHOS in GIST upon imatinib
treatment. Using a microarray approach, we found that miR-483-3p was one of the most downregu-
lated miRNAs in imatinib-treated tumors compared to untreated tumors. Using an extended series
of GIST samples, we further validated the downregulation of miR-483-3p in imatinib-treated GIST
samples by RT-qPCR. Using both gain- and loss-of-function experiments, we showed that miR-483-3p
could regulate mitochondrial respiratory Complex II expression, suggesting its role in OXPHOS
regulation. Functionally, miR-483-3p overexpression could rescue imatinib-induced cell death. These
findings provide the molecular link for imatinib-induced OXPHOS expression and the biological role
of miR-483-3p in regulating cell viability upon imatinib treatment.

Keywords: gastrointestinal stromal tumor (GIST); imatinib; microRNA; oxidative phosphorylation;
miR-483; succinate dehydrogenase B; Complex II

1. Introduction

Gastrointestinal stromal tumor (GIST) is the most common type of gastrointestinal
mesenchymal tumor, primarily harboring gain of function mutations in the KIT or platelet-
derived growth factor receptor-alpha (PDGFRA) genes [1]. The tyrosine kinase inhibitor
imatinib that blocks c-KIT and PDGFRA activation is the mainstay treatment for advanced
GIST, which has led to improved survival with a median progression-free survival of
18–20 months and a median overall survival of 52–72 months [2–5]. However, most pa-
tients who initially respond to imatinib treatment develop acquired resistance and tumor
progression after two years [6].

Deregulated cell metabolism has been recognized as a hallmark of cancer [7]. Although
the Warburg effect is generally accepted as the synonym of metabolic reprogramming,
recent emerging evidence disclosed that tumor cells could alternate their bioenergetics
between glycolysis and oxidative phosphorylation (OXPHOS) in a context-dependent
fashion [8]. Metabolic adaptation with shifting from glycolysis to OXPHOS has been
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reported to promote cancer cell survival under the stress of drug treatment [9,10]. As
shown by us [11] and Vitiello et al. [12], GIST cells can upregulate OXPHOS levels of
Complex II, III, and V as an adaptation to imatinib treatment. Targeting OXPHOS enhances
the cytotoxic effect of imatinib in GIST [12].

The underlying mechanism of metabolic reprogramming upon imatinib treatment
in GIST remains elusive. We previously demonstrated that imatinib also suppressed
mitochondrial biogenesis [11], suggesting that imatinib does not induce OXPHOS through
mitochondrial biogenesis. In the present study, we speculate that imatinib might induce
OXPHOS through microRNA regulation in GIST.

MicroRNAs (miRNAs) are small non-coding RNA molecules with a length of
18–25 nucleotides that regulate gene expression in a sequence-specific manner. Several
miRNAs have been demonstrated to regulate OXPHOS by targeting the expression of
mitochondrial electron transport chain complexes. For example, miR-210 has been demon-
strated to target multiple mitochondrial respiratory complexes, including Complex I (ND-
UFA4) [13,14], Complex II (SDHD) [14], and Complex IV (COX10) [15]. Both miR-181c and
miR-338 can target Complex IV (COX1 [16] and COX4 [17], respectively), while miR-127-5p
and miR-141 regulate Complex V (ATP synthases) [18,19].

Herein, we compared miRNA expression profiles between imatinib-treated and un-
treated GIST tumors and identified a subset of miRNAs that were differentially expressed
between the two groups. Among them, miR-483-3p was further investigated for its asso-
ciation with imatinib treatment and its involvement in OXPHOS regulation. Our results
suggest that miR-483-3p may contribute to imatinib-induced OXPHOS in GIST cells.

2. Results
2.1. Differentially Expressed miRNAs between Imatinib-Treated and Untreated GISTs

Global miRNA expression levels of 34 GISTs, including 19 imatinib-treated and
15 untreated tumors, were characterized using a microarray-based platform. After normal-
ization and filtering, 139 miRNAs were included for further analyses. Using SAM analysis,
12 up-regulated and 2 down-regulated miRNAs were identified with a false discovery rate
(FDR, q-value) of <20% in the imatinib-treated compared to untreated GISTs (Table 1).

