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Mutualistic networks emerging from adaptive
niche-based interactions
Weiran Cai 1,2✉, Jordan Snyder2,3, Alan Hastings2,4,5 & Raissa M. D’Souza 1,2,5✉

Mutualistic networks are vital ecological and social systems shaped by adaptation and

evolution. They involve bipartite cooperation via the exchange of goods or services between

actors of different types. Empirical observations of mutualistic networks across genres and

geographic conditions reveal correlated nested and modular patterns. Yet, the underlying

mechanism for the network assembly remains unclear. We propose a niche-based adaptive

mechanism where both nestedness and modularity emerge simultaneously as com-

plementary facets of an optimal niche structure. Key dynamical properties are revealed at

different timescales. Foremost, mutualism can either enhance or reduce the network stability,

depending on competition intensity. Moreover, structural adaptations are asymmetric,

exhibiting strong hysteresis in response to environmental change. Finally, at the evolutionary

timescale we show that the adaptive mechanism plays a crucial role in preserving the dis-

tinctive patterns of mutualism under species invasions and extinctions.
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Mutualism, the interaction that joins actors providing
reciprocal benefits or services, has a pivotal role in
nature and human society1–5. Many mutualistic sys-

tems have formed through self-organization rather than through
explicit engineering. Still, common structural features describing
the relationship of the actors have been observed pervasively in
mutualistic systems across many scales and contexts, suggesting a
unifying underlying mechanism. Such relations can be captured
by a bipartite cooperation network among two distinct guilds of
actors where edges between guilds represent a form of coopera-
tion such as the “barter” between plants and pollinators or an
industrial partnership between designers and contractors1–7. The
most distinctive features of these networks are the modular and
nested patterns that are consistently overexpressed compared
with their randomized counterparts4,6,7. A modular organization
implies that most mutualistic links can be contained in several
clusters, whereas a nested structure implies that more often than
not the partners of one species of a lower degree (specialist) are a
subset of the partners of another species of a higher degree
(generalist).

Potential origins of these pervasive structures have been studied
by various approaches. From the perspective of static theories, the
network structure is interpreted as a consequence of the appro-
priate matching of traits or abundances4,8–14. Among them, the
niche model of Saavedra et al.4, which follows along the line of
Williams and Martinez8,9, demonstrates a host of mutualistic
network structures as proper trait relations in a concise way.
Beyond studies of static structural properties, dynamic theories aim
to explain the emergence of the network structure and predict its
future development. Such theories have been developed for
numerous problems from food web assembly to trophic structure
to specialization trends15–17. Although mutualistic partnerships are
also known to be adaptive in nature in both ecological and socio-
economic contexts2,4,18,19, most dynamic theories for mutualism
focus partially on nestedness13,20–22, leaving modularity unex-
plored. However, the strong correlation between the nestedness
and modularity observed in empirical networks suggests they have
a common origin. Thus, having a unified, dynamical process that
elucidates how both nested and modular patterns emerge in an
integrated manner is highly desired.

Here, we propose an adaptive niche model, incorporating the
quintessential concept of niches and the adaptive dynamics of
connection. An optimal partnership structure exhibiting both
nestedness and modularity emerges from a unified optimization
mechanism accounting for the participants’ niche relations and
population distribution2,18,19,23. Positive feedback of local
advantages plays a central role in the co-emergence of the pat-
terns. The dyadic measures of the assembled networks are cor-
related and comparable to those observed in empirical networks.
Key dynamical properties are revealed at different timescales. At
the ecological timescale, we show the bidirectional role of
mutualism on network stability: enhancing mutualism can either
stabilize or destabilize the network, depending primarily on the
intensity of competition. We also demonstrate that network
adaptation is asymmetric, exhibiting a prominent hysteresis in
response to environmental change. Accidents of environmental
history may thus be “frozen” in the network structure. Finally, at
the evolutionary timescale we show that the adaptive behavior
leads to different resilience of generalist and specialist nodes in
the presence of species invasions and extinctions that is crucial for
preserving the patterns of mutualism during evolution.

