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Intelligent fault diagnosis methods based on deep learning have achieved much progress in recent years. However, there are two
major factors causing serious degradation of the performance of these algorithms in real industrial applications, i.e., limited
labeled training data and complex working conditions. To solve these problems, this study proposed a domain generalization-
based hybrid matching network utilizing amatching network to diagnose the faults using features encoded by an autoencoder.+e
main idea was to regularize the feature extractor of the network with an autoencoder in order to reduce the risk of overfitting with
limited training samples. In addition, a training strategy using dropout with random changing rates on inputs was implemented to
enhance the model’s generalization on unseen domains. +e proposed method was validated on two different datasets containing
artificial and real faults. +e results showed that considerable performance was achieved by the proposed method under cross-
domain tasks with limited training samples.

1. Introduction

Mechanical fault diagnosis plays a significant role in modern
industry. Failures of machines are likely to result in an entire
mechanical system collapse and production line downtime,
as well as serious economic losses. Timely and accurate fault
diagnosis has become an indispensable technology in
modern industries to ensure the safe and reliable operation
of mechanical systems [1–3].

Recently, deep learning has achieved considerable
progress in computer vision [4, 5], speech and natural
language processing [6], product defect detection [7], and
road planning [8]. Expectedly, an increasing number of
researchers have applied deep learning techniques to fault
diagnosis and proposed intelligent fault diagnosis methods
[9–16]. Hasan et al. [17] proposed an explainable AI-based
model for bearings fault diagnosis. Sun et al. [18] developed a
sparse autoencoder-based deep neural network for the fault
diagnosis of induction motors, which realized accurate fault
prediction. Li et al. [19] designed a two-layer Boltzmann

machine to develop representations of the statistical pa-
rameters of wavelet packet transform for gearbox fault di-
agnosis. Ding et al. [20] applied a deep convolutional neural
network (CNN) by using wavelet packet energy as the input
to develop a bearing fault diagnosis system, with which they
obtained reasonable fault detection performance. Zhang
et al. [21] proposed a method based on deep learning that
uses raw temporal signals as input, which achieved high
accuracy under noisy conditions. Qiao et al. [22] built a dual-
input model and achieved satisfactory antinoise and load
adaptability based on a CNN and a long short-term memory
neural network. +e deep learning methods have discarded
the traditional time-consuming and unreliable manual
analysis, improving the efficiency of fault diagnosis [23–28]
considerably.

Traditional deep learning methods can only achieve
satisfactory results when the training set (source domain)
and the test set (target domain) are in the same data dis-
tribution. In practical applications, however, due to the
complexity of the working conditions of the mechanical
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system (load, motor speed, etc.), the training set and the
testing set may have distinct distributions. +e predictive
performance of the deep learning models is greatly affected
by these facts. To face this challenge, some transfer learning
algorithms have been proposed to enhance the domain
adaptability of the model. Zhang et al. [21] presented a novel
algorithm based on deep learning to alleviate the degrada-
tion of the performance of intelligent fault diagnosis under
noisy environments and different working loads. Yao et al.
[29] designed a new model based on a Stacked Inverted
Residual Convolution Neural Network to ensure the accu-
racy of the model in noisy environments. Hu et al. [30]
proposed a data augmentation algorithm and presented a
self-adaptive neural network to boost models’ generalization
ability. Lu and Yin [31] developed a transferable common
feature space mining algorithm to extract the common
features frommultidomain data. Wu et al. [32] constructed a
few-shot transfer learning method in variable conditions.
Wei et al. [33] proposed multiple source domain adaptation
methods to extract condition-invariant features for fault
diagnosis.

Aside from the obstacle posed by cross-domain tasks, a
limited training set is another challenge that restricts the
practical application of deep learning fault diagnosis algo-
rithms. Most of the deep learning methods require a large
amount of labeled data for model training. However, in
actual industrial application scenarios, collecting a huge
amount of labeled data for every type of failure under each
working condition poses a considerable challenge. To ad-
dress this problem, some studies on mechanical fault di-
agnosis using limited labeled training data have been
conducted. Wang et al. [34] presented an integrated fault
prognosis and diagnosis method for the predictive main-
tenance of turbine bearings, which achieved reasonable
performance under limited labeled data. Zhang et al. [35]
applied the few-shot approach for fault diagnosis and
designed an artificial neural network based on a Siamese
network, achieving interesting results with limited data. Li
et al. [36] designed a meta-learning fault diagnosis method
(MLFD) framework using model-agnostic meta-learning,
which has performed excellently under complex working
conditions. Hang et al. [37] applied a two-step clustering
algorithm and principal component analysis to improve
classification performance in the case of unbalanced high-
dimensional data. Li et al. [38] proposed a deep, balanced
domain adaptation neural network, which achieved satis-
factory results with limited labeled data. Duan et al. [39]
proposed a novel data description support vector based on
deep learning for unbalanced datasets.

