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Silver-catalyzed site-selective C(sp3)−H
benzylation of ethers with N-triftosylhydrazones
Zhaohong Liu1,5, Hongwei Wang1,5, Paramasivam Sivaguru 1,5, Steven P. Nolan2, Qingmin Song1, Weijie Yu1,

Xinyu Jiang1, Edward A. Anderson 3 & Xihe Bi 1,4✉

The insertion of carbenes into the α-C–H bonds of ethers represents one of the most

powerful approaches to access polysubstituted α-branched ethers. However, intermolecular

carbene insertions remain challenging, since current approaches are generally limited to the

use of toxic and potentially explosive α-diazocarbonyl compounds. We now report a silver-

catalyzed α-C–H benzylation of ethers using bench-stable N-triftosylhydrazones as safe and

convenient carbene precursors. This approach is well suited for both inter- and intramolecular

insertions to deliver medicinally relevant homobenzylic ethers and 5–8-membered oxacycles

in good yields. The synthetic utility of this strategy is demonstrated by its easy scalability,

broad scope with valuable functional groups, high regioselectivity, and late-stage functio-

nalization of complex oxygen-containing molecules. The relative reactivities of different types

of silver carbenes and C−H bonds were also investigated by experments and DFT

calculations.
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Ethers are abundant and low-cost feedstocks for chemical
synthesis1–4. The direct catalytic α-C–H functionalization of
ethers has drawn increasing attention,5–12 since the instal-

lation of substituents at the α-position can significantly increase
the potency of bioactive molecules13,14. Among such strategies,
the insertion of carbenes into the α-C–H bonds of ethers has
become a powerful tool for the selective creation of
carbon–carbon bonds, delivering otherwise inaccessible branched
polysubstituted ethers (Fig. 1a)15–19. Since the pioneering work of
Adams and co-workers in 198920, this methodology has been
well-established21–34; in particular, Davies, Pérez, Hartwig, and
Arnold groups have made significant developments with donor/
acceptor26–31 and acceptor carbenes21–23,32–34. Such insertion
chemistry has also been successfully applied to the synthesis of
complex natural products18,19. Nevertheless, the use of toxic and
potentially explosive diazo compounds is a significant drawback,
which indeed in part explains the typical need for an acceptor
group in the carbene precursor. These potentially unstable diazo

compounds are often prepared directly before use, requiring
controlled addition using a syringe pump, which presents a fur-
ther obstacle to large-scale applications31. This inherent challenge
has been partially addressed by the in situ generations of energetic
diazo compounds using the continuous flow technique31.

An appealing solution to this problem would be to replace the
diazo compound with a safe, stable carbene precursor35. In this
context, Che36,37 and Zhang38 groups developed N-tosylhy-
drazones (D) and exploited them as donor/donor carbene pre-
cursors in intramolecular carbene C–H insertions leading to
substituted tetrahydrofurans, whereas the Sarpong39 group used
N-sulfonyltriazoles (F). Donor/donor carbenes can also be gen-
erated in situ by the oxidation of hydrazones (E)40,41, the ring-
opening of 3,3-dimethylcyclopropenes (G)42, or the cyclization of
enynones (H)43. Although these donor carbene precursors are
useful, these methods have been limited to intramolecular reac-
tions and suffer from the need for multiple steps to obtain the
starting materials. Intermolecular insertions into ether α-C–H
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Fig. 1 Inspirations towards the development of carbene insertion into α-C–H bonds of ethers using N-sulfonylhydrazones. a α-C−H functionalization of
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bonds are highly attractive in avoiding this need for multistep
substrate synthesis, but to date have typically required the use of
α-diazocarbonyl compounds as mentioned above (A–C, Fig. 1a),
and the scope of ethers is largely restricted to strained cyclic
ethers21,23–26, or activated benzyl and allyl ethers28,29,33,34.

Here we report a silver-catalyzed carbene insertion into ether
α-C–H bonds with readily available N-triftosylhydrazones44–48 as
donor carbene precursors (Fig. 1b). Hydrazone decomposition
proceeds under mild conditions and the resulting silver carbenes
undergo high-yielding, selective insertions into C(sp3)−H bonds
adjacent to ether oxygen atoms in both inter- and intramolecular
ways. This operationally simple procedure converts simple ether
feedstocks into high-value branched homobenzylic ethers. Such
hindered ethers are frequently encountered motifs in bioactive
molecules and drugs (Fig. 1c)13,14, whereas they are difficult to
access through conventional SN2 and carbocation-based approa-
ches due to the competing elimination49.

