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A B S T R A C T   

The discernment of asbestos-cement (AC) roofs within urban areas stands as a pivotal concern 
pertinent to communal well-being and ecological oversight, particularly in emerging nations 
where asbestos continues to be extensively employed. Conventional methodologies entailing the 
recognition of asbestos-cement roofs and the characterization of their degradation status, such as 
tangible examinations and laboratory assays, prove to be temporally protracted, financially 
demanding, and arduous to extrapolate comprehensively across expansive urban domains. In this 
paper, it is presented a novel approach for identifying asbestos-cement roofs in urban areas using 
hyperspectral airborne acquisition and carry out a diagnosis that allows to identify the state of 
asbestos-cement roofs and thus provide a tool for the competent authorities to develop and pri-
oritize intervention strategies to mitigate the problem. Four different methodologies were 
implemented and compared, three of which are new in the literature, to identify the deterioration 
of asbestos-cement (AC) roof state in large urban areas. This, in turn, furnishes a tool for 
competent authorities to identify the state of AC roofs, develop and prioritize intervention stra-
tegies to mitigate the problem. 

The control points in field allowed validating the classification and the proposed methodology 
for the prioritization of intervention in AC roofs. Some neighborhoods in the city showed peaks in 
the area of asbestos-cement roofs of 47% of the total area of the neighborhood, representing 
practically all of the roofs present in the neighborhood. On average around 20% of the total area 
of a neighborhood in Cartagena is covered by AC. Furthermore, it was found a total area of AC 
roofs throughout the city of more than 9 km2 (9 million square meters). On the other hand, two of 
the 4 methods used showed encouraging results that demonstrate their ability to identify covers 
in poor and good condition at a large scale from hyperspectral images. This academic novelty 
suggests that there is a possibility of practical application of these methods in other urban con-
texts with high concentrations of AC roofs, helping in the planning and optimization of inter-
vention strategies to mitigate the risk in public and environmental health due to the presence of 
asbestos.   

1. Introduction 

Asbestos is a naturally occurring mineral widely used in construction materials due to its heat resistance, low conductivity, 
durability, and low cost. Many buildings around the world have asbestos such as homes, schools, hospitals, especially in roofs, walls 
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and floors. However, in the early 1900s it was discovered that asbestos exposure especially in air can lead to various health problems, 
including lung cancer, mesothelioma, and asbestosis among many others, [1–3]. 

Remote sensing technologies have revolutionized the field of environmental monitoring, providing a powerful tool for identifying 
and analysing materials spatial distribution, particularly in agriculture and geological exploration [4–6]. 

One of the areas where remote sensing have shown significant potential is in identifying asbestos-cement roofs, [6–8]. The 
development of control strategies and mitigation of asbestos related problems involves the identification of the material and its level of 
deterioration. Spectral sensor can be deployed on unmanned aircraft, manned aircraft, or satellites, with the choice influenced by the 
trade-off between spatial resolution (SRE) and economic factors. Unmanned aircraft provide high SRE but face logistical challenges for 
large-scale imaging. Manned aircraft offer a balanced SRE-to-cost ratio but are more common in developed countries. Satellite im-
agery, once considered less effective, has improved with technological advances, offering competitive SRE in both short-wave infrared 
(SWIR) and visible/near-infrared (VNIR) bands. This makes satellites attractive due to cost-effectiveness and ease of procurement 
without requiring flight permits [6]. 

Asbestos-cement (AC) identification methodologies center around computational algorithms such as object classification or object- 
based image analysis (OBIA) [9], Spectral Feature Fitting (SFF) [10], Spectral Angle Mapper (SAM) [7], Support Vector Machine 
(SVM) [11], decision trees and Random Forest (RF), discriminant function analysis (DFA) [12], and the maximum likelihood method 
(MLC), among other approaches. The employment of Convolutional Neural Networks (CNNs) has also been applied [13] for the 
discrimination of asbestos-cement tiles leveraging aerial RGB and color-infrared (CIR) imagery. Several studies can be found in 
literature regarding asbestos-cement roof classification through hyperspectral imagery, [13–15]. They normally display acceptable 
results with traditional [7], and innovative tools [13,16]. Bonifazi et al. (2022) [17] implemented a Classification and Regression Trees 
(CART) model to identify roofing materials containing asbestos amidst other objects through hyperspectral images acquired by the 
PRISMA satellite. The employed methodology demonstrated a noteworthy discriminatory capacity, as evidenced by high sensitivity 
and specificity, thereby facilitating the potential application of this approach to more expansive geographical areas. 

On the other hand, very few studies focus on the definition of the state of deterioration of AC roofs. Cilia et al. (2015) [14], in a case 
study in Italy propose an index based on the spectral response in the visible spectrum area (VNIR), relating the state of the cover to the 
amount of mosses and lichens on its surface. The larger the quantity, the greater the deterioration. Finally, they propose a discriminant 
value to identify the roofs with high intervention priority for the competent authorities. Spectral measurements in the field served to 
validate the results obtained with the proposed index. However, mosses and lichens on the roofs are typical of the case study, and it 
remains to be confirmed if the proposed index it has application in other latitudes of the planet, especially in urban areas of tropical and 
desert zones. In addition, the study is based on multispectral images, therefore, it would be crucial to investigate its effectiveness with 
hyperspectral images. 

An additional investigation illustrates the efficacy of remote sensing information for the evaluation of degradation in asbestos 
ceilings [10]. Specifically, the state of the covering material was ascertained through the correlation between the quantified mineral 
fibers exposed and analysed in both laboratory and field specimens, alongside the spectral reactivity at wavelengths of 2.32 μm and 
9.44 μm (Short-Wave Infrared – SWIR and Thermal Infrared - TIR). The researchers seemingly achieve promising outcomes, despite the 
constraint of a limited field observation and the utilization of multispectral aerial images with ground accuracy of 3 m, in contrast to 
the hyperspectral imagery employed within laboratory settings. 

