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Abstract

Important for both host and pathogen survivals, iron is a key factor in determining the outcome of an infectious
process. Iron with-holding, including sequestration inside tissue macrophages, is considered an important strategy to
fight infection. However, for intra-macrophagic pathogens, such as Mycobacterium avium, host defence may depend
on intracellular iron sequestration mechanisms. Ferritin, the major intracellular iron storage protein, plays a critical
role in this process. In the current study, we studied ferritin expression in mouse bone marrow-derived macrophages
upon infection with M. avium. We found that H-ferritin is selectively increased in infected macrophages, through an
up-regulation of gene transcription. This increase was mediated by the engagement of Toll like receptor-2, and was
independent of TNF-alpha or nitric oxide production. The formation of H-rich ferritin proteins and the consequent iron
sequestration may be an important part of the panoply of antimicrobial mechanisms of macrophages.
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Introduction

As an essential nutrient for both host and invader, iron plays
a central role in determining the outcome of infections. Infection
leads to a re-distribution of iron in the body of vertebrate
animals, so that less iron is found in circulation and more iron is
sequestered inside macrophages [1]. While the decrease in
circulating iron is a critical step for the control of the growth of
extra-cellular microbes, it is less clear how the increased
sequestration of iron inside macrophages impacts on intra-
macrophagic infections. There are several microbes that reside
and proliferate inside the macrophages of the animals they
infect. These agents, including mycobacteria, leishmania, and
salmonella, tend to cause chronic infections. Previous work by
ours and other groups has shown that iron availability can
clearly affect the growth of mycobacteria during experimental
infection of mice. In iron-overloaded mice, mycobacteria grow
more extensively, while they grow less in mice rendered iron
deficient [2–5]. These results can be reproduced in cellulo
using the model of infection of bone marrow-derived mouse

macrophages, infected with Mycobacterium avium [2]. Given
the clear evidence that iron availability affects the growth of M.
avium inside macrophages, it is relevant to understand whether
macrophages are able to modulate intracellular iron availability
to the microbes they harbour.

Ferritin is a key regulator of the intracellular iron metabolism
through the storage of iron. In mammals, cytosolic ferritin is
formed by 24 subunits of heavy (H) and light (L) chains, that
spontaneously assemble into a shell-like structure, capable of
storing up to 4500 iron atoms in its mineral core [6]. H-ferritin
has a ferroxidase centre that promotes the conversion of Fe2+

to Fe3+, and L-ferritin facilitates nucleation and mineralization of
the iron core [7]. Ferritin subunits are not interchangeable, as
shown by the embryonic lethality of H-ferritin gene deletion [8].
H- and L-subunits are encoded by separate genes, which are
differentially regulated [9]. As many other iron-related proteins,
ferritin expression can be regulated post-transcriptionally by
iron regulatory proteins (IRP), which interact with the cis-
regulatory iron responsive elements (IRE) present in the 5’
UTR of both ferritin mRNAs [10].
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In the present work, we investigated the regulation of ferritin
in mouse bone marrow-derived macrophages infected with M.
avium. We show that M. avium induces an increase of H-ferritin
mRNA, and concomitant protein level, which is dependent on
the engagement of Toll-like receptor-2, and independent of the
production of TNF-alpha and endogenous nitric oxide.

Materials and Methods

Animals
C57BL/6 mice were bred at IBMC. TLR2-deficient mice, on a

C57BL/6 background [11] were bred at the IBMC from a
breeding pair kindly provided by Dr Shizuo Akira. TNF-alpha-
deficient mice, on a C57BL/6 background, were bred at the
IBMC from breeders purchased from B&K Universal (East
Yorkshire, United Kingdom). Inducible nitric oxide synthase
(iNOS) – deficient mice [12], on a C57BL/6 background, were
bred at the IBMC from a breeding pair kindly provided by Drs J.
Mudgett, J.D. MacMicking and C. Nathan (Cornel University,
New York). All mice were kept at the IBMC animal facility in
high efficiency particulate air (HEPA)-filter-bearing cages and
fed sterile chow and autoclaved water.