Results
Adaptive niche model. We study network assembly using the
ecological concept of niche-based interactions, which may extend

to a broad range of non-biological contexts where mutual benefits
exist such as bipartite partnerships among socio-economic
organizations. We concentrate on a pair of fundamental char-
acteristics of each actor (e.g., species, company, or social orga-
nization): first its niche, being the living or operating range, and
second its fitness, being the abundance or operating status.

For concreteness we explain the model in the context of
pollination. Consider a collection of species in two distinct guilds
(denoted P and A in analogy with plants and animal pollinators)
that are involved in mutualism with selected partners in the
opposite guild and competition with all rivals in their own guild
(Fig. 1a). The niche profile of a species can be generally
formulated by a Gaussian function Hi(s), representing its
statistical distribution on a one-dimensional niche axis24,25. We
define niche proximity Hij as the joint occupation probability of a
pair of interacting actors on the niche axis26,27

Hij ¼
Z

HiðsÞHjðsÞds; ð1Þ

For within-guild interactions, niche proximity considers habitat
niches capturing trait similarity of rival species in competition
with one another (e.g., for similar nesting sites or soil conditions).
For cross-guild interactions, niche proximity instead considers
partner niches capturing trait complementarity of mutualistic
partners.

The species abundance ni follows coupled dynamics, where the
coupling strength is proportional to the niche proximity {Hij} of
interacting species

dni
dt

¼ Fiðfnig; fHijgÞ ði ¼ 1¼MÞ; ð2Þ
where M is the total number of species. We use the generalized
Lotka-Volterra dynamics, where the mutualistic interactions are
described by Holling type II functional response28. This implies
that we track the mean fitness of individual species, regardless of
intraspecific difference. The mutualistic and competitive interac-
tion strengths are encoded in the coupling matrices {γij} and {βij},
respectively (see Methods).

We assume that the niche relations among the species change
adaptively to maximize the fitness of individual species26. At fixed
time intervals, a randomly chosen species attempts to rewire to a
different mutualistic partner and the niche proximity is updated
(Fig. 1b). The rewiring is accepted if the individual species
abundance increases and rejected otherwise20,21. In addition, a
rewiring probability is used to reflect the situation that link
removal from a specialist is harder than from a generalist (see
Methods). The population dynamics is relaxed to an equilibrium
between the rewiring attempts.

Emergent structures. Our numerical simulations generate an
ensemble of extensive network structures, exhibiting a broad
range of nestedness and modularity (Fig. 2a). In all realizations,
we start from a randomly connected bipartite mutualistic network
fγijgt¼0

with a specified connectance C0. The center positions �si of
niche functions are sampled uniformly at random from the niche
axis. We use such random initial structures as the “starting point”
of assembly, representing arbitrary partnerships in the beginning.
We demonstrate that structured networks can be self-assembled
irrespective of such initial arbitrariness.

The bipartite niche relations change until reaching a state
where all macroscopic structural and demographic measures
remain approximately constant with time, which we refer to as
the steady state. We measure the nestedness with the metric
NODF29 and the modularity with the leading eigenvector
algorithm30. The modules are robust in that, except for a few
peripheral ones, most of the species are partitioned persistently to
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only one of the modules once the evolved steady state is reached
(see Supplementary Fig. 4a, b for the metric of module
stationarity). In this sense, the entire community has settled into
a macroscopic order after exploring a landscape of numerous
possibilities of niche relations31.

Notably, the generated nested and modular measures are
statistically comparable with those of the empirical ecological
networks from the Web of Life data set32, which range over a large
variety of geographical factors and constituents. As shown in
Fig. 2a, the band of dyadic measures (NODF, Q), simulated with the
exterior characteristics (size, connectance, aspect ratio) of the
empirical networks, cover almost the full range of possible
structures and also regenerate a similar negative correlation between
NODF and Q as exhibited in the empirical ensemble (note that
there is still a systematic difference; see Supplementary Note 5 for
the possible cause). The correlation indicates that the two measures
cannot be determined independently: one can find networks with
very high nestedness (modularity) and very low modularity
(nestedness), but not likely with both being high or low. In the
case of both nontrivial nestedness and modularity (significantly
higher than for the null model), modules may emerge with
embedded nested structures33,34, as exemplified in Fig. 1c.