In light of the aforementioned, a notable dearth of research exists concerning the assessment of degradation states and the 
establishment of prioritization benchmarks aimed at addressing the conundrum of asbestos roof deterioration and priority inter-
vention. The utilization of hyperspectral imagery for such investigations remains infrequent, as well as for works conducted in tropical 
and arid urban areas, where climatic factors may influence outcomes. Furthermore, it is pertinent to underscore the significance of this 
matter, which is poised to retain its prominence over the forthcoming decades, particularly within developing nations that have 
recently enforced bans on asbestos or are currently in the process of doing so. It is noteworthy that merely 70 out of the world’s 200- 
plus countries have prohibited asbestos, underscoring the global relevance of this issue [18]. 

Colombia, recently forbidden asbestos use, exploitation and commercialization, giving authorities five years to legislate in the 
matter [19]. The first step toward the mitigation of asbestos related environmental and human problems is the asbestos identification. 
The present work focuses on the urban area of Cartagena de Indias. It is a historical city located on the Caribbean coast of Colombia, 
known for its colonial architecture. The city is UNESCO cultural heritage since 1984 [20]. However, the city is also facing a significant 
environmental and public health challenge due to the extensive use of asbestos-containing materials. 

This manuscript presents an innovative approach for the detection of asbestos-cement roofs within urban context, employing 
hyperspectral data acquired from airborne platforms. The primary objective of this methodology is to assess the priority level of 
intervention of these roofs and provide a tool to governmental bodies for the prioritization of intervention and mitigation measures. 
Four distinct methodologies, encompassing three novel techniques, were implemented, and subjected to comparative analysis to 
identify the degradation status of asbestos-cement roofs in expansive urban zones. The validation of results was conducted through the 
establishment of control points in the field, affirming the effectiveness of both the classification process and the prioritization of 
intervention strategies. 

2. Methodology 

The workflow of the present investigation will be elucidated within the current section and visually depicted in Fig. 1. 

D. Enrique Valdelamar Martínez et al.                                                                                                                                                                            



Heliyon 10 (2024) e25612

3

2.1. Case of study and field sampling campaign 

The study area encompasses the urban zone of Cartagena de Indias, located in northern Colombia, with a population of approx-
imately 1 million people and covering an area of 80.9 square kilometers (Fig. 2). The city is marked by a dense concentration of 
residential areas, a limited presence of green spaces between urban areas, and a lack of coherent urban planning, which is a typical 
situation in developing countries [21]. 

In a field campaign were randomly collected 215 roof samples of 1 cm × 1 cm with variable thickness between 4 mm and 7 mm in 
the study area. The samples were analysed with a polarized light microscopy (PLM) according to the EPA 600/R-04/004 International 
Standard, using a Leica DM750P microscope. Asbestos fibers, fibers type and fiber/cement matrix percentage were analysed. Addi-
tionally, 20 samples of 15 cm × 40 cm of roof were taken to carry out laboratory tests with hyperspectral sensors. For the visible and 
near-infrared range was used the Hyspex VNIR-1600 sensor with 160 bands each 3.5 nm, from 400 to 1000 nm. On the other hand, 
HySpex SWIR-320e sensor with 256 bands each 6.25 nm, from 1000 to 2500 nm was used for the short-wave infrared (SWIR). These 
laboratory tests were carried out in a controlled light environment with halogen lamps to simulate the ultraviolet rays emitted by the 
sun. 

2.2. Hyperspectral data acquisition 

The acquisition of hyperspectral imagery was executed through an aerial survey employing the Mjolnir VS-620 sensor, manu-
factured by HySpex, and facilitated by BlackSquare Colombia. This advanced sensor possesses the capability to capture wavelength 
information spanning from 400 nm to 2500 nm, distributed across 490 spectral bands. Specifically, it encompasses 200 bands in the 
visible spectrum with a spectral interval of approximately 3.0 nm, and 290 bands in the short-wave infrared (SWIR) spectrum with a 
spectral interval of about 5.1 nm, [22]. 

The aerial survey was conducted over a three-day period utilizing a Cessna TU206F Turbo aircraft, covering the geographical 
expanse of Cartagena. The survey duration took into account intermittent interruptions due to air traffic congestion, primarily 
resulting from the proximity of an international airport within Cartagena’s urban vicinity. The flight plan, illustrated in Fig. 3, was 
executed at an altitude of 800 m. Consequently, the coupled Mjolnir sensor exhibited a ground coverage width of 250 m for each 
imaging line, aligned with the requirements of the flight plan. To ensure comprehensive data capture and prevent potential data loss 
within each line, a 25% overlap between capture lines was maintained. Following data acquisition, the obtained images underwent 
rigorous radiometric, geometric, and atmospheric corrections. These corrective measures were applied utilizing the HySpex RAD, Rese 
PARGE, and Rese DROACOR software tools, respectively. 

2.3. Roof classification 

The processing of hyperspectral images was conducted using ENVI® Version 5.6 software. Initially, data sets were readied for 
classification, alongside the prior steps of orthorectification and atmospheric correction. To enhance processing efficiency, noisy bands 
were excluded based on visual assessment, followed by resampling of pixel dimensions from 0.4 m to 0.8 m to mitigate computational 
load while retaining data integrity. 

The Minimum Noise Fraction (MNF) method is a widely recognized approach employed in the realm of hyperspectral imagery 
denoising. This technique effectively converts a noisy data cube into a set of output channel images characterized by progressively 
escalating levels of noise [23]. According to the literature [24,25], MNF used in the case study to reduce the size of the dataset, extract 
the noise from the images and improve the quality of the information. 

