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Abstract

Background

Cattleyak are the hybrid offspring between cattle and yak and combine yak hardiness with

cattle productivity. Much attempt has been made to examine the mechanisms of male steril-

ity caused by spermatogenic arrest, but yet there is no research systematically and precisely

elucidated testis gene expression profiling between cattleyak and yak.

Methods

To explore the higher resolution comparative transcriptome map between the testes of yak

and cattleyak, and further analyze the mRNA expression dynamics of spermatogenic arrest

in cattleyak. We characterized the comparative transcriptome profile from the testes of yak

and cattleyak using high-throughput sequencing. Then we used quantitative analysis to vali-

date several differentially expressed genes (DEGs) in testicular tissue and spermatogenic

cells.

Results

Testis transcriptome profiling identified 6477 DEGs (2919 upregulated and 3558 downregu-

lated) between cattleyak and yak. Further analysis revealed that the marker genes and apo-

ptosis regulatory genes for undifferentiated spermatogonia were upregulated, while the

genes for differentiation maintenance were downregulated in cattleyak. A majority of DEGs

associated with mitotic checkpoint, and cell cycle progression were downregulated in cattle-

yak during spermatogonial mitosis. Furthermore, almost all DEGs related to synaptonemal

complex assembly, and meiotic progression presented no sign of expression in cattleyak.

Even worse, dozens of genes involved in acrosome formation, and flagellar development

were dominantly downregulated in cattleyak.

Conclusion

DEGs indicated that spermatogenic arrest of cattleyak may originate from the differentia-

tion stage of spermatogonial stem cells and be aggravated during spermatogonial mitosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0229503 February 24, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wu S, Mipam T, Xu C, Zhao W, Shah MA,

Yi C, et al. (2020) Testis transcriptome profiling

identified genes involved in spermatogenic arrest

of cattleyak. PLoS ONE 15(2): e0229503. https://

doi.org/10.1371/journal.pone.0229503

Editor: Meijia Zhang, China Agricultural University,

CHINA

Received: October 3, 2019

Accepted: February 9, 2020

Published: February 24, 2020

Copyright: © 2020 Wu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All RNA-seq data for

the three yaks and three cattleyaks are available in

NCBI under the accession numbers:

PRJNA509997, PRJNA510216, PRJNA510224,

PRJNA510232, PRJNA510475 and PRJNA510552.

Funding: This work was supported by the grants

from the National Natural Science Foundation of

China (31572396 to X.C.; 31601946 to W.S.) and

the Key Project of Sichuan Provincial Education

Department (16ZA0134 to X.C.). The funders had

no role in study design, data collection and

http://orcid.org/0000-0002-7394-0058
https://doi.org/10.1371/journal.pone.0229503
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229503&domain=pdf&date_stamp=2020-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229503&domain=pdf&date_stamp=2020-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229503&domain=pdf&date_stamp=2020-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229503&domain=pdf&date_stamp=2020-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229503&domain=pdf&date_stamp=2020-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229503&domain=pdf&date_stamp=2020-02-24
https://doi.org/10.1371/journal.pone.0229503
https://doi.org/10.1371/journal.pone.0229503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


and spermatocyte meiosis, which contributes to the scarcely presented sperms in

cattleyak.

Introduction

Cattleyaks are the hybrid offspring between cattle & yak, and exhibit the same adaptability as yak

to harsh environments which are characteristic of high elevation, oxygen deficiency and low tem-

peratures, and simultaneously, the hybrids possess higher capability than yak in terms of produc-

tive potential. Actually, cattleyaks have contributed much more to animal husbandry development

of the areas surrounding Qinghai-Tibet plateau in the long history [1]. Obviously, cattleyak repro-

duction is the key step in yak hybrid breeding practice. However, male sterility of cattleyak pre-

vents fixation the excellent gene combinations in their F1 generations [2]. Therefore, investigation

of the mechanisms of male sterility of cattleyak has both theoretical and practical significance in

yak breeding. Many attempts have been made to examine the mechanisms of male sterility of cat-

tleyak caused by spermatogenic arrest, but so far there is no research systematically and precisely

elucidated the mechanisms. Some research has been performed to compare the anatomical and

histological structures of testis between cattleyak and yak, and the karyotype of spermatogenic

cells as well. Testicular histology indicated that the walls of seminiferous tubules of cattleyak were

significantly thinner and the number of spermatogenic cells degraded at the stage from spermato-

gonia, primary and secondary spermatocytes [3]. Chromosome numbers (2n = 60) in primary

spermatocytes of cattleyak were found to be identical to those of cattle and yak [4], morphological

abnormalities of autosomal synaptonemal complex were observed to be common in most primary

spermatocytes of cattleyak and no synaptonemal XY chromosomes were observed in cattleyak [4].

During the past few years, continuously increased works were conducted to investigate the

mechanisms of spermatogenic arrest of cattleyak by comparative studies of the gene expression

associated with meiosis on molecular level. The lower expression of SYCP3 and Bvh resulted

from higher methylation in testis of cattleyak were presumed to be related to meiotic arrest

during spermatogenesis in cattleyak [5, 6]. Besides, the downregulation of Dmc1, DDX4 and

Dmrt7 involved in meiotic recombination, male sterility and sexual development were also

considered to be associated with spermatogenic arrest in cattleyak [1, 2, 7]. In previous study,

we compared the testis gene expression profiles between cattleyak and yak by RNA-seq and

identified 2960 genes differentially expressed, in which several downregulated genes in cattle-

yak were associated with cell cycle progression, meiosis and sperm components [8]. However,

we only obtained the single-end reads averaged 2.2 GB and all these data was far less to analyze

testis gene expression profiles between cattleyak and yak [8].