The degree distribution, describing the heterogeneity in the
numbers of partners per species, transforms from a Poisson

distribution of the initial random network to a stable distribution
at the steady state. The stable distribution varies with the
modularity (Fig. 2b): a truncated power law is present for a
relatively low modularity (corresponding to relatively large
module sizes). With the increase of modularity, it converts to a
narrower single-peaked distribution owing to the fact that species
contained within a smaller-sized module tend to possess
comparable numbers of partners.

Cumulative advantage. Heuristically, the nested and modular
patterns are formed coherently through a positive feedback of
local advantages. Driven by the incentive of increasing individual
species fitness, a preponderance in the abundance of a certain
species tends to attract more partner species within a larger range
of niche proximity, which in turn enhance its own abundance (as
indicated by the positive correlations of species abundance,
degree and broadness of partnership in Supplementary Fig. 5c, d).
The modular and nested structure is hence formed by the
aggregation of links around separate hubs as “seeds” consisting of
generalists (see network assembly in Supplementary Fig. 1). Both
patterns are thus formed along the same path of development and
exhibit a negative correlation. This optimization dynamics
belongs to a broad class of localized preferential attachment
processes, whereby “the rich get richer”, but under the local
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Fig. 1 Pattern formation from adaptive niche-based interactions. a Adaptation of niche relation and demographic distribution. An example network of
20 species in mutually interacting guilds (A and P) develops from a random relation (left) to a stable partnership (right). Each species i possesses a pair of
characteristics: a niche profile (Gaussian function Hi(s)) randomly scattered on the niche axis, and an individual species abundance (represented by a disk of
proportional size). The species abundances are governed by the generalized Lotka-Volterra dynamics (Eq. 5a, Eq. 5b), where the coupling strengths are
determined by the proximity of interacting specific niches across the guilds for mutualism and within the guilds for competition. b Rewiring and updating
niche proximity. A species rewires to a randomly selected new partner species with updated niche proximity. The rewiring is accepted if the individual
species abundance increases and rejected otherwise. The example in the upper panel demonstrates the rewiring of a node i from a partner j with a slightly
higher abundance to a new one k with a larger niche proximity, Hij → Hik. In contrast, the lower panel shows that a node rewires to a new partner with a
smaller niche proximity but a significantly higher abundance. The gray area represents the niche proximity. c Network patterns in steady state. An assembled
network is shown for example, with 100 species in each guild, simulated for C0= 0.058 and (Ωm, Ωc)= (0.10, 0.05), with significantly higher nestedness
and modularity (NODF= 0.1666, Q= 0.6207) than the randomized networks (P≤ 0.0001; two-sided t test). The adjacency matrix is reordered to express
the modular (upper panel) and nested (lower panel) patterns of the same network, with the colors indicating the module memberships.
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constraints on the potential linkage35–37. This effect known as
cumulative advantage38,39, prevailing in socio-economic systems,
thus also underlies the formation of mutualistic relationship.

Inadvertently this process can also reduce competition. While
direct competition (associated with habitat niches) and direct
mutualism (associated with partner niches) are explicit in the
population dynamics, indirect mutualism can also emerge
between competing species. Competitors in close habitat niches
can affect each other positively by contributing to the abundance
of shared mutualistic partner species (thus minimizing competi-
tion or the dilution of resources)28,40.

At the steady state, the network achieves a structure that
optimizes the inherent tradeoffs. We examine the assembled
structure under different intensities Ωm and Ωc of mutualism and