All animal maintenance and manipulations were conducted
according to the rules of the IBMC animal ethics committee.
This study was carried out in strict accordance with the
recommendations of the European Convention for the
Protection of Vertebrate Animals used for Experimental and
Other Scientific Purposes (ETS 123) and 86/609/EEC Directive
and Portuguese rules (DL 129/92). The animal experimental
protocol was approved by the competent national authority
Direcção Geral de Veterinária (DGV) (Protocol Permit Number:
0420/000/000/2011)

Bacteria
Mycobacterium avium strain 2447, smooth transparent

(SmT), was isolated from an AIDS patient and given to us by
Dr. F. Portaels, Institute of Tropical Medicine, Antwerp,
Belgium. The bacteria were grown in Middlebrook 7H9 Broth
(Difco) with 0.05% Tween 80 (Sigma). Cultures were harvested
during exponential phase, centrifuged, washed in saline with
Tween 80, briefly sonicated and stored in aliquots at -80 °C
until used.

Macrophage culture
Bone marrow cells were flushed from mice femurs with ice

cold Hank’s Balanced Salt Solution (HBSS, Gibco), collected
by centrifugation and resuspended in Dulbecco’s Modified
Eagle’s Medium (DMEM, Gibco) containing 10% Foetal Bovine
Serum (FBS, Gibco) and 10% L929 Cell Conditioned Medium
(LCCM), as a source of Macrophage-Colony Stimulating Factor
(M-CSF). The cells were distributed in 24-well plates and
incubated at 37 °C in a 7% CO2 atmosphere. Three days after
seeding, another 0.1 ml LCCM was added. On the 7th day, the
medium was renewed. On the 10th day of culture, when cells
were completely differentiated into macrophages, some wells
were infected with M. avium, by substituting the medium with
0.2 ml of DMEM containing 106 CFU of M. avium

(approximately 10 bacteria per macrophage). In uninfected
controls, the medium was replaced with an equal volume of
DMEM. Cells were incubated for 4h at 37°C in a CO2

atmosphere and then washed with warm HBSS to remove non-
internalized bacteria and reincubated in DMEM, with 10% FBS
and 10% LCCM. To block the transcription of the cell, some
macrophages were incubated for 15 min with 1 µg/ml
Actinomycin D (Sigma) in DMEM at 37 °C before infection. In
some experiments, macrophages were incubated with 1 ng/ml
of the synthetic diacylated lipoprotein FSL-1 (InvivoGen) in
complete medium.

Quantification of H- and L-Ferritin
Macrophages were washed with cold saline and lysed with

400 μl of a solution containing 50 mM Hepes (Gibco), 1%
IGEPAL C-630 (Sigma) and 1% proteases inhibitor cocktail
P840 (Sigma). Ferritin concentrations in the lysates were
determined by ELISA assays using polyclonal antibodies (Abs)
raised against mouse recombinant H- and L-ferritin subunits
and calibrated with the corresponding recombinant
homopolymers. The specificity and the absence of cross-
reactivity of the Abs have been previously described [13].
Additional tests have been performed to confirm the absence of
cross-reactivity with mycobacterial antigens. The results are
expressed as ng of ferritin per mg of total protein in the cell
lysate. Total protein content was measured using the BCA
protein assay kit (Pierce).

55Fe uptake and incorporation into ferritin
BMM uninfected or infected with M. avium for 24h were

incubated with 2.5 µM (55Fe) ferric ammonium citrate (Perkin
Elmer) for 6h, at 37 °C in a 7% CO2 atmosphere. Afterwards,
cells were washed with cold saline and lysed with 25 mM Tris-
HCl buffer pH 7.4 (Sigma), containing 0.5% Triton X-100
(Sigma) and 1% proteases inhibitor cocktail P840 (Sigma).
Total protein content was measured on soluble homogenates
using Bio-Rad DCTM Protein Assay (Bio-Rad) and 18 µg were
loaded on a native PAGE (7.5% acrylamide, 1.5 mm thick). The
gel was dried, subjected to phosphor imaging (Typhoon 8600;
Molecular Diagnostics, Amersham Biosciences), and analyzed
using the ImageQuant program version 5.1.