Spermatogenesis is partially regulated through the action of genes and the functions of

most those have not been determined. Recent advances in the new generation high-through-

put sequencing have enabled in-depth analyses of spermatogenesis-related genes, which will

contribute to the understanding of the roles played by genes in spermatogenic arrest of cattle-

yak. Therefore, we explored gene expression profiles between the testis of cattleyak and yak by

deep sequencing and analyzing 150-bp paired-end reads with the aims to bring much more

insight into mechanisms for spermatogenic arrest of cattleyak.

Materials and methods

Sample collection

Three male cattleyaks (CY1, CY2 and CY3) and three Maiwa yaks (YK1, YK2 and YK3) were

selected from a pasture in Hongyuan county, Sichuan province of China. Here, all the
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cattleyaks were F1 generations from the crossbred offspring between Simmental cattle (♂) and

Maiwa yak (♀). All the animals were 12 months old and the testis sample of each animal was

obtained by veterinary surgical operation. After removing the epididymis, fat and fascia tissues

from each testis, three slices of testicular samples were crosscut from the middle of testis by

fine scale dissection. One crosscut slice was fixed with 4% paraformaldehyde for histological

observation, and others were immediately immersed into liquid nitrogen and stored until total

RNA extraction. The experimental animal procedures were followed in accordance with the

approved protocols of Sichuan Province, PR China for the Biological Studies Animal Care and

Use Committee. And all protocols were approved by the Institutional Review Board of South-

west Minzu University and Southwest University of Science and Technology.

Histological analysis of testis samples

The testicular samples were processed routinely by paraffin embedding, and hematoxylin &

eosin staining method was applied to observe the histological structures of the micro-sections

from testicular samples of cattleyak and yak. Micrographs for each sample were observed

through BA400Digital camera system and cropped by using Motic Images Advanced (Motic

Electric Group Co., Ltd, Xiamen, China). All the images for testicular sample were magnified

400 times for further analysis.

RNA isolation and cDNA library construction

Total RNA for each sample was isolated by using TRIzol reagent. The concentration, purity

and integrity were assessed to meet the requirement of the Illumina HiSeqTM 2500 sequenc-

ing. Equal amounts of total RNA were pooled for constructing cDNA libraries. These libraries

were constructed using the TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA)

according to the manufacturer’s instructions after removal of ribosomal RNA. The qualifica-

tion and quantification of sample libraries were checked on 2100 Bioanalyzer and Qubit 2.0,

respectively.

Transcriptome sequencing and gene expression analysis

The library of each sample was sequenced at the Shanghai Biotechnology Corporation (Shang-

hai, China) on Illumina HiSeqTM 2500 platform. The sequence reads were demultiplexed

using the CASAVA v1.8.2 software (Illumina, San Diego, CA) and the quality inspection was

based on the FastQC algorithm (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Clean data were obtained after filtering out reads with the sequence of adapter, low quality and

length less than 25nt reads from raw data through Seqtk v1.2-r94 (https://github.com/lh3/

seqtk). After quality control, the 150-bp paired-end clean reads were aligned to the

UMD3.1.75 Bos taurus reference genome [9, 10] (ftp://ftp.ensembl.org/pub/release-85/fasta/

bostaurus/dna/Bostaurus.UMD3.1.dna.toplevel.fa.gz) using TopHat v2.0.9 [11]. No more than

2 mismatches and 2 multihits were allowed in the mapping genome using SAMtools v1.3 and

Linux commands [12]. The paired reads mapped uniquely and properly were then assembled

with Cufflinks v2.1.1 [13] using Ensembl’s bovine gene annotation. All assembled transcripts

were then merged using the cuffcompare v2.2.1 [14]. The analyses of randomness, relative

position and distribution of reads, and coverage of genes were same as that described in our

previous works [8].

The expression levels for protein-coding genes were estimated by using standardized

FPKM method [15]. HTSeq v0.5.4 [16] was used to count the fragments per gene after being

aligned using TopHat v2.0.9, and Trimmed Mean of M Values [17] was used for normaliza-

tion. Cluster analysis of gene expression patterns for all cattleyaks and yaks were performed by
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using cluster and java Treeview software. EdgeR was used for DEGs analysis [18] and false dis-

covery rate was controlled to definite the threshold of P-value [19]. The DEGs between cattle-

yak and yak were screened by using p-value < 0.05 and the absolute value of Log2Ratio� 1 as

the thresholds.

Gene ontology (GO) and pathway enrichment of DEGs

GO enrichment analysis was used to map all DEGs to GO terms in the database (http://www.

geneontology.org/), calculate the numbers of DEGs for every term and compare with the

whole genome background to screen significantly enriched GO terms (http://smd.stanford.

edu/help/GOTermFinder/GOTermFinder_help.shtml/). KEGG (Kyoto Encyclopedia of

Genes and Genomes) was used to identify significantly enriched pathways in DEGs which

were presumed to be associated with spermatogenesis of cattleyak and yak. The methods used

for significantly enriched GO term and pathway enrichment were all described in our previous

works [8].