As two important research directions of fault diagnosis,
improving the model’s generalization to new domains and
performance under limited training samples has made good
progress, respectively. However, the reports of studies
combining these two directions are relatively rare to find. In
this study, to achieve domain generalization under limited
training samples, we proposed a hybrid matching network
(HMN) designed by connecting a prototypical network to
the bottleneck of an autoencoder for fault diagnosis to
unseen domains with limited training samples.

Our model mainly consists of two parts: (1) the
autoencoder regularizing the feature extractor of the model
to reduce the risk of overfitting and (2) the matching net-
work achieving the measurement of samples similarity.
Besides, a novel strategy is implemented in the training
process to improve the model’s domain generalization.

+e main contributions of this study can be summarized
as follows:

(1) A novel fault diagnosis method based on matching
network and autoencoder, known as HMN, was
proposed to face the cross-domain scenarios. In the
tasks, the model was training on the source domain
with limited data and testing on the unseen target
domains without access to their distributions.

(2) Dropout on the input layer with randomly changing
rates was employed to improve the generalization
ability of the model. Autoencoder was built to reduce
the risks of model overfitting with limited training
samples by regularizing the feature extractor of the
network.

(3) +e well-designed algorithm can effectively cope
with domain generalization (DG) fault diagnosis.
Comprehensive experiments were designed and
executed to prove the effectiveness of the proposed
HMN with two bearing faults datasets containing
artificial and real faults.

+e rest of the paper is organized as follows. Autoen-
coder and prototypical networks are introduced in Section 2.
Section 3 describes the proposed method in detail. Section 4
presents the experiments, results, and discussion. Finally, the
conclusions are drawn in Section 5.

2. Autoencoder and Prototypical Network

2.1. Autoencoder. Autoencoder, an unsupervised learning
method, uses a neural network to implement the repre-
sentation learning task. Specifically, a neural network ar-
chitecture designed to impose a bottleneck layer forces a
compressed knowledge representation of the original input.

As shown in Figure 1, the autoencoder is mainly
composed of two parts: an encoder and a decoder. +e
encoder function, which is denoted as fθ, enables the ef-
ficient computation of a feature vector h � fθ(x) from an
input vector x. It is important to note that the dimensions of
h are usually lower than the dimensions of x. Another
parameterized function gθ, known as the decoder, maps the
feature vector back to the input space, generating a re-
construction vector 􏽢x � gθ(h).

A simplified autoencoder structure can be represented as
a fully connected neural network with three layers, i.e., an
input layer, a bottleneck layer, and an output layer. +e
parameter sets of the encoder and the decoder are trained
simultaneously when performing the task of reconstructing
the input as much as possible, i.e., minimizing recon-
struction error L(x, 􏽢x) which is usually described by MSE
over training examples. For a training set x(i)􏼈 􏼉

n

i�1, the re-
construction error of MSE is expressed as follows:
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If the input is normalized to [0, 1], the cost function can
be described as binary cross-entropy, which comes in the
form below:
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where x
(i)
j and 􏽢x

(i)
j represent the j th element of x(i) and 􏽢x(i),

respectively, n and m represent the batch size and the di-
mension of x, respectively.

Using penalizing parameters based on reconstruction
errors, the network can learn about the most important
attributes of the input data and how to best reconstruct the
input from the feature vector.

2.2. Prototypical Networks. Prototypical Networks [40] have
been proposed for few-shot learning, which requires only a
small amount of training data with limited information, as
compared to traditional machine learning methods re-
quiring a large amount of data to train a model for good
results. As shown in Figure 2, the classification task can be
achieved by comparing the distances with mean represen-
tations of each class in the metric space produced by Pro-
totypical Networks.