Subsequently, the first components that contained the best signal to noise ratio were extracted and used to calculate the Inverse 
MNF in order to obtain the image again in reflectance values, with less noise, [26]. On the other hand, a layer of the of built-up areas of 
the city was created to avoid burden the process with roads, green areas and bodies of water present in the city. 

2.3.1. Classification performance metrics 
The supervised classification was carried out with the SAM algorithm (ENVI®). Part of the asbestos-cement (AC) roofs positively 

identified with PLM analysis were used as training points (10 pixels, equivalent to 0.8 m × 0.8 m), while the others were used to 
validate the results obtained (139). Following the completion of classification, a confusion matrix is typically generated to delineate 

Fig. 1. Methodology workflow. PLM= Polarized Light Microscopy; LHA = Laboratory Hyperspectral Acquisition.  
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the classification’s quality [17,27]. The confusion matrix defines errors in the classified image relative to the ground truth. Essentially, 
two distinct types of errors manifest: the omission error, representing the likelihood that a classified pixel aligns with the ground truth, 
and the commission error, denoting the probability that a pixel classified within a specific class genuinely pertains to that class (1–4). 

Producer Acuracy=
TP

TP + TN
=

TP
Total Referenced

(1)  

Ommission error = 1 − Producer Acuracy (2)  

User Acuracy=
TP

TP + FN
=

TP
Total Predicted

(3)  

Commission error= 1 − User Acuracy (4)  

where TP is the number of True Positives in a class, FN is the number of False Negatives and TN is the True Negatives. These metrics 
were computed for the most common roof classes distributed across the study area. Conversely, Overall Accuracy (OA) was determined 
as the proportion of accurate predictions relative to the total number of predictions, computed by dividing the sum of the diagonal 
elements in the confusion matrix by the total number of predictions. 

The final classification was exported to the ArcGIS® software for post-processing in Geographic Information Systems (GIS). 

2.4. Characterization of roof deterioration state 

Among the roofs selected in the field, those that showed the presence of asbestos to PLM, were assessed in field to define their state 
of deterioration, discriminating between High Intervention Priority (HIP) and Low Intervention Priority (LIP) [14]. These priority 
levels refer to the need or not to urgently intervene in the asbestos-cement roofs, either through radical measures such as the removal of 
AC, or through mitigation methods such as enclosure or encapsulation [28–32]. The method used in the field to differentiate between 
HIP and LIP is the traditional method of visual qualitative inspection [33,34]. Table 1 shows the parameters considered in the present 
research, similarly to other methodologies found in literature [35,36]. Therefore, when one or more parameters of deterioration are 
widespread (general) on the surface of the roof, it is considered a HIP due to the high probability of releasing asbestos fibers into the 

Fig. 2. Location of the study area in Cartagena de Indias.  
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environment [10,37]. In other cases, the local or absent deterioration will classify AC roofs as LIP. 
However, this methodology would be difficult to apply in large urban areas with a high presence of AC roofs. Furthermore, these 

tools alone are not useful for decision-making authorities to optimize strategies and resources to mitigate asbestos contamination, 
especially in developing countries. 

On the other hand, the present research applies four discrete methodologies to delineate the extent of degradation in AC roofs 
through remote sensing. The proposed indices will be applied on hyperspectral data to the roofs analysed in the field positive for the 
presence of asbestos. This will allow to establish LIP and HIP according to remote sensing data. The comparison between the results on 
field analysis and the results of the four discrete methodologies coming from remote sensing data will allow to establish the accuracy of 
the planted methodology for large scale application. 

The first method is grounded in prior literature [14], whereas the subsequent trio of methods are introduced by the researchers as 
innovative components within the current study. 

Drawing from existing literature [14],a spectral indicator known as the Index of Surface Deterioration (ISD) was applied (5). This 
indicator, unlike its direct linkage to surfacing fibers, is intricately associated with the heightened presence of mosses and lichens on 
the top part of the asbestos-cement-roofs. These growths have been documented to exhibit greater prevalence on older asbestos-cement 
external sheets in Italy. The spectral index considers the absorption profiles of photosynthetic pigments found in vegetation, as well as 
the inherent color of the asbestos-cement (AC), which generally darkens as roofs undergo weathering. The formulation of the spectral 
index is presented below (5). 

Fig. 3. Planned flight plan.  

Table 1 
Parameters to define intervention priority through qualitative in field observations.   

Distribution on the top roof surface 

Roof Parameters General Local Absent 

Black, moss, vegetation cape – – – 
Cracks, fissures or holes – – – 
Poor state of the edges – – – 
Surface release of fibers by hand – – – 
Friable matrix – – –  

D. Enrique Valdelamar Martínez et al.                                                                                                                                                                            



Heliyon 10 (2024) e25612

6

ISDVeg =
CR680

R740
(5) 

Delving into specifics, the subscript Veg refers to vegetation, to generally state mosses and lichens, CR0.68 signifies the Continuum- 
Removed reflectance value at 680 nm, a wavelength coinciding with the nearest Hyperspectral band to the chlorophyll absorption 
peak (600–700 nm) [38–40]. Conversely, R0.74 denotes the reflectance observed at 740 nm, a measurement accounting for the lu-
minosity of the cement matrix, which turns out to be the positive reflectance peak immediately to the right of the vegetation absorption 
peak. The technique of continuum removal serves as a mechanism for quantifying absorption characteristics at precise wavelengths, 
standardizing reflectance spectra against a shared baseline [41]. This procedure involves the application of continuum removal, 
wherein the continuum is approximated through linear segments connecting local spectral maxima. Under this approximation, local 
maxima are attributed a value of 1, while values between 0 and 1 correspond to absorption features. To construct the continuum 
baseline and calculate the depth of the chlorophyll absorption feature at 680 nm, reflectance data was interpolated between bands 
centered at 0.60 and 740 nm. This method is therefore based on Visible and Near-Infrared (VNIR) spectral data. 