Isolation and identification of spermatogenic cells from testis tissue of

cattleyak and yak

The process of testicular tissue collecting from yaks (n = 3) and cattleyaks (n = 3) for cell isola-

tion is the same as that described above. We isolated the spermatogenic cells (including sper-

matogonia and spermatocytes) from these two bovid species using STA-PUT velocity

sedimentation, and the protocol was performed by referring to our previous study [20]. Firstly,

the spermatogenic cells were preliminarily identified based on the morphological characteris-

tics and size differences at different spermatogenic stages. The different type of spermatogenic

cells were recycled and then stored in an appropriate amount of TRIzol reagent for RNA

extraction. The total RNA of the isolated spermatogenic cells was extracted and the concentra-

tion was determined. RT-PCR was performed to identify the specific spermatogenic cells using

the selected marker genes (CD9, UCHL1, RET and THY1) for spermatogonia, and the genes

(TESMIN, NUMB, SYCP1 and PIWIL2) for spermatocytes. Qualified RNA from testicular tis-

sues of three yaks and three cattleyaks was detected using PrimeScriptTM One Step RT-PCR

Kit Ver.2 (Takara), and the amplification procedure was: reverse transcription at 50˚C for 30

min, pre-denaturation at 94˚C for 2 min, and 30 cycles of denaturation at 94˚C for 30 s,

annealing at 59˚C for 30 s and extension at 72˚C for 20 s, respectively. The specific primers

used for the identification were designed and GAPDH was used as internal reference (S1

Table).

Quantitative RT-PCR validation and analysis for the RNA-seq data and

spermatogenic cells

To validate the reliability of gene expression data from RNA-seq, qRT-PCR was conducted on

the total RNAs isolated from testis tissues or spermatogenic cells to analyze the expression of

representative genes selected from DEGs. Reverse transcription of total RNA (1 μg) was per-

formed by using PrimeScriptTM RT reagent Kit (Takara) according to the manufacturer’s

instructions. Real time RT-PCR was detected by using SYBR Premix Ex Taq (Tli RNaseH

Plus) (Takara) in CFX96 TouchTM Real-Time PCR Detection System (BIO-RAD). Each reac-

tion volume (20 μL) comprised 5 pmoles of primers. Each PCR reaction was performed in trip-

licate, using the program as follows: 95˚C for 30 s; 40 cycles of 95˚C for 5 s and 57.5˚C for 34 s,

followed by 95˚C for 15 s; 57.5˚C for 1 min and 95˚C for 15 s. The relative expression of DEGs

was calculated based on the 2-ΔΔCt method with β-actin gene as an endogenous reference. The
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primers for qRT-PCR were designed based on the gene sequence of Bos taurus and concluded

in S1 and S2 Tables.

Statistical analysis

Each experiment was performed in triplicate and the corresponding values obtained were pre-

sented as mean ± SEM (standard error). ANOVA (One-way analysis of variance) was

employed to analyze the homogeneity of variances via Students’ t-test by using GraphPad

Prism7.01. The level of significance was presented as �P< 0.05, ��P< 0.01 or ���P< 0.001.

Results

Histological characteristics of testis for cattleyak and yak

As the hybrid of cattle and yak (Fig 1A), cattleyak (Fig 1B) exhibits remarkable heterosis

between cattle and yak, which also inherits the excellent traits of adaptability and performance

from both cattle and yak. The male sterility of cattleyak may be partially resulted from their

poor development of testis, as the testes sampled from cattleyak were significantly smaller and

lighter (cattleyak: 20.670±2.201 g versus yak: 30.947±1.581 g, P<0.01) than those from yak

(Fig 1C, S3 Table). The seminiferous tubule of yak (Fig 1D) showed normal characteristics and

Fig 1. Morphological and histological differences between the testis of cattleyak and yak. (A) Yak. (B) Cattleyak.

(C) The testis of yak is significantly larger than that of cattleyak with the same age of yak. The divergences between the

testis histology of yak (D) and cattleyak (E). The spermatogenic cells were indicated by arrowhead. SG, SC and RS

denote spermatogonium, spermatocyte and round spermatid, respectively.

https://doi.org/10.1371/journal.pone.0229503.g001
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was abundant in all types of germ cells (spermatogonia, spermatocytes and spermatids) in dif-

ferentiation throughout from the basement membrane to the lumen, while the inner compo-

nents was much thinner under the basement membrane of seminiferous tubule in cattleyak

(Fig 1E) and spermatogonia were the main type of germ cells.

RNA sequencing and mapping of reads to the reference genome

To identify the genes involved in spermatogenic arrest of cattleyak, we sequenced and com-

pared the testis transcriptome of cattleyak and yak. An average of 10.75 GB of pair-end reads

were obtained for the six samples, ranging from 9.7 to 13.2 GB (NCBI accession numbers:

PRJNA509997, PRJNA510216, PRJNA510224, PRJNA510232, PRJNA510475 and

PRJNA510552). The raw reads produced by sequencing ranged from 64642848 to 87657186

among the six samples (S4 Table). The clean reads ranged from 55495355 to 75311337, with

the clean ratio ranging from 85.85% to 88.19%. The trimmed rRNAs ranged from 51034654 to

69110087, with the rRNA ratio ranging from 5.9% to 11.6%. The total mapped reads to the ref-

erence genome ranged from 37088324 to 56081965, with the rate ranging from 72.67% to

81.15%, in which the mapped unique reads ranged from 36301478 to 55326377 (Table 1).

