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Abstract
Objective: To analyze PeriData.Net, a clinical registry with linked maternal–infant hospital data of Milwaukee County residents, to demonstrate a
predictive analytic approach to perinatal infant risk assessment.

Materials and Methods: Using unsupervised learning, we identified infant birth clusters with similar multivariate health indicator patterns,
measured using perinatal variables from 2008 to 2019 from n¼43969 clinical registry records in Milwaukee County, WI, followed by supervised
learning risk-propagation modeling to identify key maternal factors. To understand the relationship between socioeconomic status (SES) and birth
outcome cluster assignment, we recoded zip codes in Peridata.Net according to SES level.

Results: Three self-organizing map clusters describe infant birth outcome patterns that are similar in the multivariate space. Birth outcome clus-
ters showed higher hazard birth outcome patterns in cluster 3 than clusters 1 and 2. Cluster 3 was associated with lower Apgar scores at 1 and
5min after birth, shorter infant length, and premature birth. Prediction profiles of birth clusters indicate the most sensitivity to pregnancy weight
loss and prenatal visits. Majority of infants assigned to cluster 3 were in the 2 lowest SES levels.

Discussion: Using an extensive perinatal clinical registry, we found that the strongest predictive performance, when considering cluster mem-
bership using supervised learning, was achieved by incorporating social and behavioral risk factors. There were inequalities in infant birth out-
comes based on SES.

Conclusion: Identifying infant risk hazard profiles can contribute to knowledge discovery and guide future research directions. Additionally, pre-
senting the results to community members can build consensus for community-identified health and risk indicator prioritization for intervention
development.

Lay Summary
Despite decades of research and interventions to improve infant health outcomes, there remain stark differences in who will likely reach their
first birthday. The gap in effective interventions to reduce infant mortality among non-Hispanic Black birthing parents and infants may stem from
ineffective assessment or detection of causes and risks. This study used analytical models to demonstrate an approach to maternal and infant
risk assessment using data from a perinatal clinical registry. The results yielded 3 infant groups: healthy infants, late preterm infants, and
early preterm infants. The early preterm infants had the worst health at birth and were from the 2 lowest economic and educational levels in
Milwaukee County, WI. The 2 strongest predictors of an infant being in the early preterm group were maternal pregnancy weight loss and
6 or fewer prenatal visits. Identifying maternal and infant health predictors informs clinical practice, knowledge discovery, and future research
directions. In addition, presenting the results to community members can build consensus for community-identified intervention development.
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Background and significance

Infant mortality rate (IMR) is a critical indicator of health for
whole populations, as it reflects the structural factors that
affect the health and well-being of people.1 The CDC2 defines
IMR as the number of infant deaths for every 1000 live births.
In 2020, the US IMR was 5.4 deaths per 1000 live births,
ranking 36th out of 49 Organisation for Economic Co-
operation and Development (OECD) countries.3 However,
not all populations within the US experience the same IMR.
Specific people are at higher risk of infant mortality due

mainly in part to social and structural determinants of health,
not based on biological differences among races.4–6 Scholars
conceptualize inequitable risk as a social disadvantage.

Social disadvantage is the “unfavorable social, economic,
or political conditions that some groups of people systemati-
cally experience based on their relative position in social hier-
archies” (p. S151).7 Social disadvantage precludes people
from enjoying and benefiting from societal progress. For
example, individuals with low socioeconomic status (SES),
those who do not identify as White, or who are women, may
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experience social disadvantage at higher rates than White
males. Health disparities are adverse differences in health out-
comes experienced by socially disadvantaged groups.7 Health
disparities experienced by pregnant and birthing people with
social disadvantages can adversely affect birthing parents and
infants across the life course.8–11

In particular, the lived experience of being Black in the US
places Black infants at higher risk of poorer birth outcomes.12

Non-Hispanic Black infants have the highest national IMR at
10.75 deaths per 1000 live births, followed by Native Hawai-
ian or other Pacific Islander (9.39 deaths per 1000 live births),
American Indian/Alaska Native (8.15 deaths per 1000 live
births), Hispanic (4.86 deaths per 1000 live births), non-
Hispanic White (4.63 deaths per 1000 live births), and Asian
infants (3.63 deaths per 1000 live births).13 The disparities by
racial and ethnic groups in Wisconsin are even more disparate
than the national statistics.