Results and discussion
Reaction development. Our investigations began with the reac-
tion of diethyl ether 1 and N-triftosylhydrazone 2a with various
catalysts capable of promoting carbene insertions (Fig. 2; for full
details see Supplementary Table 1). We were pleased to find that
use of 5 mol% TpBr3Ag(thf) as the catalyst, with NaH as the base
in Et2O/CHCl3 (1:5) at 60 °C, afforded the corresponding α-C–H
insertion product 3 in 96% isolated yield (entry 1, Fig. 2). The
related silver congeners, Tp(CF3)2Ag(thf) and AgOTf gave slightly
inferior results (entries 2 and 3); other catalysts typically used for
ether C–H bond functionalization, such as TpBr3Cu(CH3CN)
(with ethyl diazoacetate)22 and Rh2(S-DOSP)4 (with aryl diazo
esters)26, proved ineffective (entries 4 and 5). The choice of diazo
surrogate had a remarkable impact on reaction efficiency, in that
much lower yields were obtained with N-tosylhydrazone 2b and
N‑nosylhydrazone 2c compared to N-triftosylhydrazone 2a
(entries 6 and 7). Pleasingly, we also found that the reaction
proceeds well with just 2.0 equiv. of ether, with only a modest

reduction in yield (75%, entry 8), demonstrating the potential
utility of this strategy for the functionalization of more valuable
ethers (e.g., in bioactive compounds) and commodity chemicals.
Note that silver catalysts are much less effective than related
copper (I) complexes for promoting insertion of acceptor-only
carbenes into ether α-C–H bonds21–23,50, presumably because of
the competition between ethers with ethyl diazoacetate to coor-
dinate to silver center, thus inhibiting the decomposition of the
diazo compound to form silver carbene23. Nevertheless, TpBr3Ag
was found to be most effective in our reactions with donor car-
benes, which may be attributed to two factors: (i) the bulky TpBr3

ligand inhibits the carbene dimerization (entries 1 and 3), and (ii)
the weak interaction between weakly donating TpBr3 ligand and
electron-deficient silver ions makes carbene center more elec-
trophilic, thus favoring the C–H bond insertion (entries 1 and
4)48,51.

Substrate scope. With a practical protocol for α-C–H insertion in
hand, we first examined the structural variation of the N-trifto-
sylhydrazone. As presented in Fig. 3, a variety of (hetero)aromatic
aldehyde-derived N-triftosylhydrazones underwent smooth
insertion into the α-C–H bond of diethyl ether, providing pro-
ducts 4–38 in good to excellent yields. We explored the influence
of substituents at various positions of the aryl ring and found that
halides (F, Cl, Br, and I), common electron-withdrawing (Ms,
NO2, CF3, CN, CO2Me, OAc, OCF3, Ac, CHO, and ethynyl) and
electron-donating functional groups (Me, OMe and OBn) were all
well-tolerated (3–28). We found that steric hindrance had
minimal effect on the transformation, with ortho-, di-, tri-, and
poly-substituted N-triftosylhydrazones all proceeding well
(21–28). In general, polycyclic aromatic substrates also furnished
the corresponding branched ethers in good yields (30–34,
53–98% yield), except for 9-anthracenyl N-triftosylhydrazone,
which is likely due to the poor solubility of this hydrazone (29,
36% yield). Importantly, the reaction proved compatible with
heteroaryl N-triftosylhydrazones (pyridyl, quinolyl, and thienyl),
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in spite of the potential strong coordination of these heteroatoms
to silver (35–38, 45–65% yield), which shows this chemistry is
well-suited for the synthesis of bioactive heterocycle-bearing
branched ethers. Intermolecular C–H insertion with donor/
donor-carbenes is arguably an even greater challenge and has
never been reported, since these carbenes are much less electro-
philic and more prone to dimerization35,40. Gratifyingly, N-trif-
tosylhydrazones derived from diarylketones underwent C–H
insertion in fair to good yields (39–42, 39–62% yield) by
increasing the concentration of ether (1:1 Et2O/CHCl3).