As the reads from six samples in this work were originated from total RNAs trimmed off

rRNAs, the ratios of reads mapped to the region of gene were higher than those to the inter-

genic region (S1 Fig). Among the gene regions, approximately equal amount of reads were

mapped to the coding and intron regions. In contrast, lower amount of reads were mapped to

noncoding regions and the lowest ratio of reads were mapped to splicing regions. Cattleyak

and yak exhibited the similar genome coverage pattern of reads distributed on each chromo-

some (Fig 2). Overall, the genome coverage of reads on ChrX, Chr1, Chr2, Chr3, Chr4 and

Chr5 was much higher than those distributed on Chr23, Chr25, Chr26, Chr27, Chr28 and

Chr29, which was in accordance with the length and gene volume of these chromosomes.

The analysis of global Pearson correlation coefficients indicated a distinct gene expression

pattern among the six testis samples (S2 Fig). The average correlation coefficients between the

replicates within each group were as high as 0.95, while those between the individuals in differ-

ent group were only 0.87. Systematic clustering also indicated that three replicates of cattleyak

(CY1, CY2, and CY3) were clustered in a group and three yaks (YK1, YK2, and YK3) were

grouped together (S3 Fig). Therefore, the biological replicates for each group exhibited higher

similarity, while variability of the gene expression was observed between the two groups.

Differentially expressed genes between the testis transcriptomes of

cattleyak and yak

The gene expression density between cattleyak and yak exhibited the similar patterns (Fig 3A),

while the number and range (-Log10p-value) of downregulated genes in cattleyak was

Table 1. Sequencing statistics summary of samples analyzed in this study.

Samples ID All reads Mapped reads Mapped Pair Reads Mapped broken-pair reads Mapped Unique reads Mapped Multi reads Mapping ratio

CY1 69110087 56081965 51423578 4658387 55326377 755588 81.15%

CY2 55664331 43291694 39086926 4204768 42428170 863524 77.77%

CY3 59655152 46004648 41250838 4753810 45110000 894648 77.12%

YK1 51034654 37088324 32221366 4866958 36301478 786846 72.67%

YK2 52534929 39074577 33785800 5288777 38294379 780198 74.38%

YK3 53364628 39112296 33598202 5514094 38409628 702668 73.29%

Mapping ratio = Mapped reads/All reads, Mapped Unique reads = reads that have only one match site in the genome.

https://doi.org/10.1371/journal.pone.0229503.t001
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significantly larger than those of upregulated genes (Fig 3B). In total, 6477 genes were identi-

fied to be DEGs, in which 2919 were upregulated and 3558 were downregulated in cattleyak

(S5 Table). All DEGs between cattleyak and yak were subjected to GO enrichment based on

Fig 2. Genome coverage distribution of reads on chromosome. The coverage distribution of reads from six samples was shown in a window of 1K in cattle genome.

The most outer ring donates genome and each inner ring donates the chromosome coverage for each sample.

https://doi.org/10.1371/journal.pone.0229503.g002
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their cellular component, molecular function, and biological process. The top listed 10 items

for each GO category was ranked according to the decreased -log10 of p values (Fig 4A), in

which the most significantly enriched three terms involved in biological process were sexual

reproduction (p = 1.92E-10), reproduction (p = 1.25E-09) and reproductive process

(p = 1.35E-09). Extracellular matrix (p = 5.81E-07) and microtubule motor activity (p = 9.97E-

05) were the most significantly enriched term involved in cellular component and molecular

function, respectively (Fig 4A, S6 Table). The significantly enriched GO items of DEGs were

further summarized in the specific spermatogenic processes and listed in a descending order

of p-values within each specific process (S6 Table).

Fig 3. Gene expression, plots and enrichments of differentially expressed genes. (A) Gene expression distribution

of cattleyak and yak. (B) Volcano plot of differentially expressed genes. Plots were constructed using log2 of fold-

changes (CY/YK) and -log10 of p values. The vertical lines indicate differentially expressed genes with the log2 of fold-

changes (CY/YK)�2 or�2, and the horizontal lines indicate differentially expressed genes with the -log10 of p values

�0.05. The red points represent the upregulated genes and the blue ones represent the downregulated genes.

https://doi.org/10.1371/journal.pone.0229503.g003

Fig 4. Enrichments of differentially expressed genes. (A) The top 10 items of GO enrichments of DEGs for the

category of cellular component, biological process and molecular function, respectively. GO terms in each ontological

category were ranked according to decreased -log10 of p values listed on the y-axis. (B) The top 10 pathways of KEGG

enrichments of DEGs were ranked according to decreased -log10 of p values listed on the y-axis.

https://doi.org/10.1371/journal.pone.0229503.g004
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Spermatogenesis initiates from spermatogonial stem cells (SSCs) which are a subset of

undifferentiated spermatogonia including As or some Apr and Aal spermatogonia. The marker

genes for SSCs (PAX7, ZBTB16 and RET) and the genes for SSCs self-renewal (GDNF and

MYC) were upregulated in cattleyak, while the gene for SSCs maintenance (UTF1) were down-

regulated in cattleyak (Table 2). Furthermore, the genes involved in SSCs apoptosis (NOTCH1,
LHX1 and BCL6B) were also differentially expressed between cattleyak and yak.