Wisconsin leads the nation with the highest mortality rate
for infants of non-Hispanic Black women at 14.28 per 1000
live births.14 The IMR of non-Hispanic Black infants has con-
sistently been 2–3 times worse than White birthing parents
for over 30 years in Wisconsin.15 Furthermore, the March of
Dimes Report card,16 which grades maternal and infant
health outcomes, gave Milwaukee County and the City of
Milwaukee an “F” for worsening preterm delivery at 12.0%
(Milwaukee County) and 12.9% (City of Milwaukee). Stress
over the life course, experienced by non-Hispanic Black
women disproportionally, is a potential contributing factor to
premature birth.17–19 Stressors may include low SES and
structural racism.17,18,20 Moreover, inequitable distribution
of resources and lack of access to high-quality and just health-
care may also contribute to the increased prevalence of pre-
mature birth of infants in Wisconsin, disproportionately
impacting ethnic and racial minority populations.21

Despite decades of research and interventions to improve
infant health outcomes, there remain stark differences in who
will likely reach their first birthday.13,22,23 The gap in effec-
tive interventions to reduce infant mortality among non-
Hispanic Black birthing parents and infants may stem from
ineffective assessment or detection of root causes and risks.10

Traditional analytical methods for identifying infant and
maternal health risks tend to assess complex interactions and
nonlinear systems inadequately.24 Sufficient resources are
seldom available among local, state, and federal agencies to
collect and analyze data to demonstrate cause–effect relation-
ships between multiple social, behavioral, and environmental
exposures and maternal and infant health outcomes. The
assumptions of linear relationships or parametric data further
complicate deciding how and what to measure. The inability
to characterize exposure and risk in the multivariate space
results in the need for alternative methods to identify and
develop maternal and infant intervention priorities.25

Researchers can overcome the limitations of traditional
analytical methods using artificial intelligence models or arti-
ficial neural networks (ANNs). One approach is to apply self-
organizing maps (SOMs) to large clinical databases or clinical
registries to illustrate the proximity of similar variables within
the complex systems that encompass social, behavioral, men-
tal, and physical health. The SOM technique, and other neu-
ral net algorithms, is a learning process tolerant of nonlinear
and nonparametric data. The method implemented here using
JMP 16 (VC 2021 SAS Institute) is a simple variation on
k-means clustering. SOMs create clusters (ie, 2-dimensional

“maps”) of data near each other in the multivariate space.
Observations in proximal clusters are more spatially and tem-
porally similar than those in distal clusters.26 The SOM proc-
ess does not rely on assumptions of linear relationships or
parametric data. This approach helps researchers overcome
challenges of nonlinearity and skewed data distributions that
often occur in clinical data.25,27

Various disciplines have utilized ANN since first described
by McCulloch and Pitts.28 For example, in the financial litera-
ture, neural networks and similar artificial intelligence models
outperformed traditional analytical methods to predict finan-
cial fraud29 and banking and financial crises.30,31 Also, the
prediction of SOM cluster membership based on public health
outcome data using ANNs has been successfully applied to
cause-of-death and birth outcomes24 and neonatal mortality
risk of newborns in Brazil.32 Developing similar predictive
models using perinatal clinical data registries (such as PeriDa-
ta.Net) could allow efficient and robust identification of
maternal and infant health and risk hazard profiles to inform
knowledge discovery and future research directions. In addi-
tion, presenting the results to community members can build
consensus for community-identified health and risk indicator
prioritization for intervention development.

Objective

The study’s objective was to use PeriData.Net, a clinical regis-
try with linked maternal–infant hospital data of Milwaukee
County residents, to demonstrate a predictive analytic
approach to perinatal infant risk assessment.