competition. These parameters represent the interaction intensity
per unit of niche proximity (see Methods). In this adaptive
framework, changes in the interaction intensities can alter the
network structure: the measures of nestedness NODF and
modularity Q show a convex and concave dependence on the
intensity of mutualism Ωm (Fig. 2c, d), respectively. This
corresponds to an adaptive linking strategy: modules tend to
merge with enhanced mutualism (thus, lower modularity for
larger module sizes and more intermodule links, and higher
nestedness for more overlaps of partnership), but tend to split
beyond a turning point Ωm,T (see Supplementary Fig. 10a). These
relations are generally robust regarding network size and aspect
ratio of numbers of animals against plants (see sensitivity analyses
in Supplementary Note 2).
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Fig. 2 Assembled network structure. a Systematic comparison of dyadic structural measures of real and generated networks. The dyadic measures
(nestedness NODF, modularity Q) of an ensemble of 300 generated networks (red) show a significant overlap with those of the 144 empirical networks
(blue) from the Web of Life data set and exhibit a similar negative correlation (dashed lines). For each model network, the numbers of animal and plant
species and the connectance are taken from a randomly chosen empirical network, covering a large variety of network sizes (ranging from 21 to 1500) and
aspect ratios (ranging from 1 to 9.8). The interaction intensities (Ωm, Ωc) are chosen uniformly at random from [0.01, 0.30] × [0.01, 0.30] and niche width
σ from [0.01, 0.50]. b Emergent degree distribution showing a truncated power law for relatively low modularity (shown for (Ωm, Ωc)= (0.20, 0.05)) and a
single-peaked distribution for relatively high modularity (shown for (Ωm, Ωc)= (0.05, 0.01) and (0.50, 0.01)). The sizes of both guilds are MA=MP= 100
and connectance C0= 0.058 (same for all panels). c, d Structural measures versus interaction intensities. The nestedness and modularity measures show
a convex and concave dependence on the intensity of mutualism Ωm, respectively; whereas the family of colored curves show that enhancing the
competition intensity Ωc contributes positively to NODF and negatively to Q. Data are obtained from 50 simulation runs and presented as mean values ±
SD. The dashed tips represent infeasible equilibria. Note that different combinations of (Ωm, Ωc) can generate networks with the same (NODF, Q) values.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19154-5

4 NATURE COMMUNICATIONS |         (2020) 11:5470 | https://doi.org/10.1038/s41467-020-19154-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


On the other hand, enhancing the intensity of competition Ωc

contributes positively to the nestedness while suppresses the
modularity (colored differently in Fig. 2c, d). This is due to
competitive repulsion26,27: merging modules may counteract
intensified competition by enlarging the separation between
module hubs (Supplementary Fig. 10b). Thus, the so far
underestimated within-guild competition actually acts as a crucial
determinant for the cross-guild partnerships23.

Transition in network stability. The adaptive niche model net-
work reaches an asymptotically constant link structure and a
balanced demographic distribution at the steady state (Supple-
mentary Figs. 4c and 5a). It is useful to examine whether this
population distribution on the evolved network can withstand
transitory external interference. Here we characterize the stability
of the assembled network by calculating the real part of the
leading eigenvalue of the Jacobian of the population dynamics
(Eq. (5)), S=−Re(λ)max (Supplementary Note 3). This local
stability measure considers the response to small perturbations on
species abundances at a typical ecological timescale. In static
theories, network stability calculations usually assume an fixed

network topology under all external conditions12,41–44. An eco-
logical network, however, typically changes its structure with the
environment, resulting in changes in stability.

We examine the stability of the assembled network that has
adapted to the interaction intensities (Fig. 2c, d). It shows both
stabilizing and destabilizing roles of mutualism on the network
stability. Most evidently, we identify two types of transitions in
the stability induced by the overall intensity of competition at
marked thresholds. The first threshold ΩI

c;T differentiates the
regimes of competition intensity, where the relative stability of
the assembled network is persistently positive or negative
compared with the randomized network (Fig. 3a, b). Hence, the
network stability relative to random networks is predominantly
subject to the competition level. The second threshold ΩII

c;T

separates the contrasting situations where enhancing mutualism
by Ωm would stabilize or destabilize the network (Fig. 3c). The
comparative scenarios are shown for typical values of Ωc in three
intervals in Fig. 3a–c. The situations are blended in a narrow
intermediate interval ΩII

c;T <Ωc <ΩI
c;T where the network is more

stable than the null model but enhancing mutualism still has a
destabilizing role (Fig. 3b). Thus, whether enhancing mutualism
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stabilizes or destabilizes the evolved network is regulated by the
competition intensity. Such bidirectional role of mutualism is
persistently observed for different network sizes and aspect ratios
(Supplementary Note 3).