Specific to a few-shot task, given a support set that has M

labeled samples S � (x1, y1), . . . , (xM, yM)􏼈 􏼉, xi ∈ RD is a
vector with D-dimension and yi ∈ 1, . . . , K{ } is the label of
each class, Sk describes the set labeled with k. A represen-
tation ck, or prototype, of each class is computed by meaning
the support points belonging to class k:

ck �
1
Sk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

xi,yi( )∈Sk

fθ xi( 􏼁, (3)

where fθ is an embedding function with learnable pa-
rameters θ. For a function computing distance
d � RD × RD⟶ [0, +∞), distribution of a query point xq

over distances to all prototypes of each class in the metric
space is computed by prototypical networks:

pθ y � k | xq􏼐 􏼑 �
exp − d fθ xq􏼐 􏼑, ck􏼐 􏼑􏼐 􏼑

􏽐k′exp − d fθ xq􏼐 􏼑, ck′􏼐 􏼑􏼐 􏼑
. (4)

Train the network by minimizing L(θ) �

− logpθ(y � k | xq), the loss of the k class.

3. Methods

+e proposed HMN for fault diagnosis is described in detail
in this section. As shown in Figure 3, our model has both
one-input and two-output configurations. One of the out-
puts was the reconstruction of the input, and the other was
the prediction of health conditions using a prototypical
network. +e details of the model are illustrated in Table 1.

3.1.DataPreprocessing. +e proposed model used the short-
time spectrogram as a 2D input. Firstly, as shown in Figure 4,
the sliding window of 2048 points generated the samples.
Secondly, STFT used a fixed-length nonzero window
function to slide along the time axis, truncating the source
signal into segments of equal length. Assuming that these
segments are stable, Fourier transform can be used to obtain
the local frequency spectra of the segments. And finally,
these local frequency spectra were recombined along the
time axis to obtain a 2D time-frequency graph. +e formula
is presented in equation (5) as below:

STFT � 􏽚
+∞

− ∞
x(t)g(t − τ)e

− jωt
dτ, (5)

where x(t) is the original timing signal and g(t − τ) is the
window function applied as the center point at time τ. In this
study, the Hann window was used. To speed up the con-
vergence of the model, we converted 2D spectrogram into a
grayscale image with a value between 0 and 1. +is process
can be expressed as follows:

X′(τ,ω) �
|X(τ,ω)| − |X(τ,ω)|min

|X(τ,ω)|max − |X(τ,ω)|min
, (6)

where |X(τ,ω)| is the element magnitude, |X(τ,ω)|min and
|X(τ,ω)|max represent the minimum and maximum mag-
nitude, respectively. Finally, the normalized spectrogram

support set 

query point

ck

Figure 2: Prototypical network. Prototypes ck are the mean of the
embedded support points. +e embedded query points are clas-
sified via a softmax over distances to each prototype.
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Figure 1: +e typical architecture of a simple autoencoder.
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X′(τ,ω) was compressed into 64×64 time-frequency graphs
as the input of the model.

3.2. Random Dropout on Input. Dropout is a technique
proposed in [41] to prevent the deep neural nets from

overfitting. +e key idea is to randomly deactivate the units
along with their connections from the network with
probability p during training, preventing units from coad-
apting too much. Applying dropout amounts to sampling a
“thinned” network from the original one during training.
During the testing phase, dropout is disabled, which can be

Shared encoderInput
randomly
dropout

Decoder

Matching

L class

L recon

Figure 3: +e architecture of the proposed model.

Table 1: +e details of the proposed networks.

Module Layer Layer type Filter size/stride/channels (neurons) Kernel number Output size (Width∗Depth)

Shared encoder

1 Input — — 64∗ 64∗1
2 Convolution 3∗ 3/2 16 32∗ 32∗16
3 Convolution 3∗ 3/2 32 16∗16∗ 32
4 Convolution 3∗ 3/2 32 8∗ 8∗ 32
5 Convolution 3∗ 3/2 32 4∗ 4∗ 32
6 Flatten — — 512
7 Fully connected 64 — 64
8 Fully connected 32 — 32

Decoder

9 Fully connected 64 — 64
10 Fully connected 512 — 512
11 Reshape — — 4∗ 4∗ 32
12 Transposed convolution 3∗ 3/2 32 8∗ 8∗ 32
13 Transposed convolution 3∗ 3/2 32 16∗16∗ 32
14 Transposed convolution 3∗ 3/2 32 32∗ 32∗16
15 Transposed convolution 3∗ 3/2 1 64∗ 64∗1

Matching 16 Prototypical loss — — —

STFT

Overlap shift

Figure 4: +e vibration signal is sliced into samples containing 2048 points.
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seen as an average of the predictions of many “thinned”
networks. +e networks trained with dropout usually have
much better generalization ability on supervised learning tasks.