Gene expression
Total RNA was extracted using the Micro-to-Midi Total RNA

Purification System (Invitrogen) according to the
manufacturer’s specifications. 2 µg of total RNA was
transcribed into cDNA, by a Moloney Murine Leukemia Virus
Reverse Transcriptase (Fermentas), using an oligo(dT)18

primer. The primers used for amplification of cDNA were as
follows: Hprt1 (housekeeping) 5’- gtaatgatcagtcaacgggggac -3’
(forward) and 5’-ccagcaagcttgcaaccttaacca-3’ (reverse); Fth1
5’- ggagttgtatgcctcctac -3’ (forward) and 5’- gagatattctgccatgcc
-3’ (reverse). The primers were shown not to co-amplify
genomic DNA. All reactions were performed in a total reaction
volume of 20 µL with iQ™ SYBR® Green Supermix (Bio-Rad)
and carried out in the iQ™5 instrument (Bio-Rad). Baseline
thresholds were calculated by Bio-Rad iQ5 program and the
threshold cycles (Ct) were used in the REST software [14],
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where CT values for target gene were normalized to
expression levels of Hprt1. Values are reported as n-fold
difference relative to the control samples.

Electromobility Shift Assay
BMM were washed with cold PBS and incubated for 10 min

on ice with digitonin (Sigma) at 0.007% in sucrose 0.25M and
Hepes 0.1M, pH 7.4, and centrifuged 10 min at 1800 g. The
supernatant was centrifuged for 1h at 100 000 g and the
mitochondria-free cytosolic extract was collected. The samples
were kept at -80 °C until use. RNA-protein interactions were
performed as described previously [15,16] using 4 μg of
cytosolic extract and a molar excess of [alpha-33P]UTP- labeled
H-ferritin IRE in vitro transcribed from plasmid pSPT-fer (kindly
provided by Dr. L.C. Kühn, ISREC, Switzerland). IRE-IRP
complexes were resolved in 6% nondenaturing polyacrylamide
gel. Samples were treated in parallel with 2% 2-
mercaptoethanol prior to the addition of the 33P-labeled IRE
probe to fully activate IRP-IRE binding activity.

Statistical analysis
Data was analysed using a two-tailed unpaired student’s t

test.

Results

1. Mycobacterium avium infection increases ferritin
heavy chain levels in bone marrow-derived
macrophages through transcriptional activation

To test whether M. avium infection alters intracellular ferritin
levels, we infected mouse bone marrow-derived macrophages
(BMM) and analysed the ferritin protein levels for up to 5 days.
The infection led to a 5.3±0.9 fold increase of ferritin heavy
chain in the first 24h, which remained elevated until day 5
(3.8±0.4 fold increase) (Figure 1A and Table S1). As for ferritin
light chain, we found it to be regulated to a lesser extent by the
infection. L-ferritin levels tended to decrease in infected BMM
by 24h, and to be restored at day 3 of infection (Figure 1A).

We then tested if the increase in ferritin induced by infection
leads to an increased diversion of iron into storage. BMM
infected or not with M. avium were pulsed with 55Fe ferric
ammonium citrate and iron incorporation in ferritin was
analysed in a native PAGE followed by exposure to
autoradiography film. As observed in Figure 1B, infected BMM
had a 40% increase of ferritin- bound- 55Fe.