Following a similar path, the authors propose an alternative spectral index (6), based on short-wave infrared (SWIR) bands (as 
observed in Fig. 4) and chrysotile absorption peak between 2300 and 2350 nm). 

ISD2327 =
CR2327

R2387
(6)  

where CR2327 represents the average value of Continuum-Removed reflectance measured between 2326 and 2331 nm, where the bands 
are absorbed by chrysotile [10], R2387 designates the reflectance recorded at 2387 nm for the asbestos-cement matrix, in corre-
spondence to the pure cement reflectance peak. This distinction arises from the documented observation that the spectral charac-
teristics of asbestos-cement, in the SWIR segment of the spectra, fall always above pure chrysotile spectra and below the cement 
spectral signature. 

A third index is proposed (7), focused on the reflectance of the absorption peak at 2327 nm, which is a characteristic peak for 
chrysotile, cement and asbestos-cement material. 

ISDCAP =
RSample2327− RChry2327

RCem2327− RChry2327
(7)  

where CAP means Chrysotile Absorption Peak, R2327 represents the reflectance recorded at 2327 nm for the asbestos-cement sample 
(RSample2327), chrysotile (RChry2327 = 0.111) and cement matrix (RCem2327 = 0.353). 

The fourth method proposed for the intervention priority is based only on the asbestos-cement sample reflectance at 2327 nm 
(R2327). 

The iterative assessment of the four intervention prioritization indicators in relation to the field-derived prioritization data 
(Table 1) enabled the reduction of predictive discrepancies and the determination of optimal values for each indicator. 

3. Results and discussion 

A total of 215 specimens acquired from rooftop evaluations conducted in the field were subjected to analysis utilizing polarized 
light microscopy (PLM). The results reveal that 188 of these specimens exhibited the presence of asbestos-chrysotile, with a volumetric 
ratio relative to cement of 38.73 ± 8.10%. In 52 of these cases, a concurrent presence of crocidolite was discernible, with a volumetric 

Fig. 4. Typical spectral signature for cement (taken from Ref. [42]), chrysotile (taken from Ref. [43]) and asbestos-cement roofs (taken from 
Ref. [6]). ( ) = non-dimensional. 

D. Enrique Valdelamar Martínez et al.                                                                                                                                                                            



Heliyon 10 (2024) e25612

7

ratio relative to cement of 10.83 ± 6.06%. Notably, only one specimen exhibited the coexistence of amosite (as detailed in Annex 1). In 
64 samples, a concurrent presence of cellulose was found with chrysotile with a volumetric ratio relative to cement of 6.25 ± 3.92%. 

The remaining 27 samples consisted of fiber-cement material asbestos-free, typically representing recently installed roofs. In this 
samples a significantly higher presence of cellulose was found, 30.6 ± 6.08% volumetric ratio relative to cement. According to the 
literature [44–46] cellulose is commonly found in asbestos-cement tiles due to its roles in enhancing structural strength, preventing 
cracks during tile production, and ensuring dimensional stability. However, asbestos-free fiber cement tiles have a higher cellulose 
content, around 30%, mainly because of evolving safety regulations and health concerns related to asbestos. To replace asbestos, 
manufacturers used cellulose fibers, among others, which provide structural benefits and are safe. The increased cellulose content in 
these tiles maintains their desired properties without relying on hazardous asbestos, aligning with modern safety and environmental 
standards. 

The PLM observations illustrating asbestos presence in a representative sample are visually presented in Fig. 5(a–d). 
The image analysis conducted on asbestos-cement via Polarized Light Microscopy (PLM) revealed distinct characteristics. Spe-

cifically, the photograph captured crocidolite and chrysotile asbestos fibers from a roof sample at 40× magnification under plane- 
polarized light. Notably, the crocidolite asbestos fiber-bundles displayed a blue-gray pleochroism with high relief, while the chrys-
otile appeared nearly invisible (low relief) when immersed in a 1.550 HD refractive index liquid. Additionally, non-fibrous components 
exhibited optical properties consistent with carbonates and other minerals commonly found in concrete cement. It is essential to 
highlight that both types of asbestos were abundant, highly asbestiform, and easily detachable from the substrate. 

In terms of the imaging technique, plane-polarized light was employed to emphasize the crocidolite pleochroism, where the blue 
hue ran parallel and the gray hue perpendicular to the primary vibration direction of the microscope. When using crossed polars, a 
predominantly black background was observed, with crystals exhibiting first-order interference colors. Notably, due to the use of a 
1.550 high dispersion refractive index liquid, the chrysotile, although low in contrast, displayed a heightened birefringence, rendering 
it brilliantly white against the black background. 

Fig. 5. (a) Roof top Asbestos-Cement sample; (b) a detailed view of the sample; (c) visible blue and white asbestos fibers: d) Crocidolite and 
Chrysotile asbestos from a roof sample. Photograph taken under polarized light microscopy (PLM) at 40× magnification; plane-polarized light. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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3.1. Asbestos-cement roof classification 

Fig. 6 illustrates the impact of atmospheric correction on the spectral signature, revealing the attainment of a uniform spectral 
profile that more accurately mirrors the characteristics of AC materials. 

Additionally, the application of noise calculations using the Minimum Noise Fraction (MNF) tool enhances the spectral signature, 
particularly in regions characterized by low spectral signal, such as the Short-Wave Infrared (SWIR) zone and areas within the 
spectrum surrounding the atmospheric windows at approximately 1000 nm, 1300 nm and 1900 nm. 

