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Abstract
A reliable, real time localization functionality is crutial for actively controlled capsule endoscopy robots, which are an emerg-
ing, minimally invasive diagnostic and therapeutic technology for the gastrointestinal (GI) tract. In this study, we extend 
the success of deep learning approaches from various research fields to the problem of sensor fusion for endoscopic capsule 
robots. We propose a multi-sensor fusion based localization approach which combines endoscopic camera information and 
magnetic sensor based localization information. The results performed on real pig stomach dataset show that our method 
achieves sub-millimeter precision for both translational and rotational movements.

Keywords  Deep Learning based Sensor Fusion ·  Endoscopic Capsule Robots ·  RNN-CNN (RNN:Recurrent Neural 
Network, CNN: Convolutional Neural Network)

1  Introduction

Robot localization denotes the robot’s ability to establish its 
position and orientation within the frame of reference. Differ-
ent sensors used in medical milliscale robot localization have 
their own particular strengths and weaknesses, which makes 
sensor data fusion an attractive solution. Monocular visual-
magnetic odometry approaches, for example, have received 
considerable attention in mobile robotic sensor fusion litera-
ture. In general, localization techniques for endoscopic capsule 
robots can be categorized into three main groups: electromag-
netic wave-based techniques; magnetic field strength-based 
techniques and hybrid techniquesUmay et al. (2017).

In recent years, numerous electromagnetic wave-based 
approaches like time of flight and difference of arrival 
(ToF and TDoA)-, received signal strength (RSS)-, RF 

identification (RFID)- and angle of arrival (AoA) based 
methods have been proposed Wang et al. (2011); Fischer 
et al. (2004); Wang et al. (2009); Ye (2013); Hou et al. 
(2009).

In magnetic localization systems, the magnetic source and 
magnetic sensor system are the essential components. The 
magnetic source can be designed in different ways: a per-
manent magnet, an embedded secondary coil, or a tri-axial 
magnetoresistive sensor. Magnetic sensors located outside 
the human body detect the magnetic flux density in order to 
estimate the location of the capsule (e.g., Popek et al. (2013), 
Natali et al. (2016), Yim and Sitti (2013)). One of the major 
advantages of utilizing magnetic field strength-based locali-
zation techniques is their successful coupling with magnetic 
locomotion systems. This could be achieved using magnetic 
steering, magnetic levitation, and remote magnetic manipu-
lation. Other advantages include their robustness against 
attenuation by the human body. However, the disadvantage 
is that they experience interference from the environment. 
This could be handled by implementing additional hardware 
for handling the localization problem.

Another group of endoscopic capsule robot localization 
techniques is the hybrid techniques. These implement an inte-
gration of different sources at once such as RF sensors, mag-
netic sensors, and RGB sensors. The core idea is to integrate 
data from different sources which strengthen each other and 
can produce more accurate localization data. As a common 
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approach Kalman filter and its derivatives are proposed to 
fuse RF electromagnetic signal data, magnetic sensor data, 
and video data. The first group of hybrid methods fuses RF 
and video signal Geng and Pahlavan (2016); Bao et al. (2015), 
whereas the second group focus on fusion of magnetic and 
RF signal data Umay and Fidan (2016); Geng and Pahlavan 
(2016); Umay and Fidan (2017) and the last group on fusion 
of magnetic and video data Gumprecht et al. (2013).

Some other methods of localization utilize X-rays, MRI, 
computed tomography (CT), or ultrasound sensing Arshak and 
Adepoju (2006) and � rays Than et al. (2014). However, they all 
have their respective drawbacks of radiation hazards. MRI hard-
ware is costly and presents (Fig. 1) additional design restrictions, 
and ultrasound sensing acquire planar pictures that might not 
intersect with the capsule robot. Inspired by the recent success 
of deep-learning models for processing raw, high-dimensional 
data, we propose in this paper a sequence-to-sequence deep sen-
sor fusion approach for endoscopic capsule robot localization.