Extension of the method to N-triftosylhydrazones possessing
donor and acceptor groups afforded similar results to those
observed in the silver-catalyzed ether α-C–H insertions with
donor/acceptor diazo compounds (43–45, 70–82% yield)52.
Interestingly, the N-triftosylhydrazone derived from 2,2,2-tri-
fluoroacetophenone participated smoothly in the reaction, giving
46 in 80% yield (1.2:1 d.r.). To our knowledge, there has no report
of ether α-C–H insertion using fluorinated diazoalkanes to date53.

We next turned our attention to the scope of the ether
component. As summarized in Fig. 4, good to excellent yields
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were achieved on reaction of N-triftosylhydrazones derived from
4-chlorobenzaldehyde or 4-(methoxycarbonyl)benzaldehyde with
a variety of acyclic and cyclic ethers. In many cases, these
reactions could be conducted using just two equivalents of ether,
demonstrating the applicability of this method to more valuable
complex ethers. Hindered isopropyl ether reacted smoothly and
furnished product 47 in 95% yield. Insertion of a variety of acetals
proceeded exclusively at benzylic or tertiary alkyl sites, in which
the C–H bonds are doubly activated (48–50, 50–96% yield, >20:1
r.r.). In good agreement with previous reports20–26, dialkyl ethers
afforded single α-C–H insertion products in high yields, while
benzyl ethers reacted exclusively at the benzylic C–H bonds
(51–58). For methyl 4-chlorobutyl ether, insertion occurred into
the C–H bonds α- to the ether oxygen; no reaction at or adjacent
to the C–Cl bond was observed (59)54. Excitingly, various
saturated cyclic ethers, such as tetrahydrofuran (60), 1,3-

dihydroisobenzofuran (61), 1,3-dioxolane (62), tetrahydropyran
(63), and isochromane (64), smoothly furnished the correspond-
ing benzylated oxacycles in good to excellent yields. C–H
insertions into methyl ethers proved more challenging, but
reasonable yields of 65 and 66 could be obtained by increasing
the concentration of ether (1:1 ether/CH2Cl2). However, for
arylalkyl ethers, the major product was instead a norcaradiene (67
and 68), generated by a Büchner reaction, rather than the C–H
functionalization product. Aside from this limitation, this
intermolecular silver-catalyzed carbene insertion enables the
synthesis of diverse α-branched ethers, offering an attractive
alternative where traditional Williamson ether synthesis and/or
Mitsunobu reactions would prove challenging55,56. Note that
moderate yields were obtained in some cases (3, 48–54, 56–58,
61, and 64) when using only two equivalents of ethers. The
diminished yields were mainly ascribed to the carbene
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dimerization rather than the C–H over insertion. Over-insertion
of C–H bonds on the other side of the oxygen atom indeed
occurred, however, this could be effectively avoided by increasing
the concentration of ethers (for the details see Supplementary
Scheme 1).

Intramolecular C–H Insertion. To further expand the potential
utility of this silver catalyzed carbene C–H insertion, we turned
our attention to intramolecular reactions (Fig. 5). N-triftosylhy-
drazones bearing an ether side-chain underwent the desired
intramolecular C–H insertion to give 2,3-dihydrobenzofurans in
moderate to good yields (69–71). The dihydrobenzofuran fra-
mework is widely found in biologically important natural pro-
ducts and synthetic compounds29,36,40; for example, product 71

could be converted into a natural product (±)-epi-conocarpan in
two steps36. Due to poor reaction kinetics, there are few examples
of 1,6-C–H insertions to synthesize six-membered heterocycles41;
however, on installing the requisite oxygen atom at the 5-posi-
tion, we found that N-triftosylhydrazones underwent successful
1,6-C–H insertion, providing a collection of isochromans in
excellent yield (72–80), with primary (72), secondary (73–75)
and tertiary (78) C–H bonds being suitable for this transforma-
tion. As the carbene insertion into relatively unreactive primary
C–H bonds was sluggish under the standard conditions, a more
diluted reaction system was required (72). Interestingly, an allylic
ether afforded the C–H insertion product 79 in 45% yield along
with 50% yield of the cyclopropanation product. N-triftosylhy-
drazones bearing an alkyne group gave desired C–H insertion
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product (80) in 75% yield and almost no cyclopropenation or
intramolecular 1,3-dipolar cycloaddition products were observed.