Fig. 7 shows the results of the hyperspectral classification of asbestos roofs in the urban area of Cartagena de Indias. The absence of 
hyperspectral data within the central zone represents the 11.4% of the total study area. It is related to the prohibition to overflight 
approach cone the Cartagena’s international airport of for security reasons. Within this sector, adherence to the designated ceiling of 
800 m for aerial surveys has not been feasible, resulting in a data-deficient zone. Hence, it is imperative to document this instance to 
prompt forthcoming investigations to factor in such contingencies. Accordingly, strategies must be formulated to augment the dataset 
through the integration of satellite imagery and alternate methodologies geared towards identifying asbestos-cement roofs within 
vicinities encompassing airports or other critical infrastructural installations. 

On the other hand, results show a widespread use of AC roofs in the city. In the 190 neighbourhoods of Cartagena, the present 
research found an average AC roof area of 20.4% over the total area of the neighborhood, with neighbourhoods that have a peak of 
more than 47.6% of their total area covered by AC roofs. A total of 9.1 km2 of AC roofs were identified in the city of Cartagena 
representing the 11.2% of the total study area. Given that the region lacking hyperspectral data defines as landing cone, urban 
planning and stratification attributes are entirely analogous to the remainder of the city, it could be inferred the potential existence of 
an additional 2 km2 of asbestos-cement (AC) roofing. This estimate is based on maintaining a consistent average with the broader city 
context. This is an astonishing amount that should raise alarms for the competent authorities, academic and general community. 
Despite a marked social difference in the city and a profoundly different urban planning depending on the sector, small differences are 
noted in the identified quantities of AC between neighbourhoods of high and low social strata. Even in the historic centre, a UNESCO 
heritage site and in the tourist area (extreme north-west of the city in Fig. 7 (a - c), the presence of AC roofs represents up to 13% of the 
total neighbourhoods area [6]. 

Of the 188 roof samples asbestos positive to PLM analysis, 149 resulted in the area from which hyperspectral information could be 
collected. Therefore, in the assessment of classification quality, attention is directed toward the analysis of accuracy in the classified 
image vis-à-vis the ground truth. Noteworthy is the producer accuracy score of 98%, signifying a high probability of a classified roof 
aligning with ground truth, thus indicating the accurate classification of 146 out of the total 149 roofs. Conversely, an overall accuracy 
of 96% is observed, representing the ratio of correctly classified roofs to the total number of ground truth roofs, including non-asbestos- 
cement roofs (Tables 2 and 3). 

These results underscore a heightened precision in the discrimination of asbestos roofing materials from alternative roofing ma-
terials, a pattern consistent with the most accurate findings in existing scientific literature in the matter [10,13–15,24,47,48]. 
However, it is important to note that such findings in literature are often limited to smaller spatial scopes and encompass fewer in-
stances within the ground truth dataset. Additionally, it is pertinent to acknowledge the lack of literature addressing densely populated 
urban centers in developing nations, which are typically characterized by diminutive residential structures with roofs covering less 
than 30–40 m2, representing a further challenge. 

Fig. 8 shows two typical classification errors in the case study. In one case (Fig. 8a–b), the asbestos-cement roof of a school is 
observed with a high density of trees around it, which generate a shadow on the roof, additionally releasing a high amount of leaves on 
top of the roof. Therefore, in the parts covered by the shadow, the misclassified pixels are partly confused with other pixels. It is 
common to find in literature classification errors generated by the roof inclination, shadows of trees, clouds, and other buildings 

Fig. 6. Spectral signature of AC material: Raw (vertical axes indicates Radiance Top of Atmosphere (TOA)); Spectral signature after Atmospheric 
Correction (ATM) and after MNF correction. Vertical axis for ATM and MNF is Reflectance. ( ) = non-dimensional. 

D. Enrique Valdelamar Martínez et al.                                                                                                                                                                            



Heliyon 10 (2024) e25612

9

[13–15,24,47]. Furthermore, in large areas, as in the case study, where the hyperspectral acquisition is carried out during different 
days and at different times, the presence of clouds and different degrees of shadow is almost inevitable. 

In the second case (Fig. 8 c-d), it is a specific case, since between the moment in which the sample was taken in the field and the 
moment in which the hyperspectral flyby was carried out (15 days difference), the cover was replaced with a cover in steel. Therefore, 
this cannot be fully considered a classifier error. These cases are unpredictable and can happen frequently in very dynamic realities 
such as developing countries. 

Furthermore, in the literature unclassified roofs often exhibit surface alterations such as painting or treatment with specialized 
products that engender modifications in their spectral profiles as shown by Frassy et al. (2015) [7]. The present study encountered 
analogous difficulties in accurately identifying painted asbestos roofs, attributed to the distinct spectral contributions stemming from 
compositional modifications. These findings underscore the imperative for supplementary methodologies and data sources to enhance 
the precision of classification outcomes. 

Fig. 7. (a) Asbestos-cement roofs identified in the study area; (b) a section of the city in the public market before the identification of asbestos- 
cement; (c) identification of asbestos-cement roofs in the public market shown above. The area is characterized by a confusing urban organiza-
tion; however, the roofs are well identified. 

Table 2 
Confusion Matrix based on typical roofs in the study area (clay, steel, and AC roofs).  

Confusion Matrix  

Ground Truth Total Classified 

Clay Steel AC 

Classification Clay 47 1 2 50 
Steel 2 47 1 50 
AC 3 0 136 139 
Total Ground Truth 52 48 139 239  

Table 3 
Classification accuracy.   

Clay Steel AC 

User Accuracy 94% 94% 98% 
Commission error 6% 6% 2% 
Producer accuracy 90% 98% 98% 
Omission error 10% 2% 2%  
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Finally, as previously indicated, the examination of hyperspectral signatures pertaining to roofs identified the prevalence of two 
predominant materials distinct from asbestos-cement, namely clay and steel roofs. The spectral characteristics of these materials align 
with documented findings in the scientific literature [49] (Fig. 9). 