The transitions are consistent with the change of demographic
distribution. The network stability is related to the lower bound of
the population of all species through their close relation
S ¼ �ReðλmÞ � miniðniÞ21. The relative stability of the evolved
network as compared with its random counterpart can hence be
considered as the relative position of their population distribu-
tions, which changes with the competition intensity. By
intensifying the competition over the threshold ΩI

c;T , the lower
bound of the population falls below that of the null model, which
renders a negative relative stability (Fig. 3d, e). On the other hand,
mutualism is prone to increasing the “rich” species but
suppressing the “poor” at a high competition level. Only at a
sufficiently weak competition level Ωc <ΩII

c;T does enhancing
mutualism boost the entire population, which contributes
positively to the network stability (Fig. 3e, f). The bidirectional
role of mutualism is exhibited on the stability mainly through the
underpopulated species.

Hysteresis in adaptation. We further examine the resilience of
the network structure under slow environmental changes. We
found that such long-term changes may cause systematic altera-
tion of the assembly that are irreversible even if the external
environmental condition is restored2,31,45. Numerically, we track
the structural measures of an assembled network by raising and
restoring the mutualistic intensity Ωm, mimicking the impact of a
gradually changing environment over a large time span. A slow
change rate of Ωm(t) is used so that the entire process is guar-
anteed to be at quasi-steady-states. Strikingly, the trajectories of
both nestedness and modularity show an unclosed hysteresis with
the control parameter (Fig. 4a, b).

It shows an asymmetry in the adaptation: the process proceeds
preferably in the direction of merging (when Ωm increases) rather
than splitting modules (when Ωm decreases). Consequently,
species engaged in cooperation may adopt alternative niche
relations even under the same environmental condition. Such
hysteresis implies that accidents of environmental history would
be frozen in the mutualistic network structure31,45. (Such
memory effect becomes less prominent for smaller-sized net-
works, see Supplementary Fig. 19).

However, this path-dependency affects only the structural
properties. In the same process, the average community
population 〈n〉 and the stability measure S are well recovered
along the same path when the influenced variable Ωm is restored
(see insets of Fig. 4a, b). Hence, neither the overall population
level nor local stability shows traces of environmental change,
despite the drastically altered underlying structure.

The response to the long-term cyclic external change settles
into a stable trajectory. The asymptotic behavior of the
nestedness measure approaches a closed hysteresis loop with
the continuously altering Ωm after multiple cycles (Fig. 4c),
remaining an asymmetry along the bidirectional paths. The
change of modularity, in contrast, becomes more symmetric
and narrowly constrained after the initial cycles (Fig. 4d), which
infers the network has settled to a relatively robust modular
structure.

Invasion to mutualistic networks. At last, we demonstrate that
the adaptive mechanism plays a crucial role in maintaining the
patterns of mutualism during long-term evolution. We analyze
the impact that invading mutant species have on the network
structure. We adopt elements from the classical theory of

“Adaptive Dynamics”46–48 and introduce an adaptive-
evolutionary process based on two timescales: at large time
intervals, mutant species, with a slightly different niche (trait) and
a small proportion of the resident’s total abundance, attempt to
invade a randomly chosen resident49. Between invasion attempts,
the network undergoes a large number of short-timescale adap-
tive rewiring steps (see Methods and Supplementary Note 4)
playing out whether the mutant survives, goes extinct, replaces, or
coexists with the resident. Regardless, we show that a nontrivial
nested and modular architecture persists in the presence of
repeated invasions and extinctions.

Starting from a small core of resident species, the number of
existing species initially increases, saturating at a level referred to
as the maximal capacity of the network, which decreases with the
competition intensity (Fig. 5a). The nestedness initially decreases
while modularity increases and both quickly saturate (Fig. 5b).
Notably, the evolving structural measures show a distribution in
the (NODF, Q) plane that overlaps with that of the empirical
networks from the Web of Life data set (Supplementary Fig. 21b).
Numerical simulations show that the invading mutants explore
the entire niche space with wide-stretching phylogenetic trees
rooted on the initial species (Supplementary Fig. 20).