2 � System architecture details

Regardless of the algorithm, traditional monocular visual 
odometry solutions are subject to scale drift and ambigu-
ity. It is proven that sophisticated loop closure methods can 

be helpful to reduce scale drift. However, scale ambiguity 
requires fusion of external information to be solved which 
not only resolves the scale ambiguity but also increases the 
pose estimation accuracy. With that motivation, we devel-
oped a deep neural network approach which fuses hand-eye 
calibrated and synchronized RGB camera information with 
magnetic localization information. Figure 3 shows the sys-
tem architecture diagram of our sequence-to-sequence learn-
ing approach consisting of:

1.	 Optical Flow estimation.
2.	 CNN based feature vector extraction.
3.	 LSTMs based sensor fusion.

Before optical flow estimation, input frames are preproc-
essed by a vessel enhancement module which aims to 
emphasize unique features on the organ tissue (Fig. 2). 
As a next step, keyframe detection module examines each 
endoscopic camera frame and identify keyframes. Magnetic 
localization data coming from 2D Hall sensor array is a 6 
dimensional vector containing the x, y, z position compo-
nents and x-, y- and w orientation parameters in quater-
nion format (rotational z-degree is missing). The output of 
the network is a 7 dimensional vector consisting of x-, y-, 

Fig. 1   Experimental setup
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z- translation and 4 orientation parameters in quaternion 
format.

​​2.1 � Preprocessing

Even though the beauty of deep learning is told to be its suc-
cess and easiness to process raw input data without inquir-
ing any pre-and post processing, we do preprocessing since 
it increases the accuracy of our method upon our observa-
tions we made during evaluations. This section explains 
the preprocessing operations we applied on the raw RGB 

image data before passing it into the deep neural network. 
The operations include vessel detection, enhancement and 
keyframe selection.

2.1.1 � Multi‑scale vessel enhancement

Since endoscopic images have mostly homogeneous and 
poorly textured areas, our framework starts with a vessel 
enhancement operation inspired from Frangi et al. (1998). 
Proposed approach enhances blood vessels by analyzing the 

Fig. 2   Vessel detection and e​
nha​nce​men​t​

Fig. 3   System architecture diagram
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multiscale second order local structure of an image. First, we 
extract the Hessian matrix:

where I is the input image, and Ixx , Ixy , Iyx , Iyy the second 
order derivatives, respectively. Secondly, eigenvalues 
||�1|| ≤ ||�2|| and principal directions u

1
 , u

2
 of the Hessian 

matrix are extracted. The eigenvalues and principal direc-
tions are then ordered and analyzed to decide whether the 
region belongs to a vessel. To identify vessels in different 
scales and sizes, multiple scales are created by convolving 
the input image and the final output is taken as the maximum 
of the vessel filtered image across all scales. For further 
details of the mathematical equations, the reader is referred 
to the original paper of [?]. Figure 2 shows input RGB 
images, vessel detection and vessel enhancement results for 
different frames.

2.1.2 � Keyframe selection

Due to the incremental and slow motion of the capsule robot 
inside the inner organ, endoscopic videos generally contain 
numerous frames with similar and redundant content. Thus, 
an algorithm has to be developed to skip frames with simi-
lar overlapping features. This procedure is called keyframe 
selection. We developed a method based on optical flow 
interpretation between consecutive frame pairs. The output 
of optical flow algorithm is the vector values of each pixel 
which we sum the magnitudes of and normalize by dividing 
it with the total number of pixels. If the normalized value 
exceeds a pre-defined threshold value of 20 pixels, the over-
lap between the corresponding frames is less than 75% and it 
is identified as a keyframe. Conversely, if it does not exceed 
the threshold then there is a high overlap between the frame 
pair. This procedure is summarized below:

1.	 Choose a candidate keyframe and extract Farneback 
optical flow between this and the reference keyframe.

2.	 Compute the magnitude of the extracted optical flow 
vector for each pixel.

3.	 Calculate the cumulative value by summing up all the 
magnitude values.

4.	 Normalize the cumulative value by the total number of 
pixels.

5.	 If the normalized cumulative value is less than � then go 
to the next frame. Otherwise, identify the candidate key 
frame as a key frame and repeat the process.