Materials and methods

PeriData.Net

PeriData.Net is a web-based comprehensive perinatal clinical
registry, created through an academic-practice partnership in
2006 across Wisconsin’s birthing hospitals. It contains a com-
prehensive de-identified dataset encompassing fields required
for vital records, care processes, and outcomes with linked
maternal and newborn data. Birthing hospital clinicians enter
Peri-Data and use it for internal reporting, quality improve-
ment, and secure electronic transmission of data to vital
records and other external data registries.33 The Wisconsin
Maternal Infant Outcomes Study (WI-MIOS) houses a subset
of the PeriData.Net perinatal clinical registry database from
2008 to 2019, comprised of 14 birthing hospitals and 87 552
birth records. This study analyzed PeriData.Net perinatal
clinical registry data in Milwaukee County, WI. The Univer-
sity of Wisconsin-Milwaukee’s Institutional Review Board
approved this study (IRB #: 22.142) as Exempt Status under
Category 4 as governed by 45 CFR 46.104(d).

Analytical framework

We adapted the risk assessment framework developed by the
World Health Organization (WHO)34 as the framework for
this study, see Figure 1. The WHO defines Risk as the com-
plex function of the Probability of suffering harm or loss
(adverse outcome) from exposure and susceptibility to some
Hazard. In this study’s context, risk assessment is the scien-
tific process used to estimate the threat that particular hazards
pose to pregnancy, birth, and infant outcomes. We can use
these methods to engage in risk management first to identify
what factors can be mitigated or managed and second to
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focus on identifying predictors to address in clinical and com-
munity settings.

Unsupervised learning

We used SOMs, an ANN technique, to accomplish unsuper-
vised learning to form infant birth outcome SOMs.24,25 SOMs
enable an analysis of high-dimensional data without a priori
knowledge.25 SOMs are created without supervision through
competitive learning and neighborhood adaptation. SOMs
autonomously organize the data by grouping similar data in a
similar multivariate, forming clusters, and revealing underlying
patterns or relationships.24,25,27 Models were constructed using
infant data from PeriData.Net, routinely collected data from
birthing hospitals in Wisconsin. Before analysis, we trans-
formed these health data to adjust for heteroscedasticity (log10
for quantities and arc-sin for proportions). We used the
k-means SOM clustering feature of JMP Pro 16.2 (VC 2021 SAS
Institute) to categorize the infant data into clusters that
described groups of infants with similar patterns of birth out-
comes. We used the default methods in JMP Pro 16.2, hold
back proportion 0.333, 3 hidden layers, a learning rate of 0.1,
and the squared penalty method. The clusters used data aggre-
gated between 2008 and 2019 measured using clinical data
from PeriData.Net from Milwaukee County, WI residents
from 2008 to 2019. We used previously known indicators of
birth outcomes, weeks/days gestation, heel-crown length,
Apgar score at 1 min, and Apgar score at 5 min5,35,36 to create
the clusters. Although various factors influence and there are
limitations of the Apgar score34 (eg, maternal sedation, interob-
server reliability, and it cannot predict morbidity or mortality
for an individual infant), it is an accepted and convenient
assessment of an infant’s physiological status after birth.

There is no definitive method for determining the number
of clusters in SOMs.27 We ran the SOM analysis for 2, 3, 4,
and 5 clusters. To maintain the anonymity of the deidentified
dataset and sufficient numbers of individuals in each cluster,
we choose only to include clusters with >1000 infants. Three
SOMs included at least 1000 individuals in each cluster; 2, 4,
and 5 clusters did not. We used principal component analyses
to display and visualize the clusters.

Supervised learning model

Next, we applied supervised learning methods to predict the
relationships between the birth indicator patterns and mater-
nal predictive factors of clinical interest. To illustrate this

step, we choose maternal factors of pre-pregnancy weight,
pregnancy weight change, pre-pregnancy BMI, gestational
diabetes (yes/no), and the number of prenatal visits. We
included pre-pregnancy weight and pre-pregnancy BMI to
explore the relationships between weight and body composi-
tion indicators and infant outcomes. We applied supervised
learning to predictive variables using the ANN prediction
model constructed in JMP 16 (VC 2021 SAS Institute). They
created predictive models for cluster membership. We used
the K-fold hold-back validation method to verify the model.
Figure 2 displays the artificial neural networks methodology.