+e deactivated units affect all the ones in the network,
including the layers with dropout. Dropout applied in the
lower layers can also be seen as providing noisy inputs for
the higher layers. It can be interpreted as a method of data
augmentation by adding noise to its hidden layers.

Adding noise with a specific distribution was not
enough. Inspired by [21], we randomly changed the dropout
rate during the training to obtain noise with the uncertain
feature. Specifically, in each batch of training, the dropout
rate was a random value between 0.1 and 0.9. +e visuali-
zation of the operation is illustrated in Figure 5.

p ∼ Uniform(0.1, 0.9),

ri ∼ Bernoulli(p),

􏽢x � ri ∗x.

(7)

Here ∗ denotes an elementwise product. ri is a vector
whose elements follow independent Bernoulli random
variable which has a probability p. x and 􏽢x are the raw input
and the interfered output of x.

+e purpose of adding dropout to the input layer was to
add masking noise to the input, making the model insen-
sitive to disturbance and improving the domain general-
ization of the model.

3.3. Feature Extraction. To make full use of unlabelled in-
formation, an autoencoder was designed for feature ex-
traction. In the encoding stage, the 2D time-frequency
images first passed through a set of 2D convolutional layers.
+e 2D convolutional layers captured the localized features
of the image well due to its translation invariance. To obtain
more diverse features at the same feature level, the weights in
the convolutional layer were designed as a series of 2D filters.
Each filter convolves independently across the input feature
map in the forward pass, obtaining the output of one of the
convolution layer’s channels. Generally, the computing of
the convolutional layer l is expressed as follows:

Z
l
c � f

l
􏽘

cl− 1

i�1
W

l
i,c ∗Z

l− 1
i + b

l
c

⎛⎝ ⎞⎠, (8)

where ∗ operator denotes the convolution of the channel i

of the feature matrix Zl− 1
i and the kernel Wl

i,c, which pro-
duces the feature map Zl

c of the cth channel of the layer l. bl
c is

the bias of cth channel in the layer l. +e fl(·), a nonlinear
activation function using RELU in this study is implemented
on the final output of the convolution network.

+e encoder and decoder were designed in a symmetrical
form. To reconstruct the coding of the bottleneck layer to the
same size as the input time-frequency image, a transposed
convolution layer was used in the decoder to unsampled the
feature map. Following [42], the encoder contained four
convolution layers and two fully connected layers, while the
decoder contained four transposed convolution layers and
two fully connected layers.

3.4. Training of the Proposed Model. +e two outputs of the
model correspond to two different losses, including the
reconstruction loss Lr computed by the autoencoder and the
classification loss Lc computed by the prototype network. In
the training process, Lr and Lc are minimized. +e total loss
in the model training can be described as follows:

L � Lc + αLr, (9)

where the hyperparameter α is the weight coefficient used
to adjust the weights of different losses. In the training
process, the network is optimized with an Adam optimizer
which sets the learning rates for each parameter adaptively.
+e steps of the proposed training algorithm are listed in
Algorithm 1.

4. Experiments, Results, and Discussion

4.1. Experiment Setup

4.1.1. Experiment Description. To verify the validity of our
method, experiments are carried out on two bearing datasets
selected from the CaseWestern Reserve University (CWRU)
bearing datasets [43] and Paderborn bearing dataset [44].
We assume the source domain contains limited labeled
samples and set 6, 10, 15, 50, 100, 200, 300, 500, 600 training
samples per class to test the performance of the proposed
method. Fivefold cross-validation is applied to the experi-
ments. +e test platform uses an Ubuntu 18.04 + Python
3.6 + Pytorch with an Intel® CORE™ i7-9750H CPU and a
Nvidia GTX 1080Ti GPU.