Mitotic proliferation of spermatogonia is the first phase comprised in spermatogenesis,

during which a majority of DEGs associated with genome stability (CCDC113, RAD18, DNA2
and FANCD2), DNA replication (CLSPN and TICRR), mitotic checkpoint (CDC6, SPDL1,
BUB1, CDK1, CHEK1,MAD2L2, STIL, NEK11, SPC25, TRIP13 and SKA3), centrosome pro-

tein composition (CCDC38, CCDC81, CCDC146, C4orf47, C7orf31, CEP41, CEP55,CEP63,
CEP72, CEP85, CEP128, CEP152, CEP164, CEP192, CEP350, CENPF, CENPJ and CNTRL),

spindle dynamics (KIF2A, KIF2B, KIF2C, KIF3B, KIF14, KIF9, KIF11, KIF18A, KIF18B, KIF22,
KIF23 and KIF) and cell cycle progression (PIWIL2, TP53,MYBL2, E2F7, FOXM1, CDCA3,
CDC20 and UBE2C) were downregulated in cattleyak. During the period of meiosis, almost all

genes related to synaptonemal complex assembly (SYCP1, SYCP2, SYCE1, SYCE1L and

SYCE3), meiotic recombination (TEX11, TEX12,MEIOB,HFM1, CNTD1, CCNB1IP1 and

STRA13) and meiotic progression (MSH4,MEI1, CCDC155, STAG3, SMC1B, REC8,MAEL,

HORMAD1, SPATA22, BOLL,MNS1,M1AP and SGO2) were not expressed in cattleyak. The

process of spermatogenesis also includes subsequent cell part morphogenesis and sperm for-

mation, and dozens of genes involved in acrosome formation (SPACA1, SPACA4, SPACA8,
SPACA9, TBC1D21, ATP8B3, ACR, ACRBP, ACRV1, CAPZA3, TXNDC8 andDPY19L2), cilio-

genesis (KIF19, KIF24, KIF27, IFT57, IFT81, IFT140, RPGRIP1L,DCDC2, CCT2, CCT3, CCT5
and CCT7) and flagellar development (LRGUK, SPEF1, SPEF2, DNAH1, DNAH7, DNAH8,
DNAI2, PACRG, ODF3, TEKT1, TEKT2 and TEKT4) were dominantly downregulated in cat-

tleyak. All these further contributed to the drastically decreased expression of genes associated

with sperm motility (CATSPER1, CATSPER2, CATSPER3, AKAP3, AKAP4, SEPT12, SORD,

SLC9C1, LDHC and ATP1A4), acrosome reaction (FAM170B, IQCF1, TRIM36, CABYR,

PCSK4 and GLRA1) and fertilization (STK31, PAFAH1B1, INSL6, ZPBP,WBP2NL, PLCZ1
and GLRA1) in cattleyak (S6 Table).

On the other hand, a larger amount of genes involved in such biological processes as colla-

gen fibers formation/microfibril assembly (ADAMTS1, ADAMTS3, ADAMTS12, ADAMTS14,

Table 2. Differentially expressed genes associated with undifferentiated spermatogonia between cattleyaks (CY) and yaks (YK).

Gene name Description log2FC (CY/YK) P value Up/down

Marker genes of undifferentiated spermatogonia

PAX7 paired box 7 2.7884 0.0019 UP

ZBTB16 (PLZF) zinc finger and BTB domain containing 16 1.4655 4.03E-05 UP

RET proto-oncogene tyrosine-protein kinase receptor Ret precursor 1.9442 7.81E-05 UP

Genes associated with the self-renewal of spermatogonial stem cells

GDNF glial cell derived neurotrophic factor 3.7732 6.48E-05 UP

MYC v-myc avian myelocytomatosis viral oncogene homolog 2.1814 3.00E-05 UP

Genes associated with the maintenance of spermatogonia stem cells

UTF1 undifferentiated embryonic cell transcription factor 1 -1.5375 0.0139 DOWN

Genes associated with the apoptosis of spermatogonia stem cells

NOTCH1 notch 1 1.2643 0.0027 UP

LHX1 LIM homeobox 1 -2.0923 3.62E-04 DOWN

BCL6B B-cell CLL/lymphoma 6B -1.7877 3.46E-04 DOWN

https://doi.org/10.1371/journal.pone.0229503.t002
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ADAMTS15, COL1A1, COL1A2, COL5A1, COL5A2, COL6A1, COL6A2, COL6A3, COL14A1,
COL27A1,MFAP2,MFAP4 andMFAP5), cell adhesion (LAMA1, LAMA2, LAMB1, LAMB2,
LAMB3, LAMC1, TGFBI, TGFBP7, NPNT, FREM2, SPON1, CD151, FBLN1, GLG1,
LGALS3BP,MYOC, ADAMTS6, THBS2, EFEMP1, FRAS1 and ITGA10) and extracellular

matrix interaction (ADAMTSL2, COL4A1, COL17A1, SOD3, SPARC, DAG1, LAMA3,
LAMC3, CASK, SSC5D, NID1, PRELP, VCAN, COMP, SMAD3 and ITGA11) were dominantly

upregulated in cattleyak with respect to yak (S6 Table).

All DEGs between cattleyak and yak were mapped to the reference pathways in KEGG data-

base. In total, 32 significantly enriched pathways were obtained (Fig 4B, S7 Table) (P<0.05), in

which the top-listed three ones were ribosome (p = 1.09E-09), ECM-receptor interaction

(p = 1.63E-05) and protein digestion and absorption (p = 0.000358). Further analysis of the

top listed pathways indicated that dozens of genes encoding ribosomal proteins (RPL7A,

RPL12, RPL13, RPL19, RPL26, RPL29, RPL32, RPL37, RPS6, RPS12, RPS15, RPS18, RPS20,
RPS27A, RPLP1, RPS5, RPS27, RPS29, etc.) and extracellular matrix assembly and interaction

(ITGA3, ITGA4, ITGA6, ITGA10, ITGAV, LAMA2, LAMB1, LAMB2, LAMC1, COL1A1,
COL4A1, COL4A5, COL9A2, TNC, DAG1, CHAD, SV2A, etc.) were upregulated in cattleyak

with respect to yak (S7 Table).