Table 1. Microarray-based SAM results for top miRNAs in imatinib-treated (n = 19) vs. untreated
(n = 15) tumors.

miRNA Score (d) FDR q-Value (%)

Over-expressed in
imatinib-treated GISTs

hsa-miR-320a 2.02 0.00
hsa-miR-193a-3p 1.87 0.00

hsa-miR-320d 1.80 0.00
hsa-miR-320c 1.76 0.00
hsa-miR-320b 1.44 12.33

hsa-miR-574-5p 1.42 12.33
hsa-miR-23b 1.38 12.33

hsa-miR-125a-3p 1.37 12.33
hsa-miR-100 1.34 12.33
hsa-miR-20a 1.34 12.33

hsa-miR-28-5p 1.30 12.33
hsa-miR-92a 1.30 12.33

Under-expressed in
imatinib-treated GISTs

hsa-miR-149 −2.69 0.00
hsa-miR-483-3p −2.63 0.00

FDR = False discovery rate; only miRNAs with a q-value < 20% are listed.

We then performed hierarchical clustering analysis of the 34 GIST samples using
these 14 significant differentially expressed miRNAs. The analysis classified the samples
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into two main clusters: all imatinib untreated samples but two (GIST1 and GIST7) were
grouped together, while the majority of the treated samples (17 out of 19) were clustered in
a separate group (Figure 1A).
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Figure 1. miRNA expressions in imatinib-treated and untreated gastrointestinal stromal tumor
(GIST) samples. (A) Hierarchical clustering of the 14 differentially expressed miRNAs between
imatinib-treated (n = 19) and untreated GISTs (n = 15) was performed based on the Spearman’s Rank
Order Correlation and complete linkage. Red and green in the heatmap refer to higher and lower
expressions, respectively. The two main clusters are indicated by yellow and blue bars above the
dendrogram. (B) RT-qPCR analysis of four selected differentially expressed miRNAs in an extended
cohort of 33 untreated and 29 treated GIST samples. *** p < 0.001 by Mann–Whitney U-test.

To validate the miRNA array data, we performed RT-qPCR analyses of four selected
miRNAs in an extended cohort of 62 samples. We found significantly higher expres-
sion of miR-320b (p = 0.001, Mann–Whitney U-test) and lower expression of miR-483-3p
(p < 0.001, Mann Whitney U-test) in imatinib-treated GISTs, as compared to untreated
GISTs (Figure 1B). The expression of miR-320a and miR-193a-3p did not differ significantly
between imatinib-treated and untreated tumors (Figure 1B).

2.2. miR-320b and miR-483-3p Expression in GIST Cells upon Imatinib Treatment

To determine whether miR-320b and miR-483-3p can be regulated by imatinib, we
quantified their expressions in GIST cell lines after 24 h of imatinib treatment. Consistent
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with the observations in clinical samples, we found significant upregulation of miR-320b
and downregulation of miR-483-3p in GIST 882 and GIST T1 upon treatment with 1 µM
imatinib (Figure 2).
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Figure 2. Effect of imatinib treatment on miRNA expressions in GIST cell lines. (A) Western blot
showing the effectiveness of imatinib treatment in GIST cell lines, as demonstrated by inhibition of
KIT phosphorylation. (B) RT-qPCR analyses of miR-320b and miR-483-3p were performed in GIST T1
and GIST 882 cell lines after imatinib treatment (1 µM, 24 h). miRNA expression was normalized
to U48. Fold change refers to the normalized miRNA expression values relative to their respective
untreated cells. Differences between groups were calculated using paired t-test. * p < 0.05, ** p < 0.01.

2.3. Effects of miR-483-3p on OXPHOS Protein Expressions

Vitiello et al. and our previous study have shown upregulated OXPHOS proteins
upon imatinib treatment [11,12]. Given that miR-483-3p is involved in the insulin pathway
and in glucose metabolism [20], we further investigated whether miR-483-3p plays a role
in the regulation of OXPHOS proteins (Figure 3). In both GIST cell lines, we observed
that inhibition of miR-483-3p, using miRNA inhibitor, increased protein expression of
Complex II (SDHB), but not Complexes III (UQCRC2) or V (ATP5A) (Figure 3A,B). Con-
versely, overexpression of miR-483-3p, using miRNA mimic, reduced Complex II (SDHB)
protein levels in both cell lines, while no significant changes were observed for Complex III
(UQCRC2) or V (ATP5A) (Figure 3C,D). Notably, miR-483-3p overexpression or inhibition
did not yield significant changes in SDHB mRNA levels (Figure 3E).