The expression of ferritins can be regulated post-
transcriptionally by iron-regulatory proteins (IRPs). The binding
of IRPs to the unique iron-responsive elements (IRE), which is
present in the 5’ untranslated region of both L- and H-ferritin
mRNAs, blocks the mRNA translation [10]. Therefore, a
decreased binding capacity of IRP could contribute to H-ferritin
protein increase. Cytosols from control and infected BMM were
tested for their IRP-IRE binding activity during the course of the
infection. Results in Figure 1C show that the IRE-IRP
regulatory system is kept at a low basal activity in both control
and infected BMM over the 3 days post-infection. Moreover,
inhibiting the cell transcription with actinomycin D blocked the

H-ferritin increase upon infection (Figure 1D), suggesting
transcriptional, rather than post-transcriptional regulation by
infection. To confirm this, we followed the expression of the
genes coding for ferritin chains upon infection by qRT-PCR.
Fth1, coding for H-ferritin, was found to be up-regulated by
5.2±1.9 fold in infected BMM at 24h (Figure 1E), correlating
with the peak of protein expression (Figure 1A). The gene
coding for L-ferritin (Ftl1), in accordance with the protein, was
less regulated, with a reduction of 65% at day 2 of infection
(Figure 1E).

2. Ferritin is regulated by infection independently of
TNF-alpha or NO production

The infection of BMM with mycobacteria induces TNF-alpha
production [17], a cytokine that (specifically) induces the
expression of H-ferritin by an increase in Fth1 transcription
[18]. To investigate if the increase in H-ferritin observed during
M. avium infection is a consequence of TNF-alpha production,
we infected BMM genetically deficient in the production of TNF-
alpha and followed the ferritin expression. As can be seen in
Figure 2, the absence of TNF-alpha did not hamper the
regulation of ferritin by infection, indicating that the increase in
H-ferritin is not mediated by the production of this cytokine.

The infection of BMM with various mycobacteria also induces
nitric oxide (NO) production [19]. Moreover, it has been
recently reported that BMM exposed to exogenous NO can
transcriptionally up-regulate ferritin expression [20]. To
determine whether production of endogenous NO contributes
to ferritin regulation during infection, we used BMM deficient in
the NO synthase2 (NOS2). As shown in Figure 2, NOS2-/- BMM
exhibited similar ferritin protein profile changes to those of WT
BMM post infection, demonstrating that NO is not involved in
the regulation of ferritin by M. avium.

3. Ferritin regulation by M. avium infection is
dependent on the activation of Toll-Like Receptor 2

Toll-Like Receptor (TLR)-2 is the main receptor for the
recognition of several mycobacterial constituents [21]. To
evaluate the role of TLR-2 in the regulation of ferritin by the
mycobacteria, we used TLR-2-/- macrophages and measured
the cell ferritin content during the infection. Although TLR-2-/-