Fig. 8. Examples of typical classification errors: (a) image before and (b) after classification asbestos-cement roof of a school is observed with a high 
density of trees; (c) and (d) image of an AC roof partially replaced with steel. 

Fig. 9. Most common spectral signatures found in the study area. ( ) = non-dimensional.  
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3.2. Prioritization of intervention in asbestos-cement roofs 

The delineation of intervention prioritization for asbestos-cement roofs, categorized as lower and higher priority, holds noteworthy 
significance for competent regulatory bodies and governmental entities. Especially, within developing nations or those actively 
engaged in the cessation of asbestos usage and the formulation of legislation to ameliorate its detrimental impact on human well-being. 
This is particularly pertinent in cases where substantial asbestos quantities coexist with limited resources for incentivizing the 
eradication of this hazardous substance. The strategic prioritization serves as a pivotal approach to optimize outcomes. 

Field assessments revealed that among the 149 AC roofs examined, 24 were categorized as having low intervention priority (LIP), 
accounting for 16.1% of the total, whereas 125 were designated as high intervention priority (HIP), constituting 83.9% of the total. 
This disparity is understandable since most of the roofs have been installed for more than 30 years and have endured weathering and 
interventions. Taking the spectral signature of the LIP and HIP roofs and plotting them separately as an average with a 90% confidence 
interval (CI), it was identified that there is a certain tendency for the HIP roofs to have higher reflectance than the LIP roofs (Fig. 10 
(a–b)). As explained in the methodology, it is noted that all the spectral signatures of the AC roofs are between the spectral signature of 
the cement and the chrysotile, especially in the SWIR part after 1900 nm, confirming what is found in the literature [10]. 

In the aforementioned SWIR part, it is evident that AC covers in good condition (LIP) have a spectral signature closer to chrysotile. 
This is probably due to less weathering and greater presence of chrysotile in the cover. On the other hand, roofs classified as HIP 
present the opposite behaviour, probably due to a great persistence of asbestos fibre over the years. In support of this, it is demon-
strated in the literature [10,37,50] that AC covers can lose up to 3 g of asbestos fibers per m3 per year, generating significant surface 
deterioration, compromising the state of the compact matrix. 

Given the marked disparity between LIP and HIP data in the field, the authors generated 101 synthetic spectral signatures for LIP, 
while preserving their mean and standard deviation. This procedure was undertaken to balance the quantities of LIP and HIP spectra. 
The primary aim of this methodology was to empirically examine the performance of the prescribed Prioritization Methods (namely, 
ISDVeg, ISD2327, ISDCAP and R2327) utilizing a combination of authentic and synthetic data derived from hyperspectral imagery (Fig. 11 
(a - d)). Furthermore, the study sought to establish a comparative analysis against qualitative data gathered through on-site field 
assessments concerning the prioritization of interventions. 

To assess the accuracy of the proposed methods, a statistical analysis was carried out with and without synthetic data. The limit 
value of each method was determined with the objective of optimizing the precision in the determination of the LIP and HIP roofs 
between hyperspectral data and qualitative field data (Fig. 12(a–d)). 

Table 4 shows the optimal values found for each method and its corresponding optimal precision value. Several considerations can 
be made about the above. Primarily, it is observed that the ISD680 index proposed by Cilia [14], which discriminates as >4 HIP and <4 
LIP, in the case of Cartagena does not apply because for that value there are errors of up to 96% in predicting the level of intervention of 
a roof in field through the proposed index. However, it has been noted that the optimal value of this index for the case study is between 
5.17 and 5.22 with precisions that do not exceed 40% even decreasing when introducing synthetic LIP data. The values of this index for 

Fig. 10. (a) Average spectral signature of HIP= High Intervention Priority and LIP = Low Intervention Priority roofs of the case study no synthetic 
data included; (b) zoom of the chrysotile, cement, and asbestos-cement (AC) absorption peak around 2327 nm and CI curves. ( ) = non-dimensional. 
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LIP are on average higher than for HIP covers. Therefore, its sensitivity is not appropriate to the case of Cartagena. This is probably 
because in a tropical semi-desert area like the study area, there is no such pattern of grown vegetation, mold and chlorophyll above the 
covers. Similar results are found for the ISD2327, which is basically a similar index applied to the chrysotile absorption peak. This seems 
to mean that the formulation of the index is not appropriate even if it applies to other areas of the AC response spectrum. 

On the contrary, encouraging results are found for the ISDCAP and R2327 both based on the chrysotile reflectance. In the first case, 
the index considers the spectral range between chrysotile and cement in correspondence of an absorption peak that both materials have 
around 2327 nm (Fig. 10 b). In the second, only the reflectance at that same wavelength is considered. Both proposed methods seem to 
have a high precision, around 60%, with an increase up to 70% when the method is fit with the synthetic LIP data. 

However, the errors remain significant, also with these last two methods proposed by the authors. This is probably because it is 
compared the state of an asbestos-cement roof and its level of intervention on the one hand with a qualitative analysis in the field, 
results of a visual analysis, and on the other with hyperspectral data that do not consider factors such as small cracks, fissures or holes, 
poor condition of the edges, superficial release of fibers by hand among other factors. Furthermore, it must be considered that the AC 
roofs analysed show different percentage contents of chrysotile fibers, depending on the producer and the production period. Other 
types of asbestos fibers (crocidolite and amosite) mixed in different percentages with chrysotile have also been found in some samples 
(annex 1), which may reduce accuracy since they have a different spectral signature as shown in literature [51]. 