Spatial pattern of infant birth outcome SOMs by

SES

To understand the relationship between socioeconomic fac-
tors and outcome cluster assignment, we recoded each Mil-
waukee County zip code in Peridata.Net according to the
Milwaukee Health Report SES levels. The SES levels are cal-
culated from income, based on median reported income val-
ues within the ZIP codes, and education, based on the
percentages of people with bachelor’s degrees education birth
(ie, Low, Medium-Low, Medium, Medium-High, and
High).37 First, we analyzed the equality of birth outcomes
across Milwaukee zip codes by tabulating SES by birth SOM
cluster. Then to understand the equity of birth outcomes
across Milwaukee zip codes, we tabulated the percentage of
SES levels in each birth SOM cluster.

Results

The analysis included 43 988 people who gave birth between
2008 and 2019 and resided in Milwaukee County, WI. One
hundred percent of the sample were reported as female, with
a mean age of 26.9 (SD¼ 6.04) years, and 55.43% with an
education level of a high school degree, GED, or lower. The
majority of the sample was reported as a minority race, with
45.91% identified as Black or African American. Most births
were billed to Medicaid insurance (69.58%). Table 1 displays
the Maternal Sample Characteristics.

Infant birth outcome SOMs

Three unique SOM clusters were created, visualizing infant
birth outcome patterns similar in multivariate space. Gener-
ally, these clusters contain very healthy full-term infants, late
preterm infants, and early preterm infants. Cluster 1 included

Figure 1. Adapted risk assessment framework developed by the World Health Organization. Pregnancy, birth, and infant outcome risk is the complex

function of a hazard, exposure, and susceptibility.
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the healthiest infants: mean gestational age was 39.44
(SD¼0.92) weeks, with the highest averages of infant length
and Apgar scores at 1 and 5 min. In cluster 2, the mean gesta-
tional age was 37.37 (SD¼ 1.85) weeks, close to the same
averages of infant length, and Apgar scores at 1 and 5 min as
cluster 1. Cluster 3 includes the sickest infants; the mean ges-
tational age is 31.11 (SD¼6.61) weeks, and the lowest aver-
ages of infant length and Apgar scores at 1 and 5 min after
birth compared to clusters 1 and 2. Table 2 displays the Infant
Outcome Variables by Birth Self-Organizing Map Cluster.

Supervised learning model

A supervised learning model was used to understand which
factors potentially predict birth outcome cluster membership.
To illustrate this step, we choose maternal factors of weight
pre-pregnancy, pregnancy weight change, BMI pre-
pregnancy, gestational diabetes (Yes/No), and the number of
prenatal visits. These graphs illustrate how maternal factors
predict SOM birth outcome cluster membership. Figure 3 is
an example of an individual risk profile of a pregnant person
with a pre-pregnancy weight of 125 Lbs., 30 Lbs. weight
gain, a pre-pregnancy BMI of 25, who does not have gesta-
tional diabetes, and who completed 12 prenatal care visits
during their pregnancy. The triangles indicate the sensitivity
and direction of a predictive factor. For example, if a preg-
nant person has the individual risk profile described above,
the infant has a higher probability (0.972) of being in SOM
birth cluster 1, the healthiest birth outcome cluster. The sensi-
tivity indicator triangles are pointed down in SOM birth clus-
ters 2 and 3, indicating a lower probability of an infant being
in SOM birth cluster 2 (0.028) or SOM birth cluster 3
(0.0003) with an individual woman with these factors. There
is a difference in the sensitivity of pre-pregnancy birth weight

Figure 2. Artificial neural networks unsupervised learning: self-organizing map (SOM) and supervised learning: identify factors predicting SOM cluster

identity. SOMs were created without supervision through a process of competitive learning and neighborhood adaptation. SOMs autonomously organize

the data by grouping similar data in a similar multivariate, forming clusters, and revealing underlying patterns or relationships. The data used to create the

SOM were, weeks/days gestation, infant heel-crown length, Apgar score at 1min, and Apgar score at 5min. Next, we applied supervised learning

methods to predict the relationships between the birth indicator clusters and maternal predictive factors of clinical interest using neural network

calculation of risk. The maternal factors for the prediction profiles included, pre-pregnancy weight, pregnancy weight change, pre-pregnancy BMI,

gestational diabetes (yes/no), and the number of prenatal visits.