BMM increased H-ferritin in response to infection, this effect
was markedly reduced in comparison with WT BMM. The
absence of TLR-2 reduced by 62% the increase of H-ferritin
after 24h of infection (Figure 2 and Figure 3A) and as much as
83% after 4 days (Figure 2). In accordance, TLR-2-/- BMM did
not increase Fth1 mRNA expression upon infection (Figure
3B). Furthermore, L-ferritin was not regulated by the infection in
TLR-2-/- BMM (Figure 2). It could be argued that the
engagement of TLR-2 might activate a pathway necessary, but
not sufficient, to induce H-ferritin expression. To investigate if
the activation of TLR-2 signalling is able, per se, to induce the
increase in H-ferritin observed in M. avium infection, we used
the synthetic ligand FSL-1 to specifically activate TLR-2 [22].
The stimulation of BMM with FSL-1 had a similar effect to the
infection with M. avium (Figure 3C), strongly inducing H-ferritin,
while slightly reducing L-ferritin content. These results show
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Figure 1.  Effect of Mycobacterium avium infection on intramacrophagic ferritin.  Bone marrow-derived macrophages were
obtained from C57Bl/6 mice and infected with M. avium, as described in Material and Methods, or left uninfected. A - At different
time points, macrophages were lysed and the amount of ferritin was quantified by ELISA. Data are presented as ng of ferritin per mg
of total protein. The results are shown as average ± SD from one experiment performed in triplicate out of four independent
experiments. Superscripts indicate statistical significance between M. avium-infected and uninfected, within the correspondent time-
point, as follows: *p<0.05, **p<0.01, ***p<0.001. B – BMM uninfected or infected with M. avium for 24h were incubated for 6h with
(55Fe) ferric ammonium citrate. Total protein (18 µg) was loaded (in duplicates) in native PAGE and exposed to autoradiography to
analyze protein-bound iron. A single band was detected corresponding to cytosolic H/L ferritin. The values indicate the average
relative band intensity for each condition. C – BMM infected with M. avium for 4h, 1 and 3 days and respective uninfected controls
were tested for IRP-IRE binding activity, by gel retardation assay. 2% of 2-mercaptoethanol (2-ME) fully activates IRP binding
activity and shows equal loading. BMM treated with iron or deferoxamine (DFO) were tested in a separated gel to confirm the
reliability of the assay. D – BMM were treated with the transcriptional inhibitor actinomycin D or with vehicle. After an 8h-infection
with M. avium, the BMM were lysed and H- and L-ferritin were quantified by ELISA. Results show the average + SD from one
experiment performed in triplicate out of three independent experiments. ***p<0.001, NS not significant.
E – At different time points, total RNA was collected from macrophages and the expression levels of ferritin genes was quantified by
qRT-PCR, and normalized to Hprt1. Results are shown as fold increase in M. avium-infected macrophages in comparison with
uninfected ones. Data are presented as average ± SE from one experiment performed in triplicate from a total of two independent
experiments.
doi: 10.1371/journal.pone.0082874.g001
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that TLR-2 engagement is the main responsible for ferritin
regulation during M. avium infection.

Discussion

Ferritin plays a major role in the control of iron distribution,
and is regulated by iron, cytokines, hormones, growth factors
and oxidants [9]. In the present work, we show that H-ferritin is
induced in mouse bone marrow derived macrophages infected
with M. avium. Previous studies had suggested that infection
with intracellular pathogens can modulate ferritin expression.
However, most studies were performed with immortal cell lines
and the results were frequently in conflict with each other
[23–27].

Our results, obtained with primary mouse macrophages,
showed that the infection with M. avium increases the H-ferritin
cell content, by acting at the transcriptional level. Furthermore,
we showed that the infection did not lead to any observable
change in IRE/IRP binding activity, likely because
macrophages infected with M. avium produce lower flux of
nitric oxide (a well-known activator of the IRE/IRP regulatory
system) than macrophages infected with non pathogenic
species [19]. Accordingly, elevated H-ferritin content was
maintained in NOS2-/- BMM infected with M. avium similarly to
that of WT infected BMM. Our results further show that
activation of TLR-2 increases H-ferritin through the activation of
gene transcription, independently of NO. A recent report
demonstrated that LPS (a TLR4 ligand) in combination with
IFN-gamma strongly induced H-ferritin in IRP1-/- BMM via
endogenous NO production while H-ferritin content was
maintained low in WT BMM [20]. Therefore, TLR-2 and TLR-4,

Figure 3.  TLR-2 activation leads to increased expression
of H-ferritin.  A, B – BMM from C57Bl/6 (WT) and TLR-2-/-

mice were left uninfected or infected for 24h with M. avium. The
H-ferritin fold increase in infected BMM in comparison with
uninfected ones is shown at the protein level (A) and mRNA
(B). C – BMM were treated with the TLR-2 agonist FSL-1 for
24h, and the levels of H- and L-ferritin was quantified by
ELISA. Results show the average + SD from one experiment
performed in triplicate out of three independent experiments.
Statistical differences as described in Figure 1.
doi: 10.1371/journal.pone.0082874.g003

Figure 2.  Effect of M. avium infection on ferritin content in the absence of TNF-alpha, iNOS and TLR-2.  Bone marrow-
derived macrophages were obtained from C57Bl/6 (WT), TLR-2-/-, TNF-alpha-/- and NOS2-/- mice. BMM were infected and the ferritin
content was quantified as described in Figure 1. The results are shown as average ± SD from one experiment performed in triplicate
out of two independent experiments.
doi: 10.1371/journal.pone.0082874.g002
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which recognize different pathogen associated molecular
patterns, are likely to have the same effect on ferritin, but
adopting different pathways.