(1)H =

[
Ixx Ixy
Iyx Iyy

]

2.2 � Optical flow extraction

In deep learning based applications, there is in general a 
tendency to serve raw input images into the neural network 
without any preprocessing so that neural network can decide 
by itself how to organize the raw information. Contrary to 
that, we do not use raw images, instead we extract optical 
flow from consecutive keyframes. This way, we want to 
force CNN to focus more directly on the motion dynamics 
between frames rather than redundant unnecessary informa-
tion. To achieve real time performance, we make use of GPU 
for optical flow estimation. Several optical flow algorithms 
such as Lucas-Kanade method (Cornelius and Kanade 1984), 
Buxton-Buxton method (Beauchemin and Barron 1995) and 
the Black Jepson method were tested. The Farneback optical 
flow estimation based on polynomial expansion (Farnebäck 
2003) out-performed all other optical flow methods by hav-
ing the lowest reprojection error (Fig. 4). The input informa-
tion of the CNN needs to be discrete which arises the need to 
quantify the optical flow vector. The resolution of the input 
image is 640 × 480, so the maximum value of the quanti-
fication is devised to be the diagonal length of the image 
resolution, and minimum quantification value is set to zero. 
The quantification range is divided into 1024 intervals and 
the resulting quantized x and y values were concatenated for 
each pixel (Fig. 3).

2.3 � Magnetic localization system

As described in Fig. 4, our magnetic localization system 
consists of a magnetic Hall sensor array for localization 
and electromagnets for actuation of the endoscopic capsule 
robot. Our magnetic localization technique is able to meas-
ure 5-DoF absolute pose of the untethered meso-scale mag-
netic robot in real-time. A Hall-effect sensor array measures 
magnetic field at several locations from the capsule robot, 

Fig. 4   Magnetic localization system
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whereas a computer-controlled electromagnetic coil array 
provides actuator’s magnetic field. The core idea of our 
localization technique is separation of capsule’s magnetic 
field from actuator’s known magnetic field, which is realized 
by subtracting actuator’s magnetic field component from the 
acquired magnetic data. Finally, noise effects are reduced by 
second-order directional differentiation. For curious readers, 
further details of our magnetic localization technique can be 
found in Son et al. (2016).

2.4 � Deep CNN‑RNN architecture for sensor fusion

We propose a sensor fusion architecture consisting of CNN 
layers for feature extraction from quantized optical flow 
vector, multi-rate long short-term memories (LSTMs) for 
frequency adjustment, and a core LSTM unit for fusion of 
flattened feature vector and magnetic localization informa-
tion. The details of the system architecture can be seen in 
Fig. 3. The core part of the architecture is inspired and modi-
fied from Clark et al. (2017). For the implementation, Keras 
library with Theano back-end was used which provides a 
modifiable framework, enables multi-GPU training which 
accelerates the computational procedure. The learning rate 
was initialized to 0.001 reducing as the epochs of the train-
ing continues. Adaptive moment estimation (Adam) method 
was used to optimize the goal function. We trained our algo-
rithm on an Amazon EC2 p2.xlarge GPU compute instance. 
The list of the parameters is as follow:

–	 learning rate: 0.001
–	 momentum1: 0.9
–	 momentum2: 0.999
–	 epsilon: 10−8
–	 solver type: Adam
–	 batch size: 64
–	 GPU: NVIDIA K80

With using LSTM, we pursue to learn the complex motion 
dynamics of endoscopic capsule robot and try to let the neu-
ral network describe sequential dependencies across frames 
which require extensive engineering in case of manual 
modeling. Contrary to the traditional LSTM, we connect 
the output pose of the current core LSTM as input to the 
core LSTM of the next timestep so that odometry can ben-
efit from the information of past frames thanks to its hid-
den memory lasting over time. With the help of this hidden 
memory, LSTM can encode the previously gained knowl-
edge up to time step t and use it for posterior estimations. 
An exponential map in the SE(3) composition layer is used 
to convert se(3) data to the special euclidean group SE(3) 
Clark et al. (2017). In our architecture, each LSTM layer has 

200 hidden states. To regress the 6-DoF pose, we trained the 
architecture on the following objective loss function:

where � is the translation vector and � is the quaternion 
vector for a rotation. A balance � must be kept between the 
orientation and translation loss values which are highly 
coupled as they are learned from the same model weights. 
Experimental results show that the optimal � is given by the 
ratio between expected error of position and orientation at 
the end of training session (Fig. 5). The back-propagation 
algorithm is used to determine the gradients of the network 
weights which are passed into the Adam optimization. The 
moments of the gradient are calculated using exponential 
moving average in addition to exponentially decaying aver-
age of past gradients, which also corrects the bias.