2.4. Relationship between miR-483-3p and SDHB Expression upon Imatinib Treatment

Given that imatinib decreased miR-483-3p expression, we evaluated the expression of
the Complex II component SDHB in GIST cell lines with and without imatinib treatment.
As shown in Figure 4A,B, we observed increased SDHB protein levels in both cell lines
after imatinib treatment for 48 h and 96 h. To further establish the relationship between
miR-483-3p and SDHB expression, we compared miR-483-3p and SDHB protein expression
in GIST tumor samples. The results showed inverse correlations between miR-483-3p
and SDHB expression for both untreated (r = −0.5801, p = 0.009) and imatinib-treated
(r = −0.6270, p = 0.008) GISTs (Figure 4C).
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Figure 3. Effect of miR-483-3p overexpression and inhibition on oxidative phosphorylation (OXPHOS)
protein expressions. (A,C) Representative Western blots showing OXPHOS proteins in GIST cell
lines upon inhibition (A) or overexpression (C) of miR-483-3p and their respective non-targeting
controls (NC) at 72 h post-transfection. Estimated protein sizes are given to the right of the blots
in kiloDalton (kDa). (B,D) Bar plots showing quantification of OXPHOS proteins in (A,C). β-actin
was used as a loading control. miRNA inhibitor and mimic non-targeting controls were set to 1.0.
(E) RT-qPCR analysis of SDHB mRNA in GIST cells with overexpression or inhibition of miR-483-3p.
Error bars refer to SD of two or three independent experiments. Differences between groups were
calculated using paired t-test. * p < 0.05, ** p < 0.01, ns = not significant.
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Figure 4. Relationship between succinate dehydrogenase B (SDHB) protein expression and imatinib
treatment or miR-483-3p. (A) Representative Western blots showing SDHB protein expression in
GIST cell lines with and without imatinib treatment (1 µM). GAPDH was used as a loading control.
(B) Quantification of SDHB expression upon imatinib treatment of GIST cell lines at different time
points. Differences between groups were calculated using paired t-test. * p < 0.05, ** p < 0.01
(n = 3). (C) Inverse correlation between SDHB protein expression and miR-483-3p in untreated and
imatinib-treated GIST tumor samples.

2.5. Functional Role of miR-483-3p in Regulation of Cell Viability upon Imatinib Treatment

To address the functional role of miR-483-3p in GIST cells, we assessed the effect
of miR-483-3p inhibition or overexpression on the expression of cleaved PARP (cPARP),
which is a marker for apoptosis. No significant changes were found on cPARP level upon
inhibition or overexpression of miR-483-3p (Figure 5A,B), as well as cell viability in miR-
483-3p overexpressing cells (Figure 5C). However, overexpression of miR-483-3p rescued
cell death in imatinib treated cells, as assessed by trypan blue staining (Figure 5C). Notably,
overexpression of miR-483-3p also reversed imatinib-induced SDHB expression (Figure 5D).
Together, these results support the involvement of miR-483-3p in imatinib-induced SDHB
expression and the important role of this regulation in protecting cell death induced by
imatinib treatment.
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Figure 5. Effect of miR-483-3p regulation on cell viability with and without imatinib treatment.
(A) Western blots showing the effect of miR-483-3p inhibition or overexpression on cleaved PARP
(cPARP) expression in GIST cell lines. β-actin was used as a loading control. (B) Quantification of
cPARP protein level in (A). (C) GIST cells were transfected with miR-483-3p mimic or NC for 24 h,
followed by imatinib treatment for another 24 h. Cell viability was assessed by trypan blue staining.
(D) Western blots showing the effect of miR-483-3p overexpression on SDHB protein level after 48 h
of imatinib treatment. * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not significant by paired t-test. Error
bars represent SD. Each replicate is depicted by a dot.