We studied the effect of ring size on the cyclization using
substrates possessing more than one potential insertion site.
Methyl ethers exclusively favored secondary C–H insertion in
enabling the formation of 5-membered (indane 81) and
6-membered rings (tetrahydronaphthalene 83), while equivalent
benzyl ether substrates delivered a mixture of products in which
the activated benzylic C–H bond could compete with the
kinetically favored secondary C–H bond, even in the case of
8-membered ring formation (82 and 84). The ability to form
six or seven-membered rings was further exploited using a
series of biaryls, prepared by straightforward Suzuki–Miyaura
coupling; these underwent regioselective C–H insertion to
produce a range of six- and seven-membered tri/tetracyclic
products where the ether oxygen atom is located inside or outside
the new ring (85–92).

Gram-scale reaction and further transformations. We were able
to demonstrate the robustness and scalability of the method
through multigram-scale preparations of branched ethers. At
decreased catalyst loadings (2.5 mol%), use of 15 mmol of N-
triftosylhydrazone and 25 mL Et2O in chloroform or tri-
fluorobenzene furnished C–H insertion products 3 and 14 in 90
and 85% yield, respectively (Fig. 6a). This scalability inspired us
to consider potential applications beyond small molecule synth-
esis, such as in the cross-linking of aliphatic polymers where bis-
carbene precursors have recently been exploited57. As a proof of
principle (Fig. 6b), we were pleased to find that bis-N-trifto-
sylhydrazones derived from 1,3-benzenedicarbaldehydes under-
went double C–H insertion with dialkyl ethers in synthetically
useful yields (93 and 94). Extension of the method to tris-N-
triftosylhydrazone gave the corresponding triple C–H insertion
product in lower yield, potentially due to the insolubility of N-

triftosylhydrazone (95, 34% yield), demonstrating the potential of
these poly-hydrazones as bench-stable cross-linking agents.

We were pleased to find that the silver-catalyzed α-C–H
insertion could also be applied to highly selective late-stage
functionalizations of relatively complex substrates. The natural
product (–)-ambroxide, containing two α-C–H ether bonds
among numerous other C–H bonds, selectively reacted at the
expected C2 position of the tetrahydrofuran ring (70% yield, 1.7:1
d.r.). The reaction of pharmaceutical intermediate benzyl-2-
chloroethyl ether exhibited remarkably high site- and chemo-
selectivity to provide 97 as a single product in 66% yield. The
benzyl ethers of the natural products L-menthol and dihydro-
cholesterol also participated smoothly in the reaction to give
products 98 (72%) and 99 (62%) respectively.

Relative reactivity of donor silver carbenes towards C(sp3)–H
bonds. To obtain insight into the importance of steric and elec-
tronic effects on the site-selectivity of C(sp3)–H insertion, we
measured the relative reactivities of C(sp3)–H bonds in ethers or
alkanes towards the donor silver carbene generated in situ from
N-triftosylhydrazone 2a, with Et2O as the reference. As illustrated
in the graph presented in Fig. 7a, the relative reactivities of dif-
ferent C(sp3)–H bonds towards the putative silver carbene follow
the order α-C–H bonds of THF > α-C–H bonds of Et2O ≈ tertiary
C–H bonds of 2-methylbutane > tertiary C–H bonds of isopropyl
ether > secondary C–H bonds of cyclohexane » α-C–H bond of
tert-butyl methyl ether (‘normalized’ reactivity was obtained by
dividing the observed product ratio by the number of identical
C–H bonds in each molecule)58. Comparison of these relative
reactivities with the corresponding BDEs revealed a weak corre-
lation, which suggests C–H reactivity is controlled by both elec-
tronic and steric factors. Competition experiments revealed that
the relative reactivities of silver carbenes towards the α-C–H
bonds of Et2O follow the trend: donor carbene > donor/acceptor
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carbene » acceptor carbene ≈ donor/donor carbene (Fig. 7b),
which is opposite to the known order of the relative reactivities of
metal carbenes towards alkane C–H bonds15,16.