The innovative aspect of this study lies in the introduction of a tool with a commendable level of reliability, particularly the ISDCAP 
and R2327 methodologies, which are highly valuable in extensive urban environments characterized by a substantial concentration of 
AC roofs. Such environments necessitate the development of effective intervention and prioritization strategies. The significance of 
tools of this nature cannot be overstated, particularly in developing nations where knowledge in this domain is limited, urban areas 
witness pronounced AC proliferation, environmental awareness remains nascent and economical resources are limited. It is worth 
noting that a substantial portion of the global population, numbering at least one billion individuals, one-sixth of the Earth’s popu-
lation, resides within the confines of subtropical desert regions [52], predominantly within developing nations that share charac-
teristics akin to those observed in the study area. Consequently, the findings of this research hold potential applicability to tens of 
thousands of analogous cities worldwide. 

On the other hand, a comparison is proposed between the four methods with data from hyperspectral laboratory tests and 
hyperspectral sensors used for the overflight, in the same roofs. It was calculated the percentage error of each series of coordinates by 
comparing the actual values with the values predicted by the linear equation (y = x) (Fig. 13(a–d)). A trend consistent with Fig. 12 and 

Fig. 11. Variation of the values of the indicators of LIP and HIP without synthetic data for each method. (a) ISD680; (b) ISD2327; (c) ISDCAP; (d) R2337.  
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Table 4 emerges, wherein the method existing in the literature exhibits the highest error (ISDVeg Error = 75 %), while the methods 
proposed in this study demonstrate significantly lower errors up to 35 % (Fig. 13b–d). Once more, the top-performing approach 
exclusively relies on reflectance. Nonetheless, it is crucial to acknowledge the limitations of these methods, which may be partially 
attributed to the presence not only of chrysotile in the cement matrix but also of other asbestos fibers like crocidolite and amosite 
(annex 1), each having distinct spectral signatures compared to chrysotile, potentially leading to deviations [51]. Additionally, it is 
noteworthy that the ground pixel size in the hyperspectral image is 0.8 m, whereas in the laboratory, it is a fraction of a millimeter; this 
disparity may also influence the observed reflectance values. 

Finally, applying the R2327 method to the study area, was found a 49.54% of LIP roofs and 50.46% of HIP roofs in Cartagena de 
Indias urban area. This observation highlights the presence of a significant number of deteriorated asbestos-cement (AC) roofs within 
the city, demanding prioritized interventions that warrant swift action from relevant authorities. Fig. 14(a–c) highlights with 
photographic images and reference samples with relative spectral signature what the authors classify as HIP and LIP. 

Nonetheless, in the present case study (Fig. 15(a, b)), as in the existing literature [14] it is found a tendency to classify roof sections 
with the most shade, typically attributed to steeper slopes, as being in good condition (LIP). Consequently, meticulous flight planning is 
imperative to capture hyperspectral images during midday hours, specifically between 11 a.m. and 1 p.m. when the sun attains its 
zenith, minimizing shadow effects on roof slopes and thereby mitigating potential errors. 

4. Conclusions 

The goal of the present study was to detect asbestos-cement (AC) roofs using hyperspectral imagery and assess the prioritization of 

Fig. 12. Assessing the fluctuation in the precision of each method for the identification of Low Intervention Priority (LIP) and High Intervention 
Priority roofs (HIP), both with and without the inclusion of synthetic data (SYNT). (a) ISD680; (b) ISD2327; (c) ISDCAP; (d) R2337. 

Table 4 
Parameters to define intervention priority through in field observations.  

Parameter Prioritization Methods 

ISD680 ISD2327 ISDCAP R2337 

Optimal Precision (%) 40.72 40.53 58.36 60.00 
Optimal Value 5.17 ( ) 3.31 ( ) 0.54 ( ) 2410 nm 
Optimal Precision with synthetic data (%) 32.65 37.57 70.60 71.02 
Optimal Value 5.33 ( ) 3.34 ( ) 0.49 ( ) 2311 nm 

( ) = non-dimensional. 
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intervention measures for AC roofs within an urban scenario. This effort aimed to provide a decision-support tool for governmental 
bodies in order to streamline the prioritization of interventions and mitigation strategies. Four distinct methodologies, incorporating 
three innovative techniques, were deployed and subjected to a comparative analysis aimed at discerning between low and high 
intervention priorities for AC. 

Asbestos-cement roof identification shown to be reliable with an overall accuracy of 96% with hyperspectral images, encountering 
significant amount of AC roofs in the city, 9 million square meters, being AC the most common roof type in the city independent of 
socioeconomic strata. This shows that it is a transversal problem that affects the entire population and that can have serious conse-
quences on public health in the medium and long term. 

Furthermore, results show the new methods proposed to define the intervention priority better fit the case study, and the chlo-
rophyll pattern suggested for the ISDVeg index found in literature is not replicable in tropical desert zones like the case study. More than 
50% of the city AC roofs are in critical conditions, high intervention priority (HIP), serving as a compelling call to action, urging 
regulatory authorities, the wider community, and the academic sphere to collaborate expeditiously in addressing this issue. 

The significance of these findings, particularly for developing nations, cannot be overstated. Efficient resource utilization in the 
management and mitigation of asbestos-containing materials has the potential to significantly reduce the population’s exposure to this 
hazardous element. This, in turn, holds the promise of preserving countless lives and enhancing public health in the decades to come. 
The far-reaching implications of such improvements extend beyond the realm of healthcare, encompassing multifaceted benefits for 
society as a whole and the overall economy. 