Table 1. Maternal sample characteristics (N¼ 43 988).

n (%)

Gender
Female 43 988 (100)

Age
<20 4846 (11.02)
21–25 12 095 (27.50)
26–30 12 266 (27.88)
31–35 9460 (21.51)
36–40 4325 (9.83)
41þ 968 (2.20)

Race
White 18 000 (40.92)
Black or African American 20 195 (45.91)
Asian or Pacific Islander 1945 (4.42)
American Indian or Alaska Native 258 (0.59)
Other 1891 (4.30)
Unknown 1699 (3.86)

Educational level
8th grade or less 1643 (3.74)
9th–12th grade/no diploma or less 7663 (17.42)
High school degree or GED 15 073 (34.27)
Associate degree 2901 (6.59)
Some college credit, but not a degree 7689 (17.48)
Bachelor’s degree 6117 (13.91)
Graduate degree 1766 (4.01)
Doctorate or Professional degree 611 (1.39)
Unknown 525 (1.19)

Insurance
Medicaid, BadgerCare Plus 29 528 (67.13)
Private insurance 12 034 (27.36)
Other Government (Federal, State,
Local), CHAMPUS, TRICARE,
or Indian Health Service

71 (0.16)

Self-pay 719 (1.63)
Unknown 1636 (3.72)
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and pre-pregnancy BMI as predictors for infant outcome clus-
ter assignment, demonstrating the need to include both pre-
dictor factors in the analysis.

However, Figure 4 illustrates an example of a pregnant per-
son with a pre-pregnancy weight of 125 Lbs., a pre-
pregnancy BMI of 25, who does not have gestational diabetes,
and who completed 6 prenatal care visits and experienced a
5 Lbs. weight loss during their pregnancy. In this case, the
risk of the infant being in SOM cluster 3 increases by
18 233% (0.03% vs 5.5%). Prediction profiles of the infant
birth clusters show that clusters are most sensitive to preg-
nancy weight change and the number of prenatal visits.

Table 3 reports the birth outcome cluster assignments for the
individual profiles discussed in the previous 2 paragraphs and
illustrated in Figures 3 and 4.

Pattern detection at the aggregate or population level illus-
trates to what extent does a population with these factors
have the collective probability of having an infant in one of
these birth clusters. Or how sensitive a change in a factor or
factors influences the probability of the assignment to a SOM
birth outcome cluster. Like the individual prediction profile,
the aggregate or population level prediction profiler SOM birth
cluster assignment was most sensitive to pregnancy weight loss
and 6 or fewer prenatal visits (Supplementary Material).

Table 2. Infant outcome variables by birth self-organizing map cluster.

Birth SOM
cluster

N Mean
APGAR 1 (min)

SD
APGAR 1

Mean
APGAR 5

SD
APGAR 5

Mean
crown-heel
length (CM)

SD crown-heel
length

Mean
gestational
age (weeks)

SD
gestational

age

1 23 350 7.91 1.04 8.94 0.31 51.69 1.84 39.44 0.92
2 9281 7.85 0.94 8.90 0.35 47.29 2.31 37.37 1.85
3 1237 3.02 1.80 5.41 2.28 40.92 8.20 31.11 6.61
N/Aa 10 120 7.66 1.49 8.79 0.85 44.58 8.38 38.04 3.36

Abbreviations: CM, centimeters; min, minute; SD, standard deviation; SOM, self-organizing map.
a Missing one or more variable, not assigned to a birth SOM cluster.