TLR-2 is the main receptor for the innate recognition of
several mycobacterial constituents [21]. TLR-2 activation
results in the killing of M. tuberculosis by NO-dependent
mechanisms [28] and in bacteriostasis of M. avium [29] by
mechanisms that remain elusive. Here, we found that TLR-2
engagement leads to H-ferritin increase, which may contribute
to the anti-mycobacterial activity induced by TLR-2
engagement. Although we found that TLR-2 activation was
sufficient for H-ferritin up-regulation, TLR-2-/- BMM were still
able to increase H-ferritin in response to M. avium infection,
albeit to a much lesser extent. This suggests that other Pattern
Recognition Receptors could have a minor role in the
recognition of M. avium and consequent induction of H-ferritin.

M. avium infection had a much less pronounced effect on the
levels of L-ferritin, overall resulting in the formation of ferritin
proteins richer in H-chain. This may have important
physiological consequences, since a higher H/L ratio has been
shown to reduce the cell’s labile iron pool [30]. Indeed, we
found that M. avium-infected macrophages have a higher
capacity for the incorporation of iron into cytosolic ferritin. Our
results suggest, therefore, that H-ferritin up-regulation during
infection may contribute to limit iron availability to
mycobacteria, taking part of the macrophage nutriprive
mechanisms [31]. On the other hand, H-ferritin has also been
implicated in protection against oxidative stress [32,33] and
apoptosis [34]. We did not detect an increase in the levels of
oxidative damage of macrophages upon infection with M.
avium (Figure S1) and we can suggest that the observed
increase in H-ferritin can contribute to the cytoprotection of the
host cell. Further studies, including loss of function assays, are
needed to obtain more definitive insights on the role of H-
ferritin in the restriction of M. avium growth inside
macrophages.

At a more systemic level, ferritin induction by microbial
stimuli is likely to impair iron recycling by diverting it into
storage, thus contributing to the development of the anemia
associated with chronic disease (ACD) [35]. Several factors are
involved in the development of ACD, including cytokines and
hepcidin [36–40], but we have recently demonstrated that the
anaemia observed during experimental mouse infection with M.
avium is independent of hepcidin [41].

In summary, this work shows that the recognition of M. avium
by macrophage TLR-2 leads to the increase of the expression
of H-ferritin, through transcriptional activation, by mechanisms
that although not completely elucidated, are independent of
TNF-alpha and NO. TLR2 mediated-up regulation of H-Ft in

primary macrophages may be important in host protection
against mycobacterial infections, by causing pathogen iron
starvation and host cell protection and may also contribute to
the development of ACD during mycobacterial infections.
These findings can help better understand the tight regulation
of host iron metabolism which occurs during the innate immune
response to infections.

Supporting Information

Figure S1.  Effect of Mycobacterium avium infection on the
oxidation of peroxiredoxins (Prx). Bone marrow-derived
macrophages were obtained from C57Bl/6 mice and infected
with M. avium, as described in Material and Methods, or left
uninfected. To evaluate oxidative damage, macrophages were
lysed after 1 or 3 days and PrxSO3, formed by the
overoxidation of Prx, was detected by western blot. Uninfected
macrophages exposed to 100 µM H2O2 for 20 min were used
as a positive control.
(DOCX)

Table S1.  Effect of Mycobacterium avium infection on
intramacrophagic ferritin. Bone marrow-derived
macrophages were obtained from C57Bl/6 mice and infected
with M. avium or left uninfected. At different time points
macrophages were lysed and the amount of ferritin was
quantified by ELISA. Day 0 refers to the time point immediately
after infection. Data are presented as ng of ferritin per mg of
total protein. The results are shown as average ± SD from one
experiment performed in triplicate out of four independent
experiments.
(DOCX)
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