We further probed the site-selectivity of C–H insertion using
ethers that feature different C–H environments at their α-carbon
atoms (i.e., internal competition experiments, Fig. 7c). For
ethers containing tertiary and secondary C–H bonds,
2-methyltetrahydrofuran (101) displayed a tertiary/secondary
C–H insertion ratio (r.r.) of 7:1 (normalized ratio n.r. 14:1),
while ethyl isopropyl ether (100) exhibited a tertiary/secondary
ratio of 1:2 (n.r. 1:1). This suggests that in a conformationally
restricted environment, there is a strong preference for tertiary
C–H activation, while the reduced selectivity in 100 may relate
to conformational effects during the insertion process59. On the
other hand, primary α-C–H insertion is disfavored irrespective
of environment, with both methoxycyclopentane 102 and n-
butyl methyl ether 103 affording the tertiary (r.r. 20:1, n.r. 60:1)
and secondary (r.r. 20:1, n.r. 30:1) C–H insertion products
respectively. Perhaps unsurprisingly, the insertion reaction of n-
butyl ethyl ether 104 proceeded with little selectivity on both
flanks of the oxygen atom.

For benzyl alkyl ethers, we found that electronically-favored
benzylic C–H bonds were preferentially functionalized, and this
preference decreased with increasing degree of substitution of the
alkyl substituent (56, 105, and 106). Ethyl isoamyl ether 107,
which contains two different types of α-C–H ether bonds (1°, 2°)
along with normal 1°, 2°, and 3° C(sp3)–H bonds, underwent
competing insertion at the 2° α-C–H, 3° C–H and 1° α-C–H
bonds with 20:10:1 r.r. The normalized reactivity of these C–H
bonds is 30:30:1, which is in agreement with the results from the
intermolecular competition reactions between Et2O with 2-
methylbutane, or Et2O with tert-butyl methyl ether (Fig. 7a). In
the case of 2,5-dimethyltetrahydrofuran (a mixture of cis and
trans isomers), the carbene insertion occurs exclusively at 2° α-
C–H bonds and affords the product 108 in 90% yield with a 2:1
diastereomeric ratio.

Mechanistic investigations. To gain insights into the origin of site
selectivity of different C–H bonds during C–H functionalization,
DFT calculations were conducted at SMD(CHCl3)-M06/
[6–31 G(d)/SDD(Ag)] level of theory. As shown in Fig. 8b, the
reaction between methyl isoamyl ether and diazo compound 2a-1
genertated in situ from N-triftosylhydrazone 2a was chosen as the
model reaction, because the formation of the alkyl C–H bond
insertion product was not observed in previous C–H insertion
reaction of ethers20–23. The reaction starts with the dissociation of
TpBr3Ag-THF into TpBr3Ag, a process that is uphill by 13.8 kcal
mol−1. TpBr3Ag is the active catalytic species in the whole catalytic
cycle, which is similar to silver-carbene-induced C–H insertion of
alkanes48,58. Aryl diazo compound 2a-1 coordinates with TpBr3Ag
to generate intermediate Int-1, which demands an energy barrier of
14.2 kcal mol−1 for nitrogen extrusion to form silver carbene Int-2
via TS-1. During this process, methyl isoamyl ether (present in large
excess) may compete with 2a-1 to coordinate to the Lewis acidic
silver, thus suppressing the formation of silver carbene Int-2 (see
Supplementary Scheme 3 for experimental data supporting the
formation of TpBr3Ag-ether complex). The subsequent association
and concerted insertion of Int-2 into various C–H bonds of methyl
isoamyl ether occurs via three-membered-ring transition states TS-
2S (for 2° α-C–H bond), TS-2T (for alkyl 3° C–H bond), and TS-2P
(for 1° α-C–H bond). The relative potential energies leading to
products 107-S, 107-T and 107-P are respectively 3.8, 4.9 and
11.0 kcal mol−1, which is in line with the obtained experimental