Figure 3. Risk prediction profiles for the SOM birth clusters identification using directed-learning neural network models of a pregnant person with a

pre-pregnancy weight of 125 pounds, a 30-pound pregnancy weight gain, a pre-pregnancy BMI of 25, who does not have gestational diabetes, and who

completed 12 prenatal care visits during their pregnancy. The pregnant person factors indicate the level of risk factors for an infant; y-axis indicates the

probability for an infant to be classified within a specific SOM cluster when pregnant person’s factors exhibit a specific level of the predictor on the x-axis.

A pregnant person has the individual risk profile described above, the infant has a higher probability (0.972) of being in SOM birth cluster 1, the healthiest birth

outcome cluster. The sensitivity indicator triangles are pointed down in SOM birth clusters 2 and 3, indicating a lower probability of an infant being in SOM

birth cluster 2 (0.028) or SOM birth cluster 3 (0.0003) with an individual woman with these factors. There is a difference in the sensitivity of pre-pregnancy birth

weight and pre-pregnancy BMI as predictors for infant outcome cluster assignment, demonstrating the need to include both predictor factors in the analysis.

JAMIA Open, 2023, Vol. 6, No. 3 5

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad080#supplementary-data


Spatial pattern of infant birth outcome SOMs by

SES

The spatial patterning of birth outcome SOM clusters indi-
cated that zip codes with the highest SES had 16 percentage
points more infants in cluster 1, the healthiest birth cluster
compared to the lowest SES zip codes (81% vs 65%). In
cluster 2, the lowest SES was almost 1.82 times more likely
to have an infant than the highest SES and 3 percentage
points higher than the Medium-Low and Medium SES lev-
els. Infants born to birthing parents living in the Low,
Medium-Low, and Medium SES levels were twice as likely
as the Highest SES to have an infant assigned to cluster 3
(4% vs 2%), the sickest infant cluster. These results are dis-
played in Figure 5.

We also analyzed the percentage of birth outcome SOM
cluster representation by SES level. In this spatial patterning
analysis, 42% of infants in cluster 3 were from the lowest SES
level. Nearly three-fourths (71%) of infants in birth outcome
SOM cluster 3 were from the Low and Medium-Low SES lev-
els versus 3% in the Highest SES level. These results are dis-
played in Figure 6.

Discussion

A barrier in studying maternal and infant health is the inabil-
ity of traditional analytical methods to detect, quantify, and
illustrate risk from multiple exposures.38,39 However, the 2-
step SOM cluster analysis of infant birth outcomes combined

Figure 4. Risk prediction profiles for the SOM birth clusters identification using directed-learning neural network models of a pregnant person with a pre-

pregnancy weight of 125 pounds, a pre-pregnancy BMI of 25, who does not have gestational diabetes, and who completed 6 prenatal care visits and

experienced a 5-pound weight loss during their pregnancy. The pregnant person factors indicate the level of risk factors for an infant; y-axis indicates the

probability for an infant to be classified within a specific SOM cluster when pregnant person’s factors exhibit a specific level of the predictor on the x-axis.

The sensitivity indicator triangles are pointed up in SOM birth cluster 1 (.839) and down in SOM birth clusters 2 (0.106) and 3 (0.055), indicating a lower

probability of an infant being in SOM birth cluster 2 or SOM birth cluster 3 with an individual woman with these factors. However, the sensitivity triangles

illustrate the change in probability from the prediction profiler illustrated in Figure 3.

Table 3. Comparison of maternal predictors and birth outcome cluster assignment.

Individual profile Birth outcome cluster assignment

1 2 3

1 Pre-Pregnancy Wt: 125 Lbs., Gestational Diabetes: No,
Pre-Pregnancy BMI: 25, PNV: 12, Weight: Gain 30 Lbs.

97.2% 2.8% 0.03%

2 Pre-Pregnancy Wt: 125 Lbs., Gestational Diabetes: No,
Pre-Pregnancy BMI: 25, PNV: 6, Weight: Loss 5 Lbs.

83.9% 10.6% 5.5%

Abbreviations: PNV, prenatal visits; Wt, weight.
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with supervised learning to develop risk profiles successfully
identified key maternal indicators related to infant health,
thereby overcoming traditional analytical limitations to
uncover hidden health and risk hazard patterns. These analy-
ses allowed us to look at infant health outcomes at the popu-
lation level and how changes in individual variables affect the
probability of a community having more or fewer infants in a
probabilistic way, going into one birth outcome cluster or the
other. The graphs illustrate the interrelatedness of factors that
may be more prevalent in particular communities or zip
codes. Researchers can use NNA to predict future maternal
and infant health trends, answering the questions “when,”
“where,” “how,” and “why.”40