3 � Dataset

This section introduces the experimental setup and explains 
how the training and testing datasets were created. The data-
set was recorded on five different real pig stomachs (see 
Fig.1). In order to ensure that our algorithm is not tuned to 
a specific camera model, four different commercial endo-
scopic cameras were employed. For each pig stomach and 
camera combination, 3000 frames were acquired, which 
makes 60,000 frames for four cameras and five pig stomachs 
in total. 40,000 frames were used for training, whereas the 
remaining 20,000 frames were used for evaluation. Sample 
real pig stomach frames are shown in Fig. 6 for visual refer-
ence. During video recording, an Optitrack motion tracking 
system consisting of eight Prime-13 cameras was utilized 
to obtain 6-DoF localization ground-truth-data with sub-
millimeter accuracy (see Fig. 1).

(2)loss(I) = ‖�̂ − �‖
2
+ 𝛽‖�̂ − �‖

2

Fig. 5   Information flow through the hidden units of the LSTM
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4 � Evaluation

We evaluate the performance of our system both quanti-
tatively and qualitatively in terms of trajectory estimation. 
We also report the computational time requirements of the 
method.

4.1 � Trajectory estimation

The absolute trajectory (ATE) root-mean-square error metric 
(RMSE) is used for quantitative comparisons, which meas-
ures the root-mean-square of Euclidean distances between 
all estimated endoscopic capsule robot poses and the ground 
truth poses. We created six different trajectories with vari-
ous complexity levels. Overfitting, which would make the 
resulting pose estimator inapplicable in other scenarios, was 
prevented using dropout and early stopping techniques. The 
dropout regularization technique, which samples a part of 
the whole network and updates its parameters based on the 
input data, is an extremely effective and simple method to 
avoid overfitting.

Early stopping is another widely used technique to pre-
vent overfitting of a complex neural network architecture 
optimized by a gradient-based method. We strictly avoided 
the use of any image frames from the training session for 
the testing session. We compared the performance of our 
deep fusion approach with the odometry approach pro-
posed in Turan et al. (2017) which we call endoscopic 

visual odometry (EVO) , magnetic localization approach 
proposed in Son et al. (2017) and with the same CNN-
RNN system in Fig. 3 except we disabled the magnetic 
localization fusion path. We call this last configuration 
deep visual odometry (DVO). The average translational 
and rotational RMSEs for deep sensor fusion, EVO, mag-
netic localization and DVO against different path lengths 
are shown in Figs. 8 and 9, respectively.The results indi-
cate that deep sensor fusion clearly outperforms all other 
configurations, while magnetic localization outperforms 
EVO and DVO. Some qualitative tracking results and 
corresponding ground truth trajectories for deep fusion 
approach, DVO and magnetic localization are demon-
strated in Fig. 7 for visual reference. As seen in sam-
ple trajectories, deep fusion is able to stay close to the 
ground-truth pose values for even complex, fast rotational 
and translational motions, where both EVO and mag-
netic localization by themselves clearly deviate from the 
ground-truth trajectory. Thus, we can conclude that deep 
fusion makes effective use of both sensor data streams 
Based on our evaluations, we presume that the hybrid use 
of the CNN-LSTM architecture enabled learning from 
both magnetic and visual information effectively which 
led to optimal localization results. We run our training 
and testing sessions both on an Amazon EC2 p2.xlarge 
machine instance. The duration of the training session was 
8 h and 37 min. The 6-DoF pose estimation per image pair 
and magnetic data took 35 ms Figs. 8 and 9.

Fig. 6   Sample images from dataset
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Fig. 7   Plotted trajectories

Fig. 8   Trajectory length versus 
translation error
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5 � Conclusion

In this study, we presented, to the best of our knowledge, the 
first sensor fusion method based on deep learning for endo-
scopic capsule robots. The proposed CNN-RNN architec-
ture based fusion approach is able to achieve simultaneous 
learning and sequential modeling of motion dynamics across 
frames and magnetic data streams. Since it is trained in an 
end-to-end manner, there is no need to carefully hand-tune 
the parameters of the system except the hyperparameters. In 
the future, we will incorporate controlled actuation into the 
scenario to investigate a more complete system, and addi-
tionally we will seek ways to make the system more robust 
against representational singularities in the rotation data.
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