The adaptive behavior is crucial for preserving nestedness.
Without it, the nestedness would quickly disappear and the
network size would grow in an unbounded way with repeated
invasions (Supplementary Fig. 24). Adaptive rewiring leads to a
strong degree-based bias in the mutants’ survival and removal
chances due to extinction. Figure 5c shows the relative
probabilities50 Prel(k) that the mutant has survived, that the
mutant has coexisted with the resident, and that the invaded
resident has gone extinct, examined at Δm= 500 time steps after
the invasion. These probabilities show a clear tendency that
generalists are more robust against invasions, whereas specialists
are more likely to succumb (Supplementary Fig. 23). Thus, the
cores of the modules are seldom affected by invasions and it is
only specialists that are often substituted, which makes the nested
and modular structure unaltered under repeated invasions.

Discussion
We have developed an adaptive-network framework for the
assembly of mutualistic networks, linking the structure of a net-
work to the processes unfolding on it. By combining the concepts
of niche structure and adaptive rewiring, the pervasively observed
nested and modular patterns of mutualism emerge from an
integrated underlying mechanism. Both patterns are com-
plementary facets of optimal niche structure as was previously
conjectured from heuristic arguments51. This integrated
mechanism also provides an underlying explanation for the
negative correlation between nestedness and modularity observed
in empirical networks.

The proposed adaptive niche model extends the classical niche
theory of Williams and Martinez8,9 (typically used for food webs)
to a dynamical framework, using the original concept of niche
interactions from MacArthur and Levin26. Although the classical
niche theory is able to address the structure in a concise way, our
model, at the cost of introducing more variables to describe
niche-based interactions, can reveal a host of fundamental
dynamical properties at different timescales. At the ecological
timescale, the stability analysis demonstrates both stabilizing and
destabilizing effects of mutualism, reconciling the contradictory
conclusions of different theories12,41–44, in most of which the
critical impact of competition has hitherto been largely ignored23.
Counter-intuitively, it suggests that for a highly competitive
community, enhancing mutualistic strength may detriment the
low-fitness actors and reduce the network resilience, which is a
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side effect of cumulative advantage38. Furthermore, the striking
hysteresis in structural adaptation suggests alternative stable
structures can exist under the same external conditions31,45,
implying that the traces of environmental history would be
“frozen” in the ecological relationship or organizational
partnership.

At the evolutionary timescale, the adaptive dynamics plays a
crucial role in preserving network architecture under repeated
invasions and extinctions. The invasion tests, based on a two-
timescale adaptive-evolutionary dynamic process, suggest that
successful surviving invaders can only enter the network at the
“right” entry point, owing to the different resilience of resident
nodes endowed by the architecture46–48. This may explain why
the patterns of mutualism are persistently observed in nature in
spite of repeated invasions and extinctions. Also, it suggests that
the combination of processes at both timescales is an important
scenario for network evolution52. Further results from the inva-
sion tests show a tendency of trait convergence and com-
plementarity (Supplementary Note 4). This is supported by
strong evidence of selection favouring complementarity in
mutualism53 and is consistent with theories assuming explicit
coevolutionary mechanisms54.

Hence, this adaptive systems formulation has demonstrated a
mechanism by which fundamental interactions can shape the
global mutualistic network structure, providing a bottom–up
perspective on mutualism. Indeed, from the network theoretical
point of view, this mechanism has demonstrated that processes
involving cumulative advantage or preferential attachment with
local rules can be responsible not only for hierarchy formation
but also for modularization35–37. In this manner, many general
properties of mutualism that are nonspecific to constituents can
be understood from the perspective of network dynamics. We
anticipate that further investigations into questions about inva-
sion and diversity55–58, cascading extinctions and resilience59–64,
and restoration of mutualistic networks65,66 would be particularly
revealing in this framework. The adaptive nature of niche rela-
tions should even underpin a broad category of interactions in
socio-economic systems4,67,68.