Pregnancy weight loss and <6 prenatal visits exhibit a
strong risk relationship with patterns in infant birth out-
comes. These results affirmed known clinical indicators and
added the multivariate space, which may signal broader
influences on outcomes. For example, people may lose
weight during pregnancy due to clinical conditions, that is,
persistent or intractable nausea and vomiting,41 messaging
from providers that weight loss in pregnancy may be benefi-
cial for the dyad,42 lack of knowledge regarding the impact
of nutritional intake on fetal development, or limited access
to nutritious foods.43 Food insecurity, lack of access to
nutritionally safe and adequate food needed to support a
healthy life,44 affects 10%–30% of pregnant people.45

Social determinants of health, including food insecurity, are
often not screened for during obstetric visits; therefore, the
prevalence in pregnant populations is unknown and must
be further explored.43 The missed opportunity to identify
and provide resources to pregnant people who experience
food insecurity may contribute to poorer maternal and birth
outcomes.43

We analyzed birth outcome cluster representation geospa-
tially using the SES level. The spatial analysis revealed the

(in)equality and (in)equity of birth outcomes by economic and
educational levels. Health equality is the concept that every
person has the same opportunity to access care, services, and
resources, whereas health equity removes social, structural,
political, and racialized barriers so “everyone has a fair and
just opportunity to attain their highest level of health”
(para 1).46 Figure 4 displays the equality of infant birth SOM
outcomes. When comparing the percentages of infant birth
SOM outcomes, one may surmise that the predicted probabil-
ity of an infant in cluster 3 is low (2%–4%). However, when
analyzed with an equity lens, Figure 6 displays the significant
inequality of proportion of infant birth SOM outcomes clus-
ter 3 in the 2 lowest SES areas in Milwaukee County. Some of
the root causes of the infant birth SOM cluster 3 inequities
can be traced to historic redlining and strategic disinvestment
in the Milwaukee zip codes.47

The racial and structural inequities uphold how certain
women experience the healthcare system and perpetuate sig-
nificant disparities due to those interactions.48 Addressing
gendered racism requires understanding and focusing on its
multiple social and structural dimensions that broadly impact
individual and public health.49,50 One strategy to understand
how women are experiencing the healthcare system is to culti-
vate community members’ wisdom and lived experience
through community-based participatory research.51,52 This
study identified inequalities in infant birth outcomes based on
SES. However, it is through the democratization and contex-
tualization of clinical and community knowledge (ie, knowl-
edge equity) that the health of birthing parents and infants can
be improved. Furthermore, presenting the results to community
members can build consensus for community-identified health
and risk indicator prioritization for intervention development.
The risk of unhealthy births may decrease through community
prioritization, intervention co-development, and resource
reallocation.47,53

Figure 5. Illustrates the percent of births within each self-organizing birth map cluster by socioeconomic status level in Milwaukee County. It also

illustrates the inequality of self-organizing birth map cluster assignment at each socioeconomic status level.
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Conclusion

The study’s objective was to use perinatal clinical registry
data of Milwaukee County residents to demonstrate a predic-
tive analytic approach to perinatal infant risk assessment. The
method yielded 3 infant outcome SOM clusters, including
term, late preterm, and early preterm infants. The maternal
predictors of infant outcome SOM cluster assignment aligned
with clinical knowledge.35 The results also indicated inequity
among the SES levels, with the vast majority of early preterm
infants being born in the 2 lowest educational and income
areas of Milwaukee County. This study demonstrated an
innovative use of a perinatal clinical registry applying ANN
analyses leading to actionable results for clinical care and
communities. We plan to present the study’s results to com-
munity members to honor community wisdom, prioritize
intervention co-development, and collectively work on
resource reallocation.
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