3. Discussion

Cancer cells can exhibit metabolic adaptation in response to targeted therapy [21].
Several pieces of evidence have revealed that mitochondrial OXPHOS drives resistance
to chemotherapy or targeted drugs in leukemia and solid tumors [22]. Similarly, GIST
cells upregulate OXPHOS upon imatinib treatment [11,12]. However, the mechanism
underlying such metabolic reprogramming is not fully understood. Here we propose the
involvement of miR-483-3p in OXPHOS regulation in response to imatinib.

miR-483 is located in intron 7 of the insulin-like growth factor 2 gene (IGF2) in chro-
mosomal region 11p15. Two mature miRNAs, miR-483-3p and miR-483-5p, are processed
from the stem-loop structure of the precursor and both are known to play important roles
in cancer development [23]. miR-483-3p is often aberrantly overexpressed in cancers such
as adrenocortical carcinoma [24], pancreatic cancer [25], Wilms’ tumor [26], hepatocellular
carcinoma [27], colon cancer [26], and prostate cancer [28]. In contrast, downregulation
of miR-483-3p has been found in some other cancer types, including nasopharyngeal
cancer [29], breast [30], and gastric [31] cancers. These findings suggest that miR-483-3p
may function as an oncogene or tumor suppressor, depending on the cellular context. In
GIST, overexpression of miR-483-3p was found in CD117 positive/KIT-mutated tumors as
compared to CD117 negative/KIT-unmutated tumors [32]. Wild-type GIST is a distinct
subgroup of GIST that lacks KIT and PDGFRA mutations, which can be further classified
as SDH-deficient or SDH-competent. SDH-deficient GISTs commonly harbor inactivating
mutations in SDH subunit genes (SDHA, SDHB, SDHC or SDHD) or promoter hyper-
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methylation of SDHC [33,34]. Increased expression of the insulin-like growth factor 1
receptor (IGF1R) is commonly found in SDH-deficient GISTs but rarely in SDH-competent
GISTs [35]. Of note, IGF2 is a ligand exerting its effects by binding to the IGF1R. Future
studies are warranted to investigate the relationship between miR-483-3p, IGF2, and SDH.

Here we observed reduced expression of miR-483-3p upon imatinib treatment. Al-
though it is unclear how imatinib regulates miR-483-3p expression, miR-483 transcription
can be suppressed by glucose starvation and treatment with the glycolysis inhibitor 2-
deoxy-d-glucose [36]. Given that imatinib can inhibit aerobic glycolysis and decrease
glucose uptake [37], it is tempting to speculate that the reduction of miR-483-3p is caused by
imatinib-mediated inhibition of glycolytic activity. The mechanism has yet to be elucidated.

Importantly, we demonstrate that miR-483-3p regulates Complex II but not Complexes
III and V, suggesting the specificity of miR-483-3p in the regulation of Complex II. However,
it is still unclear whether the regulation is direct or indirect. Complex II or SDH is a
hetero-tetrameric protein complex consisting of SDHA, SDHB, SDHC and SDHD. Loss
of any component of the SDH complex can lead to destabilization of the SDH complex
and rapid degradation of the SDHB protein. Thus, loss of SDHB expression is a reliable
marker for SDH deficiency [38,39], which leads to the question of which SDH subunit is a
target of miR-483-3p. The interaction between miR-483-3p and SDH subunits is unknown.
Although SDHB is not predicted as a target of miR-483-3p, SDHC is predicted as a putative
target of miR-483-3p by RNAhybrid v2.2. Further investigation is needed to determine
which SDH subunit is the potential direct target of miR-483-3p. To date, two miRNAs,
miR-147b [40] and miR-210 [13] have been reported to regulate SDHD. In our study, we
did not find miR-210 to be differentially expressed between imatinib-treated and untreated
GIST samples, however, miR-147b was not detected.