4.1.2. Comparison Methods and Evaluation Metrics. To
verify the advantages of the proposed model, as shown in
Table 2, several popular models are compared, using three
types of time series input methods (Siamese-based CNN
[35], PSDAN [45], and WDCNN [46]) and three types of
time-frequency input methods (SCNN, HCAE [42],s and
DeIN [47]). +e Siamese-based CNN was designed by [35].
PSADAN was an adversarial domain adaptation method.
WDCNN, in which a wide convolution kernel was used in
the front of the network, was proposed in [46]. DeIN was
proposed in [47]. SCNN is a common CNN that follows a
softmax at the end of the same structure with the encoder of
HMN. +e HCAE was proposed in [42]. +e HMN model
was proposed by our team.

All the models are trained in the source domain and
tested in the unseen target domain. For the sake of fair
comparison, the hyperparameters of models are carefully
selected.

Conv kernel

+

(a)

Deactivated unit

+

(b)

Figure 5: Input dropout:(a) without dropout, (b) with dropout.
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Several evaluation indicators are used to evaluate the
performance of the proposed model in the following aspects:
(1) accuracy, (2) precision, (3) F1 score (F1), and average F1
score (αF1). Precision, F1, and αF can be obtained using the
following equations:

Precision �
TP

TP + FP
,

F1 �
2TP

2TP + FN + FP
,

αF1 �
􏽐 F1

Total classes
,

(10)

where TP, FP, and FN represent true positive, false positive,
and false negative, respectively.

4.2. Case Study 1: CWRU Bearing Datasets

4.2.1. Data Description. In the CWRU bearing datasets [43],
the 12k drive end fault data were selected as the original
experimental data. Four types of faults, i.e., normal, ball
fault, inner race fault, and outer race fault, were found in
these data, as shown in Table 3. Each fault type had three
different subtypes, i.e., 0.007 inches, 0.014 inches, and 0.021
inches.+us, there were altogether 10 different types of fault.

Signals of all fault types are shown in Figure 6. Each type
of fault had three different loads, i.e., 1, 2, and 3 hp (motor
speed of 1772, 1750, and 1730 RPM), as illustrated in Table 4.
During data collection, each sample was collected from a
vibration signal, as shown in Figure 7. Half of the signals
were used to generate training data, and the remaining
signals were used to generate the test set. As shown in

Initialize: weight coefficient α� 0.5, the batch size is set to 8, the learning rate η is set to 0.0001, and the epoch is set to 300
for n� 0,. . ., epoch do
for i� 0,. . .,steps do

input a batch samples from the source domain
random sampling p from Uniform (0.1, 0.9)
dropout on inputs with rate p
compute prototypes ck

L � Lc + αLr,

θ⟵ θ − η(zLc/zθ + αzLr/zθ)

end for
end for

ALGORITHM 1: +e proposed training algorithm.

Table 2: Details of the comparison methods.

Input type Method name Implementation details

Time-based
Siamese based CNN Details referred to [35]

PSDAN Implementation details referred to [45]
WDCNN Details referred to [46]

Time-frequency

SCNN +e encoder of HMN connecting softmax regression.
HCAE Implementation details referred to [42]
DeIN Details referred to [47]

HMN (our) As shown in Table 1

Table 3: Description of CWRU bearing datasets.

Fault location None Ball Inner race Outer race

LoadFault
Diameter(inch) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

Class labels 1 2 3 4 5 6 7 8 9 10

Dataset A Train 600 600 600 600 600 600 600 600 600 600 1Test 25 25 25 25 25 25 25 25 25 25

Dataset B Train 600 600 600 600 600 600 600 600 600 600 2Test 25 25 25 25 25 25 25 25 25 25

Dataset C Train 600 600 600 600 600 600 600 600 600 60 0 3Test 25 25 25 25 25 25 25 25 25 25

6 Computational Intelligence and Neuroscience



Figure 4, the training samples were generated using 2048
points sliding window with 80 points overlapping steps. +e
test set samples passed through sliding windows in the same
size, but the samples were generated without overlapping.

We set the data under different working conditions as
experimental data. Datasets A, B, and C correspond to
different working conditions with loads of 1, 2, and 3 hp,
respectively. Each dataset contained 6000 training samples
and 250 test samples.