Finally, it is of particular significance to underscore that a considerable segment of the global populace, exceeding one billion 
individuals, makes their homes within the boundaries of subtropical desert regions. These regions are primarily situated in developing 
nations that exhibit striking parallels with the conditions observed in the study’s focal area. This demographic reality accentuates the 
far-reaching implications of the present research findings. They not only pertain to the specific context under investigation but also 
possess a broader relevance that extends to a multitude of analogous urban centers worldwide. The applicability of the present findings 
transcends geographical boundaries, offering insights and potential solutions that can benefit tens of thousands of cities facing similar 
challenges and environmental conditions. 
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Annex 1  

Table A1 
PLM Sample result  

Sample Number Chrysotile (%vol) Crocidolite (%vol) Amosite (%vol) Cellulose (%vol) 

1 – – – 28 
2 30 – – 2 
3 33 – – 3 
4 35 5 – – 
5 38 6 – – 
6 – – – 30 
7 – – – 35 
8 – – – 30 
9 – – – 8 
10 40 10 – – 
11 35 10 – – 
12 33 8 – – 
13 40 – – – 
14 50 – – – 
15 50 – – – 
16 – – – 35 
17 40 8 – – 
18 45 – – – 
19 42 – – 6 
20 40 15 – – 
21 38 – – 12 
22 – – – 40 
23 37 8 – – 
24 30 – – – 
25 32 12 – – 
26 40 10 – – 
27 – – – 40 
28 38 – – 5 

(continued on next page) 
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Table A1 (continued ) 

Sample Number Chrysotile (%vol) Crocidolite (%vol) Amosite (%vol) Cellulose (%vol) 

29 42 – – 2 
30 47 – – – 
31 50 – – – 
32 55 – – – 
33 44 – – – 
34 55 – – – 
35 45 12 – – 
36 45 – – – 
37 38 – – – 
38 40 – – 7 
39 44 – – – 
40 40 – – – 
41 50 – – – 
42 48 – – 8 
43 46 – – – 
44 38 15 – – 
45 45 – – 9 
46 47 – – 7 
47 30 20 – – 
48 27 9 – – 
49 35 – – – 
50 50 – – – 
51 48 – – – 
52 48 – – 5 
53 50 – – 5 
54 47 – – – 
55 33 – – 7 
56 38 – – 8 
57 40 – – 10 
58 50 5 – – 
59 42 11 – – 
60 40 – – 8 
61 – – – 28 
62 32 – – 8 
63 48 – – – 
64 50 – – – 
65 40 – – 12 
66 38 8 – – 
67 45 – – 7 
68 – – – 30 
69 40 10 – – 
70 45 11 – – 
71 38 – – – 
72 40 – – 5 
73 38 – – – 
74 40 – – 12 
75 45 – – 9 
76 42 – – 8 
77 – – – 30 
78 45 – – – 
79 50 – – 10 
80 40 18 – – 
81 50 – – – 
82 38 – – – 
83 52 – – – 
84 – – – 28 
85 38 8 – – 
86 40 – – – 
87 37 11 – – 
88 40 10 – – 
89 50 – – – 
90 55 – – – 
91 50 – – – 
92 50 – – – 
93 55 – – – 
94 53 – – – 
95 38 10 – – 
96 37 18 – – 
97 50 – – – 
98 – – – 28 

(continued on next page) 
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Table A1 (continued ) 

Sample Number Chrysotile (%vol) Crocidolite (%vol) Amosite (%vol) Cellulose (%vol) 

99 37 – – 2 
100 40 – – – 
101 32 6 – 4 
102 40 40 – – 
103 35 10 – – 
104 45 10 – – 
105 45 10 – – 
106 20 – – 8 
107 43 10 – 3 
108 32 8 – Trace 
109 33 – – – 
110 28 – – – 
111 28 – – – 
112 27 – – 5 
113 27 – – 2 
114 30 15 – 1 
115 37 – – 3 
116 28 – – 6 
117 30 – – 7 
118 – – – 32 
119 27 16 – – 
120 27 – – 15 
121 – – – 35 
122 27 – – Trace 
123 36 – – Trace 
124 27 – – – 
125 32 – 6 – 
126 33 – – 2 
127 20 – – 25 
128 32 – – – 
129 37 – – 12 
130 35 – – 4 
131 38 – – – 
132 35 – – – 
133 28 4 – 3 
134 30 – – – 
135 – – – 35 
136 – – – – 
137 30 10 – – 
138 33 – – – 
139 26 – – – 
140 35 5 – 2 
141 35 2 – – 
142 27 – – 5 
143 26 2 – 7 
144 26 – – – 
145 – – – 35 
146 30 – – 4 
147 30 – – 2 
148 28 – – 4 
149 35 – – Trace 
150 30 2 – – 
151 28 – – 7 
152 29 8 – – 
153 38 – – – 
154 – – – – 
155 27 – – 9 
156 36 – – 5 
157 35 – – 4 
158 32 – – 7 
159 36 – – – 
160 28 – – 1 
161 20 8 – 10 
162 37 4 – – 
163 27 – – 8 
164 40 – – 9 
165 39 12 – – 
166 33 – – – 
167 35 – – – 
168 33 22 – – 

(continued on next page) 
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Table A1 (continued ) 

Sample Number Chrysotile (%vol) Crocidolite (%vol) Amosite (%vol) Cellulose (%vol) 

169 40 – – – 
170 – – – 29 
171 52 – – – 
172 42 – – – 
173 22 8 – – 
174 20 – – – 
175 47 – – – 
176 50 – – – 
177 48 – – – 
178 – – – 30 
179 – – – 28 
180 – – – 31 
181 – – – 33 
182 45 – – – 
183 49 – – – 
184 50 – – – 
185 – – – 35 
186 38 – – – 
187 – – – 22 
188 37 – – – 
189 35 – – – 
190 36 – – – 
191 30 8 – – 
192 27 – – 5 
193 35 – – 9 
194 – – – 30 
195 46 – – 4 
196 50 – – 5 
197 39 13 – – 
198 42 15 – – 
199 46 – – 3 
200 50 – – – 
201 40 – – – 
202 36 – – – 
203 35 15 – – 
204 45 – – – 
205 42 17 – – 
206 43 – – 2 
207 38 – – 4 
208 40 – – – 
209 50 – – – 
210 48 – – – 
211 45 15 – – 
212 47 – – – 
213 45 – – 3 
214 43 – – – 
215 51 – – 4  
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