Identification of spermatogenic cells from yak and cattleyak

Spermatogenic cells comprised spermatogonia and spermatocytes were isolated from yak and

cattleyak using STA-PUT velocity sedimentation [20]. For the yak, the percentage of sper-

matogonia (Fig 5A) and spermatocytes (Fig 5B) was 75.36% and 24.64%, respectively; while

the percentage of spermatogonia (Fig 5C) and spermatocytes (Fig 5D) for the cattleyak was

79.71% and 20.29%, respectively (S4 Fig, S8 Table). Subsequent detection of marker gene

expressions further confirmed the components of the isolated spermatogenic cells. RT-PCR

analysis showed that CD9, UCHL1 and RET were expressed in spermatogonia while Tesmin
and SYCP3 were expressed in spermatocytes from yak (Fig 5E). In contrast, CD9, UCHL1 and

RET were also detected in spermatogonia while only SYCP3 was detected in spermatocytes

from cattleyak (Fig 5F).

Fig 5. Isolation and identification of spermatogonia and spermatocytes. The images of spermatogonia (A, C) and

spermatocytes (B, D) from yaks and cattleyaks under the inverted microscope with scale bars = 20 μm. The expression

of marker genes for the spermatogonia and spermatocytes isolated from yaks (E) and cattleyaks (F).

https://doi.org/10.1371/journal.pone.0229503.g005
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Validation of representative differentially expressed genes from testis and

spermatogenic cells

To validate the identified DEGs between cattleyak and yak from RNA-seq, we randomly

selected 19 DEGs (CCDC113, CHEK1, CEP128, KIF18B, PIWIL2, CDCA3, TEX12,MEIOB,

STAG3, SPACA1, CCT2, SPEF1, TEKT1, CATSPER1, ZPBP, ADAMTS1, COL1A1, LAMA1
and DAG1) involved in the process of spermatogenesis and examined their expression levels

by qRT-PCR (S2 Table). Similar to what observed in RNA-seq, the expression of the genes

involved in mitotic proliferation of spermatogonia, meiosis, spermiogenesis, sperm motility

fertilization were downregulated in cattleyak with respect to yak, whereas those associated

with extracellular matrix composition and interaction were upregulated in cattleyak (S5 Fig).

In addition, in order to verify whether the DEGs are consistent in spermatogenic cells and tes-

ticular tissues of yak and cattleyak, several marker genes (CDH1, Epcam, Lrp4 and Stra8) of

spermatogenic cells (including spermatogonia and spermatocytes) and cell cycle-related genes

(CCNA1, CCNA2, CCNB1, CCNB2, CCNE1 and CCNE2) were detected in the spermatogenic

cells isolated from the testis of yak and cattleyak. Corresponding to the sequencing results,

qRT-PCR analysis showed that the expression level of all these selected genes in cattleyak were

lower than that of yak (S6 Fig). Therefore, the overall expression trends of these genes were

basically consisted with that of RNA-seq data, suggesting that the results of the RNA-seq data

were reliable.

Discussion

Male sterility of cattleyak caused by spermatogenic arrest greatly restricted their utilization in

yak breeding. In this work, deep RNA-seq analysis of testis transcriptome between cattleyak

and yak obtained paired-end reads averaged 10.75 GB, which was four times larger than the

single-end reads (2.2 GB) we obtained from previous study [8]. The number of DEGs identi-

fied from these data was 6477, which was more than two times of what identified from previ-

ous study (2960 DEGs) [8]. Therefore, testis transcriptomic profiling by deep RNA-seq in this

work identified much more genes involved in the whole process of spermatogenesis compared

with those identified in our previous work [8], which provided much more information and

brought much more insights into mechanisms for spermatogenic arrest of cattleyak.

Spermatogenesis initiates from SSCs which undergo the process of self-renewal and differ-

entiation and then proceed to spermatogonial mitosis, spermatocyte meiosis and spermiogen-

esis. SSCs are a subset of undifferentiated spermatogonia which classically comprise only As

spermatogonia, but Apr and the shorter Aal spermatogonia also appear to potential SSCs [21].

PAX7 is specific to type As spermatogonia [22] and ZBTB16 (PLZF) is expressed in all undiffer-

entiated A-spermatogonia at all stages [23]. RET expression coincides with PLZF with the pro-

gression of spermatogenesis [24]. The upregulation of these marker genes indicated the

accumulation of undifferentiated spermatogonia in cattleyak. Over-production of GDNF from

Sertoli cells leads to an over-growth and accumulation of SSCs, causing an arrest in early sper-

matogenesis [25]. BCL6B-depleted Thy1+ spermatogonial cells exhibited a ~2-fold increase in

the frequency of apoptotic cells, providing evidence that BCL6B promotes both SSC self-

renewal and survival [26]. In this work, upregulation of GDNF and downregulation of BCL6B
and LHX1may lead to the accumulation and apoptosis of undifferentiated spermatogonia in

cattleyak. Over expression of NOTCH1 in male germ cells correlated with overexpression of

pro-apoptotic cell markers, Trp53 and Trp63, which resulted in increased apoptosis in PLZF+

cells and decreased sperm number and testis weight [27]. In present study, upregulation of

NOTCH1may also have contributed to the increased apoptosis of spermatogenic cells and

decreased testis weight via upregulation of Trp53 [log2FC(CY/YK) = 1.1986; p = 0.0007] in
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cattleyak. The expression of UTF1 is restricted to As, Apr, and short chains of Aal spermatogo-

nia and therefore maintain their ability to differentiate into A1 spermatogonia [28]. However,

downregulation of UTF1 was likely to weaken the differentiation ability and further accumula-

tion of undifferentiated spermatogonia in cattleyak. Therefore, the accumulation and apopto-

sis of undifferentiated spermatogonia may contribute to spermatogenic arrest of cattleyak.