4.2.2. Results and Analysis. Figure 8 illustrates the accuracy
of all methods of training with various amounts of samples.
With outstanding performance, HMN is evidently superior
to the other approaches. We can find that cross-domain task
C to A is the most difficult, in which even with sufficient
training samples, the accuracy of four compared methods
does not reach 90%, but the proposed model still achieves
satisfactory results.

+e results of training with 6 samples per class were
observed. +e classification accuracies of the cross-do-
main tasks are shown in Table 5.+e best performance was
achieved using HMN among all the methods in all the
scenarios. Specifically, HMN achieved an accuracy of
92.65% in C-A, which was 34.61%, 21.57%, 26.38%,
19.32%, 40.21%, and 27.09% higher than DeIN, Siamese

0
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0.00

-0.25

0.25
0.00

-0.25

0.25
0.00

-0.25

0.50
0.00

-0.50
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0.00

-0.50
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-1.00
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500 1000
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Ball (0.014 in.)

Inner Race (0.007 in.)

Inner Race (0.021 in.)

Outer Race (0.014 in.)

1500 2000

0 500 1000 1500 2000
Ball (0.021 in.)

0 500 1000 1500 2000

Ball (0.007 in.)
0 500 1000 1500 2000

0 500 1000 1500 2000

1.00
0.00

-1.00

Inner Race (0.014 in.)
0 500 1000 1500 2000

0 500 1000 1500 2000

2.5 
0.00

-2.50

Outer Race (0.021 in.)
0 500 1000 1500 2000

2.50
0.00

-2.50

Outer Race (0.007 in.)
0 500 1000 1500 2000

0 500 1000 1500 2000

Figure 6: Vibration signals corresponding to 10 states.

Table 4: +ree different working conditions.

Datasets Load/HP Rotational speed/rpm Damage size/10− 3in
A 1 1772 7, 14, 21
B 2 1750 7, 14, 21
C 3 1730 7, 14, 21

Motor Accelerometers Test bearing Transducer/
Encoder

Dynamometer

Figure 7: CWRU. Bearing fault diagnosis test rig.
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Based CNN, WDCNN, SCNN, HCAE, and PSDAN,
respectively.

In Tables 6 and 7, the precisions and F1 (αF1) of HMN
and the other 6 methods in the cross-domain task C-A are
compared, each training class containing 6 samples (the
most difficult task). +e results reveal that the suggested
HMN outperformed all of the compared approaches.
+is evidenced that HMN can achieve more robust

performance in cross-domain diagnostic tasks with limited
training samples.

To further evaluate the effectiveness of the proposed
method, we observed the effects of the autoencoder and
random dropout in improving model’s performance
through the loss curve. Figures 9 and 10 show the loss
curves in cross-domain task C-A with 6 training samples
per class.
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Figure 8:+emean classification accuracy with the increasing number of training samples on CWRU. (a) Dataset A to dataset B. (b) Dataset
A to dataset C. (c) Dataset B to dataset A. (d) Dataset B to dataset C. (e) Dataset C to dataset A. (f ) Dataset C to dataset B.
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Table 5: Mean classification accuracy (%) with 6 training samples per class on CWRU.

Methods A-B A-C B-A B-C C-A C-B Average
DeIN 90.14 53.76 62.33 72.17 58.04 62.76 66.53
Siamese based CNN 58.68 60.40 71.51 77.56 71.08 72.42 68.61
WDCNN 68.17 70.92 75.68 78.44 66.27 71.86 71.89
SCNN 89.14 69.15 85.15 80.44 73.33 82.56 79.96
HCAE 41.33 43.67 49.23 30.16 52.44 57.99 45.80
PSADAN 90.00 67.40 84.07 63.33 65.56 90.37 76.79
HMN (our) 99.34 98.87 98.57 98.54 92.65 99.08 97.84