results (Fig. 7c, compound 107 with 20:10:1 r.r. and 30:30:1 n.r.).
According to the energy barrier, the rate-determining step in the
whole cycle is the decomposition of 2a-1 to form silver carbene
intermediate Int-2 rather than C–H insertion. Meanwhile, we car-
ried out a one-pot competitive kinetic isotope effect (KIE) experi-
ment of THF and d8-THF, and a primary KIE (kH/kD= 2.7) was
observed (Fig. 8a, for details see Supplementary Scheme 2). Under
these circumstances, the C–H bond cleavage step is irreversible and
should occur after the rate-determining step that does not involve
the ether which undergoes C–H bond cleavage60. These results
suggested a concerted C–H insertion mechanism similar to pre-
viously reported rhodium- or silver-catalyzed alkane C–H
insertions19,26,48,61. The product distributions for both methyl iso-
amyl ether (compound 107, Fig. 7c) and the competition experi-
ment between diethyl ether and 2-methylbutane (Fig. 7a) indicate
that the normalized reactivity of 2° C–H α to oxygen and aliphatic
3° C–H bonds are almost the same. These results further demon-
strate that the coordination of ether to silver does not modulate the
reactivity of silver carbene once it is formed. The relative reactivities
of 2° α-C–H are much higher than that of aliphatic 2° C–H
bonds48, which is probably due to the strong electron-donating
effect of alkoxy group that is beneficial to the buildup of positive
charge62. These experimental observations and DFT calculations
indicated that ethers (present in large excess) may compete with
diazo componds to coordinate to the Lewis acidic silver center, thus
suppressing the formation of the silver carbene, but unlikely play a
critical role in modulating silver carbenes reactivity and controlling
product distribution.

Moreover, further optimization of the calculated geometries
using single-point energy calculations was performed at higher
level of theory, such as M062X, ωB97XD, and B3LYP-D3(BJ),
where the site selectivity trend and the relative energies for
transition states and intermediates are unchanged (for details see
Supplementary Figs. 10–13).

In summary, we have established a site-selective α-C–H ether
insertion reaction using nontoxic and bench stable N-triftosylhy-
drazones as donor, donor/donor, and donor/acceptor carbene
precursors. This chemistry provides a convenient and practical
method for the synthesis of branched homobenzylic ethers by the
selective formation of C(sp3)–C(sp3) bonds at the α-position of
ethers. The ready availability of the starting materials, excellent
functional group tolerance, high efficiency on a multi-gram-scale,
and predictable regioselectivity in late-stage functionalization of
complex molecules demonstrate the potential of this method in
practice. Further applications of this silver-catalyzed protocol to
other C(sp3)–H bonds are under investigations in our laboratory.

Methods
General procedures for intermolecular ether α-C–H insertion. To an oven-dried
sealed tube was charged with N-triftosylhydrazone (0.3 mmol), TpBr3Ag(thf)
(32.7 mg, 10 mol%), NaH (36.0 mg, 0.9 mmol, 60 wt% dispersion in mineral oil) in
an argon-filled glovebox. Anhydrous CHCl3 or PhCF3 (5.0 mL) and ether (2.0
equiv or 1.0 mL or 5.0 mL) were added. The tube was sealed and rinsed in an
ultrasonic bath for 5 min. The resulting mixture was stirred (700 rpm) at 60 °C for
24 h. When the reaction was completed, the crude reaction mixture was allowed to
reach room temperature and filtered through a short pad of silica gel using EtOAc
as eluent. The filtrate was concentrated in vacuo and purified by column chro-
matography on silica gel (petroleum ether/EtOAc) to obtain the product.

General procedures for intramolecular ether α-C–H insertion. To an oven-dried
sealed tube was charged with N-triftosylhydrazone (0.3mmol), TpBr3Ag(thf) (32.7mg,
10mol%), NaH (36.0mg, 0.9mmol, 60 wt% dispersion in mineral oil) in an argon-filled
glovebox. Anhydrous CHCl3 (5.0mL) was added. The tube was sealed and rinsed in an
ultrasonic bath for 5min. The resulting mixture was stirred (700 rpm) at 60 °C for 24 h.
When the reaction was completed, the crude reaction mixture was allowed to reach
room temperature and filtered through a short pad of silica gel with EtOAc as eluent.
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The filtrate was concentrated in vacuo and purified by column chromatography on
silica gel (petroleum ether/EtOAc) to obtain the product.

Data availability
The data that support the findings of this study are available within the paper and its
Supplementary Information files. Raw data are available from the corresponding author
on reasonable request. Materials and methods, computational studies, experimental
procedures, characterization data, 1H, 13C, 19F NMR spectra, and mass spectrometry
data are available in the Supplementary Information.
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