Our previous work has shown that imatinib could increase the expression of several
OXPHOS proteins, including Complexes II, III and V [11]. Given that miR-483-3p only
regulates Complex II, it is possible that other miRNAs or factors could regulate OXPHOS
proteins. It is worth mentioning that miR-483-5p was also downregulated in imatinib-
treated as compared to untreated GIST tumors in our microarray data, however the FDR
was 28.8%, which is higher than the arbitrary cut-off (20%) that we set in this study. This
miRNA is predicted to target multiple genes involved in OXPHOS, including Complex I
(NDUFC1, NDUFA9, NDUFV3, NDUFA11, and NDUFA5), Complex III (UQCR11), Com-
plex IV (COX19, COX6B1) and Complex V (ATP5S, and ATP5G1) by TargetScanHuman
release 7.2 [41]. The other downregulated miRNA, miR-149, has been demonstrated to
target poly(ADP-ribose) polymerase-2 that activates the sirtuin-1/peroxisome proliferator–
activated receptor γ coactivator-1α (PGC1α) pathway, leading to increased mitochondrial
biogenesis [42]. The involvement of miR-149 in mitochondrial biogenesis may provide
the explanation for the suppression of PGC1α-dependent mitochondrial biogenesis by
imatinib treatment observed in our previous study [11].

4. Conclusions

In conclusion, our results reveal that specific miRNAs are responsive to imatinib
treatment. We also show that miR-483-3p can regulate mitochondrial respiratory Complex
II, suggesting that suppression of this miRNA could partly contribute to increased OXPHOS
upon imatinib treatment.

5. Materials and Methods
5.1. Clinical Samples

A total of 64 snap-frozen tumors from 56 GIST patients were included in this study.
Of these, 30 tumors were from 24 patients who had received neoadjuvant imatinib treat-
ment, and 34 tumors were from 32 patients who had not been treated with imatinib
prior to surgery (referred to as untreated tumors). For 36 of the samples (19 untreated
and 17 imatinib-treated), SDHB protein expression levels were previously determined by
Western blot analysis as published in our previous study [11].
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5.2. GIST Cell Lines and Imatinib Treatment

Two imatinib-sensitive GIST cell lines were used, i.e., GIST 882 and GIST T1. GIST 882
was kindly provided by Dr. Jonathan Fletcher (Brigham and Women’s Hospital, Boston,
MA, USA). This cell line was cultured in RPMI 1640 medium containing 15% fetal bovine
serum, and 2 mM L-glutamine at 37 ◦C with 5% CO2. GIST T1 was purchased from Cosmo
Bio Co., Ltd. (Tokyo, Japan) and cultured in DMEM supplemented with 10% fetal bovine
serum. The authenticity of these cell lines was previously confirmed by short tandem
repeat (STR) profiling [11]. GIST cell lines were treated with 1 µM imatinib for the indicated
time periods. This imatinib concentration was according to previous publication [11].

5.3. RNA Extraction and Quantification

Total RNA was extracted with mirVana miRNA Isolation Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA) and RNA concentrations were measured using a NanoDrop
spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

5.4. miRNA Expression Profiling

Genome-wide miRNA expression profiles were determined for 19 imatinib-treated
and 15 untreated tumors. Results for 17 of the imatinib-treated tumors have been pre-
viously reported [43]. All samples were analyzed using the human miRNA microarray
system (Agilent, Santa Clara, CA, USA), which contains 903 human miRNAs (miRbase
release 14). Array hybridizations and data analysis were according to the previously de-
scribed methodology [44]. The data were normalized and centered to median using the
Cluster 3.0 software (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm,
accessed on 2 November 2014). Normalized miRNAs with less than 20% of missing values
were further analyzed using Significance Analysis of Microarrays (SAM) to identify dif-
ferentially expressed miRNAs. Java TreeView software (http://jtreeview.sourceforge.net,
accessed on 2 November 2014) was used to visualize the data from hierarchical clustering.

5.5. Reverse Transcription Quantitative PCR (RT-qPCR)

Four selected mature miRNAs, including miR-320a (ID 002277), miR-320b (ID 002844),
miR-193a-3p (ID 002250) and miR-483-3p (ID 002339), were quantified using TaqMan-based
RT-qPCR assays (Thermo Fisher Scientific, Waltham, MA, USA). To obtain cDNA, total
RNA (20 ng) was reverse-transcribed using TaqMan MicroRNA Reverse Transcription Kit
(Thermo Fisher Scientific, Waltham, MA, USA). RT-qPCR was performed using the TaqMan
Universal PCR Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) in the ABI Prism
7900HT Real-time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). RNU48
(ID 001006) was used as an endogenous control. For quantification of SDHB mRNA, cDNA
was synthesized from 100 ng total RNA using High Capacity cDNA Reverse Transcription
kit (Thermo Fisher Scientific) and RT-qPCR was performed using TaqMan pre-designed
gene expression assays SDHB (Hs01042482_m1) and ACTB (Hs01060665_g1). All reactions
were performed in triplicate, and relative expression levels were calculated with the delta
CT method (2−∆CT). For imatinib treatment experiments, the 2−∆CT values of treated cells
were normalized to the untreated control cells.