Table 6: Precision (%) comparison for cross-domain task C-A with 6 training samples per training class on CWRU.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10
DeIN 51.61 63.16 61.90 51.85 65.22 66.67 76.00 60.00 44.44 56.00
Siamese based CNN 75.00 81.48 80.77 67.86 72.73 50.00 65.38 73.91 70.00 80.00
WDCNN 65.38 60.00 64.00 56.52 69.57 77.78 66.67 69.23 66.67 68.42
SCNN 70.00 70.37 69.23 70.83 90.48 74.07 69.23 80.00 71.43 73.91
HCAE 55.56 55.26 40.00 44.00 40.00 52.17 57.69 66.67 54.84 66.67
PSADAN 56.52 84.21 55.56 50.00 61.11 76.92 75.00 72.73 66.67 72.41
HMN (our) 88.46 92.59 87.50 92.31 100.00 89.29 96.00 88.46 100.00 95.65

Table 7: F1 and αF1 (%) comparison with 6 training samples per class for cross-domain task C-A with 6 training samples per class on
CWRU.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 αF1
DeIN 57.14 54.55 56.52 53.85 62.50 55.81 76.00 60.00 52.46 56.00 58.48
Siamese based CNN 66.67 84.62 82.35 71.70 68.09 52.83 66.67 70.83 76.36 71.11 71.12
WDCNN 66.67 65.45 64.00 54.17 66.67 80.77 65.31 70.59 69.23 59.09 66.19
SCNN 76.36 73.08 70.59 69.39 82.61 76.92 70.59 80.00 65.22 70.83 73.56
HCAE 46.51 66.67 43.64 44.00 35.56 50.00 58.82 55.81 60.71 60.87 52.26
PSADAN 54.17 72.73 57.69 61.54 51.16 78.43 58.54 68.09 72.73 77.78 65.28
HMN (our) 90.20 96.15 85.71 94.12 93.62 94.34 96.00 90.20 95.83 91.67 92.78
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Figure 9: Continued.
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As shown in Figure 9, training losses containing re-
construction loss Lr and classification loss Lc are considered
to originate from equation (9), with testing losses set to
classification loss Lc. According to equation (9), when α is set
to 0, the autoencoder does not work. A greater α indicates a
higher weight of autoencoder during the training process. As
α increases from 0 to 0.2, the testing loss converges to a
smaller value. +e testing loss’s convergence process is
smoother when α equals to 0.5. +is demonstrates how the

autoencoder branch may prevent overfitting and improve
the model’s performance.

As shown in Figure 10, when the HMN does not employ
random dropout on input, the convergence value of the
testing loss is greater than 3; however, when random
dropout is used, the convergence value of testing loss drops
to less than 1, and the curve descends more smoothly. +e
effect of random dropout on input in improving the model’s
cross-domain generalization is demonstrated.
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Figure 9: Loss curves of the proposed model when α is set different values in cross-domain task dataset C to dataset A. (a) α� 0. (b) α� 0.2.
(c) α� 0.5. (d) α� 0.8.
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Figure 10: Loss curves: (a) training without random dropout; (b) training with random dropout.
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Figure 11: Test rig of Paderborn bearing dataset.

Table 8: Working conditions of rolling bearing on Paderborn.

Datasets Rotational
[rpm]

Load
torque
[Nm]

Radial
force [N]

Name of
setting

D 1500 0.7 1000 N15_M07_F10
E 1500 0.1 1000 N15_M01_F10
F 1500 0.7 400 N15_M07 _F04
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Table 10: Detail of datasets on Paderborn.

Dates sets Splitting None (class 1) Inner race (class 2) Out race (class 3)

D Training 600 600 600
Testing 40 40 40

E Training 600 600 600
Testing 40 40 40

F Training 600 600 600
Testing 40 40 40

Table 9: Data sets used for experiments.

Fault location None Out race Inner race

File no. K001 Artificial (KA01) Artificial (KI01)
K002 Real damages (KA04) Real damages (KI14)
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Figure 12: Continued.
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4.3. Case Study 2: Paderborn Dataset

4.3.1. Data Description. As shown in Figure 11, the test rig
[44] consists of five modules: (1) electric motor, (2) torque-
measurement shaft, (3) rolling bearing test module, (4)
flywheel, and (5) load motor. Bearings with different state
types were installed in the test module to obtain experi-
mental data. Fault types of bearings come from artificial and
real damages.

In the basic setting of operating condition, the test
platform ran at n� 1500 rpm with a load torque of M� 0.7
Nm and a radial force on the bearing of F� 1,000N. Other
settings were set up by changing the parameters one by one
to M� 0.1 Nm and F� 400N (named D, E, F, respectively,
shown as Table 8.