During the process of spermatogonial mitosis, a majority of DEGs associated with genome

stability, DNA replication, mitotic checkpoint, centrosome protein composition, spindle

dynamics and cell cycle progression were downregulated in cattleyak in this work. FANCD2
was documented to influence replication fork processes and genome stability in response to

clustered DNA double-stranded breaks (DSBs) [29]. TICRR was reported to be an essential

checkpoint and replication regulator and involved in the initiation of DNA replication [30].

The downregulation of CHEK1 involved in DNA repair activation may directly affect DNA

damage repair in spermatogonial cells [31]. Decreased expression of these genes may affect

DNA replication and the integrity of the genome in spermatogonia of cattleyak. A series of

centrosomal protein (CEP) genes were the active component of centrosome and played a vital

role in centriole biogenesis and cell cycle progression, in which CEP152 [32] and CENPJ [33]

were critical to centrosome function by participating in centriole formation, duplication and

elongation, respectively. And their downregulation may lead to abnormal chromosomes divi-

sion. A series of kinesin family (KIF) genes (KIF2A, KIF2B, KIF2C, KIF14, KIF9, KIF11,
KIF18A, KIF18B, KIF22 and KIF25) were also downregulated in cattleyak, in which KIF2B and

KIF22 were crucial for spindle formation and assembly and chromosome congression during

mitosis [34, 35]. Downregulation of these genes may influence the spindle dynamics, and in

turn affect the arrangement and division of chromosomes for dynamic turnover of the spindle

was a driving force for chromosome congression and segregation in mitosis [36]. CDCA3 was

referred to as a trigger of mitotic entry and mediate destruction of mitosis [37] and UBE2C to

control mitosis progression as an essential factor of the anaphase-promoting complex/cyclo-

some (APC/C) [38]. The downregulation of these genes could block up spermatogonial mitosis

and further contribute to spermatogenic arrest of cattleyak.

Meiosis begins after the G2 phase in the spermatocyte cycle and undergoes two successive

nuclear divisions, which is the crucial stage to produce haploid spermatids. In this work,

almost all DEGs related to synaptonemal complex assembly, meiotic recombination and mei-

otic progression presented no sign of expression in cattleyak. Synapsis is the key step in meio-

sis which mediates the alignment of homologous chromosome and the formation of

synaptonemal complex. SYCP1 and SYCP2 were expressed for normal assembly of synaptone-

mal complexes and meiotic synapsis during spermatocyte development [39, 40].MEI1 was

also required for normal meiotic chromosome synapsis and was suggested to involve in cattle-

yak male sterility [41, 42].MEIOB was involved in propagation of synapsis and regulation of

recombination events [43]. The absence or downregulation of these genes may affect the cor-

rect formation of the synaptonemal complex and further affect homologous chromosome

recombination and segregation during meiosis. STAG3 [44] and CCDC155 [45] were found to

function in maintaining cohesion between sister chromosomes in meiosis I and homologous

chromosome pairing during meiotic prophase in spermatocytes, respectively. Therefore, the

expression deficiency or downregulation of almost all genes related to meiosis was enough to

cause meiotic arrest during spermatogenesis.

What’s worse, even more genes involved in such spermiogenesis process as cell part mor-

phogenesis, sperm formation, acrosome formation, ciliogenesis and flagellar development

were dominantly downregulated in cattleyak. Intraflagellar transport (IFT) genes (IFT81 and

IFT140) were formed a tubulin-binding module that specifically mediate transport of tubulin

within the cilium and involved in ciliogenesis and cilia maintenance, respectively [46, 47]. A
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series of chaperonin containing TCP1 subunit (CCT) genes (CCT2, CCT3, CCT5, CCT7) were

required for ciliogenesis regulating transports vesicles to the cilia through the assembly of

BBSome [48]. The downregulation of these genes was not conducive to cilia formation in sper-

matid of cattleyak, which, to some extent, affects sperm motility. LRGUK and PACRG were

critical to flagellar development through the involvement of the early axoneme development

and maintenance of functional stability of the axonemal outer doublets [49, 50]. TEKT1 and

TEKT2 were reported to participate in the nucleation of the flagellar axoneme of mature sper-

matozoa and required for flagellum stability and sperm motility through function as an ODF-

affiliated molecule [51, 52]. Obviously, dominant downregulation of these genes involved in

spermiogenesis process would contribute to the structural deficiency and morphological

abnormalities of sperm in cattleyak. All these further contributed to the drastically decreased

expression of such genes as associated with sperm motility (CATSPER1-CATSPER3, SEPT12)
[53, 54], acrosome reaction (SPACA1, SPACA4, SPACA8, SPACA9, CABYR, FAM170B and

PCSK4) [55–58] and fertilization (STK31, PLCZ1) [59, 60] in cattleyak. Therefore, the scarcely

presented abnormal sperm of cattleyak lost the function of motility and fertilization.