5.6. In Vitro Transfection of GIST Cells and Cell Viability Analysis

mirVana miR-483-3p inhibitors and mimics, and their respective negative controls (mir-
Vana miRNA mimic and inhibitor negative control#1), were purchased from Thermo Fisher
Scientific (Waltham, MA, USA). A total of 3 × 106 GIST T1 and 882 cells were transfected
with 50 pmol of miRNA mimics or inhibitors using Amaxa Nucleofector (Lonza, Basel,
Switzerland), and program X01 and T20, respectively, according to the manufacturer’s
instructions. For Western blotting, cells were harvested after 72 h of transfection.

For cell viability analysis, cells at 24 h post-transfection were treated with or without
1 µM imatinib for another 24 h, followed by staining with 0.4% trypan blue stain (Thermo

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net
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Fisher Scientific, Waltham, MA, USA). Viable cells were counted using the TC10 automatic
cell counter (Bio-Rad).

5.7. Western Blot Analysis

GIST cells were homogenized in NP-40 Lysis buffer (Thermo Fisher Scientific, Waltham,
MA, USA) with the addition of 1% protease inhibitor (Sigma-Aldrich, St. Louis, MO, USA),
1 mM phenylmethanesulfonyl fluoride (Sigma-Aldrich, St. Louis, MO, USA) and 1% phos-
phatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA). Protein concentrations
were measured using Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham,
MA, USA). Thirty to fifty micrograms of lysates were separated by 4–12% NuPAGE®

Bis-Tris gels (Thermo Fisher Scientific, Waltham, MA, USA) and transferred to nitrocel-
lulose membranes (Thermo Fisher Scientific, Waltham, MA, USA) at 4 ◦C with constant
35 V for 2 h. After blocking with 5% bovine serum albumin diluted in TBS with 0.5%
Tween-20, membranes were incubated with primary antibody anti-pTyr719-KIT (#3391,
Cell Signalling Technology, Danvers, MA, USA) at 1:1000, anti-KIT (#3308, Cell Signalling
Technology, Danvers, MA, USA) at 1:1000, anti-SDHB (10620-1-AP, Proteintech) at dilution
1:1000, anti-ATP5A (ab14748, abcam) at 1:1000 or anti-UQCRC2 (14742-1-AP, Proteintech)
at 1:1000. For normalization purpose, the membranes were incubated with anti-β-actin
(A2228, Sigma-Aldrich, St. Louis, MO, USA) at 1:2000 or anti-GAPDH (#2118, Cell Sig-
nalling Technology, Danvers, MA, USA) at 1:2000. The secondary antibodies included
anti-rabbit IRDye 680 (#926-68071, LI-COR, Lincoln, NE, USA) at dilution 1:10,000 or
anti-mouse IRDye 680 (#926-32210, LI-COR, Lincoln, NE, USA) at 1:10000. Precision Plus
Protein All Blue Standards (#161-0373; Bio-Rad Laboratories, Hercules, CA, USA) was
used as an indicator of molecular weights. Detection was carried out with the Odyssey
CLx scanner (LI-COR Biotechnology, Lincoln, NE, USA). Protein expression levels were
quantified using the Odyssey ImageStudio Lite software (LI-COR Biotechnology, Lincoln,
NE, USA). For analyses of expression levels in imatinib-treated cells, protein expression
levels in treated cells were normalized to the levels in untreated control cells.

5.8. Statistical Analysis

All statistical analyses were performed using Graphpad Prism 8.0 (Graphpad software,
La Jolla, CA, USA). Independent Student’s t-test or Mann-Whitney U-test was performed
to compare the expression of miRNA and protein in different patient groups and cell
lines. Paired t-test was used to compare two different conditions between the experimen-
tal groups. Correlation between miR-483-3p and SDHB protein levels was assessed by
Spearman’s Rank Order Correlation. All p-values were based on two-tailed tests, and a
p-value < 0.05 was considered as statistically significant.
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