+e bearings with 32 different states were operated under
different working conditions, including 14 states with nat-
ural damages from accelerated lifetime tests, 12 states with
artificial damage, and 6 states with health data.

Each bearing under a load setting is measured with a
vibration signal of about 4s at a 64 kHz sampling rate. In the
experiment, datasets contained signals obtained from
healthy bearings, artificially damaged bearings, and naturally
damaged bearings. All bearings of different fault types were
running under three different loads at a speed of 1500 rpm.
+e datasets filenames selected are shown in Table 9. +e
details of the datasets selected are listed in Table 10. Each
dataset contains 1800 training samples and 120 test samples.

4.3.2. Results and Analysis. By performing the same
implementation, Figure 12 compares our method with the
compared approaches in terms of the accuracy of different

Table 11: Mean classification accuracy (%) comparison with 6 samples per class on the Paderborn dataset.

Methods D-E D-F E-D E-F F-D F-E Average
DeIN 66.57 70.47 66.41 61.57 42.37 43.21 58.43
Siamese based CNN 78.33 72.16 71.66 67.50 68.66 75.83 72.36
WDCNN 75.00 78.33 70.83 72.16 69.16 67.50 72.16
SCNN 67.83 69.03 56.82 64.27 58.34 57.63 62.32
HCAE 33.34 45.86 33.33 38.33 38.56 38.37 37.97
PSADAN 79.47 41.91 70.16 71.35 71.14 71.36 67.57
HMN (our) 84.06 81.20 73.53 76.00 81.13 79.46 79.23
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Figure 12: +e mean classification accuracy with the increasing number of training samples on the Paderborn dataset. (a) Dataset D to
dataset E. (b) Dataset D to dataset F. (c) Dataset E to dataset D. (d) Dataset E to dataset F. (e) Dataset F to dataset D. (f ) Dataset F to dataset E.

Table 12: Precision (%) comparison for cross-domain task E-D
with 6 training samples per class on the Paderborn dataset.

Class 1 Class 2 Class 3
DeIN 62.00 69.23 70.97
Siamese based CNN 81.25 74.36 63.27
WDCNN 67.44 75.76 70.45
SCNN 60.00 56.82 56.10
HCAE 36.36 31.11 33.33
PSADAN 69.04 75.00 68.42
HMN (our) 75.00 76.19 71.05

Table 13: F1 and αF1 (%) comparison for cross-domain task E-D
with 6 training samples per class on the Paderborn dataset.

Class 1 Class 2 Class 3 αF1
DeIN 68.89 68.35 61.97 66.41
Siamese based CNN 72.22 73.42 69.66 71.77
WDCNN 69.88 68.49 73.81 70.73
SCNN 56.00 59.52 56.79 57.44
HCAE 32.88 32.94 34.15 33.32
PSADAN 70.73 75.00 66.67 70.80
HMN (our) 75.00 78.05 69.23 74.09
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cross-domain tasks. +e results show that our method
outperformed the other six stat-of-the-art methods in all the
scenarios.

Table 11 illustrates the cross-domain tasks accuracy of
different methods with 6 training samples per class. +e
proposed method outperformed all comparative methods
by 6.87%–41.26% on average. Tables 12 and 13 compare
the methods in terms of precision, F1, and αF1 in the
cross-domain task E-D with 6 training samples per class.
+e results also show that our method outplay the
alternatives.

5. Conclusions

A novel HMN was proposed for cross-domain fault di-
agnosis with limited training samples. We improved the
model’s diagnostic performance in two ways: (1) a novel
deep learning structure combining autoencoder and
matching network was built, (2) a random dropout
strategy adding random disturbance into the inputs
during the training process was developed to enhance the
model’s domain generalization. In Section 4, we present
the experimental results showing that the proposed
method has better domain generalization ability with
limited training samples compared with the state-of-the-
art approaches.

However, the method proposed in this study still has
some restrictions. For example, the method is limited to
cross-domain tasks between different working conditions on
the same device. However, cross-domain across multiple
devices makes intelligent fault diagnosis algorithms more
realistic. In addition, HMN can only perform classification
tasks, limiting the model’s potential to multitask. In future
work, we will further optimize HMN and employ it in more
complex cross-domain fault diagnosis scenarios and mul-
titask learning.
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