On the other hand, spermatogenic cells’ detachment from seminiferous basement mem-

brane and migration towards the tubule lumen are indispensable to spermatogenesis. A larger

amount of genes involved in such biological processes as collagen fibers formation/microfibril

assembly, cell adhesion and extracellular matrix interaction were dominantly upregulated in

cattleyak with respect to yak. A series of collagen genes (COL1A1, COL1A2, COL5A1,
COL5A2, COL6A1, COL6A2, COL6A3, COL14A1 and COL27A1) were upregulated in cattle-

yak, in which COL1A1 and COL1A2 were suggested to play potential roles in mediating sper-

matogenic cell detachment and migration during spermatogenesis while COL14A1 was

proposed to interact with the fibril surface and involved in the regulation of fibrillogenesis [61,

62].MFAP4 was involved in intercellular interactions and contribute to the elastic fiber assem-

bly and maintenance [63]. The upregulation of the intercellular genes may be the causes of

seminiferous tubule fibrosis in cattleyak. FBLN1 was suggested to play a role in cell adhesion

and migration along protein fibers within the extracellular matrix [64]. NID1 and PRELP were

reported to function in cell interactions with the extracellular matrix and anchor basement

membranes to the underlying connective tissue extracellular matrix [65, 66]. NPNT was docu-

mented to play an important role in regulating cell adhesion and differentiation [67]. There-

fore, upregulation of these intercellular genes may prevent spermatogenic cells detaching from

basement membrane and subsequent migrating towards the seminiferous tubule lumen,

which further contributed to the accumulation and apoptosis of undifferentiated spermatogo-

nia in cattleyak.

Conclusion

Compared to yak, the seminiferous tubule of cattleyak was much thinner and spermatogonia

were the main type of germ cells. The effect of DEGs on the spermatogenesis of cattleyak is

shown in Fig 6. On the one hand, downregulation of differentiation maintenance genes and

upregulation of apoptosis regulatory genes for undifferentiated spermatogonia indicated that

spermatogenic arrest of cattleyak might occur as early as the differentiation stage of SSCs and

be aggravated during spermatogonial mitosis and spermatocyte meiosis, which contributes to

the morphologically deficient and scarcely presented sperms lost the function of fertilization

in cattleyak. On the other hand, upregulation of the genes involved in collagen fibers forma-

tion/microfibril assembly, cell adhesion and extracellular matrix interaction may impede the

migration of spermatogenic cells from the basement membrane towards the seminiferous

tubule lumen in cattleyak. In conclusion, our study provides novel insights into testis
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transcriptome profiling of cattleyak and yak, and will facilitate further experimental studies to

investigate the specific functions of these molecules in spermatogenic arrest of cattleyak.

Supporting information

S1 Table. Primer sequences of the genes associated with spermatogenic cells used for

RT-PCR and qRT-PCR.
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S2 Table. Primer sequences used for qRT-PCR validation of the randomly selected genes

involved spermatogenesis.
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S3 Table. Statistics summary of the weight of testis sampled in this study.
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S4 Table. Sequencing statistics summary of samples analyzed in this study.
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Fig 6. The effect of differential expression of functional genes on spermatogenesis in cattleyak with respect to yak.

The downregulation, no-expression and absence of some functional genes inhibit the spermatogonial mitosis,

spermatocyte meiosis and spermiogenesis, respectively; and the upregulation of others inhibit the migration of germ

cells towards the seminiferous tubule lumen in cattleyak. Eventually, these differentially expressed functional genes

resulted in almost no sperm in the cattleyak testis.

https://doi.org/10.1371/journal.pone.0229503.g006
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S6 Table. Summary of the significantly enriched GO items for differentially expressed
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cattleyak (CY).
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S1 Fig. Mapping region distribution of reads in different genomic regions. The ratio of

reads from six samples mapped to the gene, coding region, splicing sites, introns and non-cod-

ing regions in the genome was indicated by different colors. The coding region includes exons

and the exon coding sequence and the non-coding region includes 5’ UTR, 3’ UTR and non-

coding RNA regions.

(TIF)

S2 Fig. Pearson correlation coefficient heat map of the testis transcriptomes for all sam-

ples. The darkness of the color is corresponding to the extent of correlations and the increase

of Pearson correlation coefficients.

(TIF)

S3 Fig. Hierarchical clustering analysis of testis transcriptomes for yak and cattleyak. CY1

(Cattleyak 1), CY2 (Cattleyak 2), CY3 (Cattleyak 3), YK1 (Yak 1), YK2 (Yak 2), YK3 (Yak 3).

(TIF)

S4 Fig. Statistics of the number of testicular tissue spermatogonia and spermatocytes iso-

lated from yak (YK) and cattleyak (CY).

(TIF)

S5 Fig. qRT-PCR validation of the randomly selected genes involved spermatogenesis.

Data of qRT-PCR ware represented as mean±s.e.m. T-test was performed. Asterisks indicate

statistical significance as compared to yak (�P < 0.05; ��P< 0.01; ���P< 0.001). YK means

yak, and CY means cattleyak.

(TIF)

S6 Fig. qRT-PCR validation of the DEGs associated with spermatogenic cells between yaks

(YK) and cattleyaks (CY). Asterisks indicate statistical significance as compared to yak

(�P < 0.05; ��P< 0.01; ���P< 0.001).

(TIF)
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