Methods
Adaptive niche model. We consider a bipartite ecological network that contains
interacting species of two guilds (denoted P and A, in analogy with plants and
animal pollinators). We assign a pair of characteristics to each species: its niche and
its abundance (individual species fitness). The niche profile is formulated as a
Gaussian function Hi(s) with uniform width σ and its center position �si randomly
chosen from the interval [0, 1] on a niche axis (Supplementary Note 1). Each
species is involved in cross-guild mutualistic interactions with selected partners
(represented by a matrix {γik}), in addition to competitive interactions with all rival
species in its own guild ({βij} for A or P). We define the niche proximity Hij of a
pair of interacting species i and j as

Hij ¼
Z

HiðsÞHjðsÞds ¼ exp �
�si � �sj
� �2

4σ2

0
B@

1
CA: ð3Þ

which refers to the total joint probability of possessing the same niche position for
either competing species within the same guild26,27 or partner species across the
guilds. The intensity of either type of pair-wise interaction is assumed to be pro-
portional to the niche proximity Hij

mutualistic: γik ¼ Ωm � θik � Hik ð4aÞ

competitive: βij ¼
1; i ¼ j

Ωc � Hij; i≠ j

(
ð4bÞ

where i, j ∈ G = (A or P) and k 2 �G ¼(P or A). {θik} is the adjacency matrix, with
the entries equal to 1 if i and k interact, and 0 if not. The mutualistic interaction
strength is thus higher for partners located at similar positions across the guilds,
corresponding to higher trait complementarity, whereas the competitive interac-
tion strength is higher for rivals located at similar positions within the same guild,
owing to higher trait similarity. The proportionality coefficients Ωm and Ωc are the

interaction factors for mutualistic and competitive interactions, respectively, which
capture the overall environmental influence.

The species abundances evolve according to a set of Lotka-Volterra equations
with Holling Type II mutualistic functional response1,12,21:

dnAi
dt

¼ nAi ρAi �
X
j

βAij n
A
j þ

P
k γ
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ik nPk

1þ h
P

k θ
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ik nPk

 !
ð5aÞ

dnPi
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¼ nPi ρPi �
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j

βPijn
P
j þ

P
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PA
ik nAk

1þ h
P

k θ
PA
ik nAk

 !
ð5bÞ

where the coupling strengths {γik} and {βij} are defined above. Note that k actually
spans only species interacting with i.

Rewiring and update of niche proximity: all species are assigned uniform
abundances ni= n0 and connected to partner species across the guilds uniformly at
random with a specified connectance C0 in the initial condition. The system evolves
according to Eq. (5) and at each time interval t=mT (m is a positive integer), a
species i is chosen uniformly at random and one of its existing links γij is rewired to a
randomly selected different mutualistic partner species k with probability pij. The
niche proximity across the guilds and the mutualistic coupling strength are updated:
Hij → Hik and γij → γik. T is chosen to be sufficiently large to guarantee that the
population dynamics reaches equilibrium between subsequent rewiring attempts. At
the end of the time interval t0 ¼ ðmþ 1ÞT , the abundance of species i is compared
with the previous value20,21. If niðt0Þ>niðtÞ, the rewiring is accepted; otherwise the
previous link ij is restored and the niche proximity is recovered. The rewiring
probability for the link ij is pij ¼ 1� k�η

j (η > 0), with kj being the degree of the
partner species, so that a species with a lower degree is prone to keeping its link(s).
This guarantees that any species interacts with at least one mutualistic partner species,
so that the connectance of all interacting species remains constant during rewiring.

We use random networks as the null model, where the probability of each entry
of the adjacency matrix being occupied is the average of the occupation
probabilities of the row and column6.

Invasion. We use a two-timescale process: at large time intervals (Tm= RT � T), a
resident species is randomly chosen with a probability proportional to its abun-
dance ni and a mutant species is created which inherits all the mutualistic links and
a small proportion of the resident’s total abundance (1%) (Supplementary Note 4).
The mutant deviates from the resident by a displacement on the niche axis, drawn
from a normal distribution. Extra links are randomly deleted to stay in accords
with the empirical relation between connectance and network size C0= 4/M0.8. At
short time intervals (T), adaptive rewiring, as detailed above, occurs. Invasions to
two types of initial networks are analyzed: (1) a small core of resident species,
consisting of two pairs of species (one in each guild) with all cross-guild connec-
tions; (2) an assembled network of a relatively large size (112 species).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Web of Life data set used in this study is available at http://www.web-of-life.es/.

Code availability
The codes for simulating the core model are available at: https://github.com/tsaiwr/
adaptive-niche-model (https://doi.org/10.5281/zenodo.4033975).
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