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prediction based on nucleotide position
aware feature encoding

Wenxing Hu,1 Yelin Li,1 Yan Wu,1 Lixin Guan,1 and Mengshan Li1,2,*

SUMMARY

Enhancers, genomic DNA elements, regulate neighboring gene expression crucial for biological processes
like cell differentiation and stress response. However, current machine learning methods for predicting
DNA enhancers often underutilize hidden features in gene sequences, limiting model accuracy. Hence,
this article proposes the PDCNN model, a deep learning-based enhancer prediction method. PDCNN ex-
tracts statistical nucleotide representations from gene sequences, discerning positional distribution infor-
mation of nucleotides in modifier-like DNA sequences. With a convolutional neural network structure,
PDCNN employs dual convolutional and fully connected layers. The cross-entropy loss function iteratively
updates using a gradient descent algorithm, enhancing prediction accuracy. Model parameters are fine-
tuned to select optimal combinations for training, achieving over 95% accuracy. Comparative analysis
with traditional methods and existing models demonstrates PDCNN’s robust feature extraction capa-
bility. It outperforms advanced machine learning methods in identifying DNA enhancers, presenting an
effective method with broad implications for genomics, biology, and medical research.

INTRODUCTION

Enhancers, regulatory non-coding DNA fragments, bind to specific transcription factors, amplifying the transcription process of relevant

genes and playing a pivotal role in gene expression regulation.1,2They exhibit diverse functional subgroups, including accumulating en-

hancers, latent enhancers, strong enhancers, and weak enhancers.3 These interact with transcription factors to regulate the transcription

of target genes by attracting elongation factors or initiating RNA polymerase II,4,5 as depicted in Figure 1.

As research has advanced, associations have emerged between genetic variations in enhancers and various human diseases, such as

different types of inflammatory bowel disease and cancer.6–8 This realization has spurred an urgent need for more comprehensive research

and understanding of enhancers. The identification and classification of enhancers have become prominent research topics in bioinformatics

and computational biology. However, the dynamic nature of enhancers, which may be distributed up to one trillion base pairs away from the

target gene and exist across multiple chromosomes,9 introduces new challenges to their identification and classification.

Given the functional significance of enhancers in promoting gene expression, pinpointing their locations in the genome constitutes a focal

point for laboratory researchers and computational biologists. Historically, enhancer prediction heavily relied on biological experimental

techniques. For instance, conserved analyses utilized sequence conservation data and transcription factor binding site data for predic-

tion.6,10,11 However, this approach has limitations, as transcription factors do not consistently occupy all enhancer sites, and their associated

targets may also be repressed. Recent advancements in next-generation sequencing (NGS) have substantially eased the assessment of func-

tional enhancer activity.12,13 Nevertheless, these experimental methods are resource-intensive and time-consuming, applicable to only a

limited number of cell types. Current research trends lean toward the development of computational methods. Various machine learning ap-

proaches have been explored for recognizing DNA enhancer sequences.14

In the realm of predicting enhancers in the human genome, various machine learning (ML) computational methods have been proposed,

such as ChromaGenSVM,15 CSI-ANN,16 RFECS,17 EnhancerFinder,18 Sbper19 and BiRen.20 iEnhancer-2L21 is the first predictive model intro-

duced by Liu et al. that can identify both enhancers and their respective strengths. It employs the pseudo k-tuple nucleotide composition

(PseKNC) as the encoding method for sequence features. Subsequently, Liu et al., building upon the support vector machine (SVM), utilized

the pseudo degenerate k-mer nucleotide composition (PseDekNC) to extract features from DNA sequences, leading to the development of

the iEnhancer-PsedekNCpredictor.22 EnhancerPred is based on Liu’s dataset and employs bilateral Bayesian and pseudo nucleotide compo-

sition as feature extraction methods. It constructs a two-layer predictor through wrapper-based two-step feature selection.23 Nguyen et al.,

using One-hot encoding and k-mers as input, established an ensemble framework based on Convolutional Neural Network (CNN) known as
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iEnhancer-ECNN.24 Cai et al., by combining five feature sets, including k-spectrum profiles, mismatch k-tuples, Position-Specific Scoring Ma-

trix (PSSM), and Pseudo-Dinucleotide Composition (PseDNC), utilized ‘‘XGBoost’’ as the base classifier to build a two-layer predictor named

iEnhancer-XG.25 iEnhancer-EBLSTM encodes the input DNA sequence with 3-mers and predicts enhancers through bidirectional LSTM.26 In

machine learning approaches to predict enhancers, the extraction of features from sequences is crucial. It determines whether valuable

feature information can be mined from genomic data for model learning. To capture more features from DNA enhancer sequences, Jia

et al. combined One-hot encoding and NCP encoding. They employed an enhanced DenseNet and improved CBAM attention modules

for prediction, referring to this model as iEnhancer-DCSV.27 Wang et al. chose to tokenize the sequence initially using n-gram and skip-

gram, followed by One-hot encoding. They eventually developed the iEnhancer-DCSA model, a convolutional neural network employing

dual-scale fusion.28 Basith et al. utilized seven encodings, including DPCP and k-mer, and integrated five machine learning methods, such

as RF, SVM, and XGB, to establish an enhancer prediction model.29 Le et al. employed bidirectional encoder representations from trans-

formers (BERT) in conjunction with a convolutional neural network for enhancer prediction.30 Yang et al. introduced iEnhancer-GAN, a model

that combines word embedding skip-gram to convert words into vectors, utilizing a convolutional neural network architecture for recognition

tasks.31 Alakusx developed an encoding method for feature learning based on sequence frequency, utilizing three DNA encoding schemes:

EIIP, integer, and atomic number.32 Additionally, there are efforts to optimize machine learningmodels to enhance recognition accuracy. For

example, Huang et al. employed a simple encoding of sequences, utilizing bidirectional long short-term memory and attention block-based

deep learning methods to develop the Enhancer-LSTMAtt predictor.33 Kuar et al. leveraged DNA structural features, combining natural lan-

guage processing, convolutional neural networks, and long short-term memory to accurately predict enhancers in genomic data, a model

referred to as PEDH.34 Furthermore, enhancer recognition methods, such as iEnhancer-ELM based on a BERT-like enhancer languagemodel

(DNABERT),35 and iEnhancer-BERT,36 a transfer learning approach based on pre-trained DNA language models, have also been introduced.

In summary, there is a growing body of research exploring the application of machine learningmethods in DNA enhancer prediction, demon-

strating promising performance and significant progress.37–42 However, existingmethods have limitations in terms of prediction effectiveness

and generalizability. This is primarily due to the use of simple numerical sequence encodingmethods that fail to capture the position-specific

distributional information of nucleotides. Effectively characterizing constant and discriminative regions of nucleotides in DNA sequences is

crucial for accurately predicting DNA enhancer categories.

To comprehensively exploit the features within DNA gene sequences and uncover hidden information in nucleotides for accurate predic-

tion of the crucial impact of DNA enhancers, the choice of a feature encodingmethodwith robust representation capabilities is paramount. In

this context, the primary contribution of this research lies in the application of a DNA sequence encoding method known as the Position-

Specific Nucleotide Density-based generalized encoding (POCD-ND). Compared to traditional numerical representations and other com-

mon encodingmethods, the POCD-ND encoder focuses on capturing the distribution information of nucleotides at different positions within

DNA sequences, introducing elements aware of position. This enables the proposed model to more accurately characterize the conserved

and discriminative regions of nucleotides within DNA sequences, thus exhibiting superior performance in predicting DNA enhancers. This

unique encodingmethod not only successfully tackles the complexity of the original sequences but more importantly, provides an innovative

approach for the application of deep learning models, laying the groundwork for subsequent research. To maximize the utilization of the

distinctive features of the POCD-ND encoder and lay a foundation for the application of subsequent deep learning models, a Convolutional

Neural Networkmodel based on this encoding (PDCNN)was introduced(detailed in Figure 2). Unlike conventional DNA sequence processing

methods, the PDCNNmodel efficiently captures the distribution patterns of nucleotide groups at different positions within the convolutional

layers, allowing themodel to sensitively capture key featureswithinDNAenhancer sequences. This integrated architecture endows ourmodel

with a unique advantage in DNAenhancer prediction tasks. To establish amore generalizablemodel, we autonomously constructed a dataset

for training the PDCNNmodel and experimentally determined the optimal sequence length for the training dataset. To validate the model’s

effectiveness, the trained PDCNN model was compared with several commonly used encoding methods and classical machine learning

models. By fine-tuning the hyperparameters of the PDCNNmodel, the parameter combination yielding the optimal predictive performance

was selected for training. Utilizing gradient descent algorithms, we iteratively optimized the cross-entropy loss function to better achieve

Figure 1. The structural characterization and function of enhancers
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identification and classification of DNAenhancer tasks. These series of innovative steps not only theoretically strengthen our proposedmodel

but also significantly improve performance in experimental results, bringing new insights and practicality to the field of deep learning-based

DNA enhancer prediction.

RESULTS AND DISCUSSION

Effect of different sequence lengths and k-mers on model performance

Due to the variable sequence lengths of the downloaded human and mouse DNA enhancer data from the VISTA Enhancer Browser, and an

approximate 1:1 ratio betweenpositive and negative samples of enhancers, as shown in Table S1. The humangene sequences range from amin-

imum lengthof 453bp toamaximumof11052bp,with similar patternsobserved in themousedata. Todetermine theoptimal sequence length for

the model’s prediction of DNA enhancers, the sequences from the original dataset were divided into six lengths: 50bp, 100bp, 150bp, 200bp,

250bp, and 300bp, ensuring equal sequence lengths for the data. At the same time, we chose to adjust the ratio of positive to negative samples

to approximately 1:3. From the partitioned positive samples, a random selection of one-third of the negative samples was taken as experimental

data, aiming to reflect the actual distribution in the biological andmedical fields. In various biological andmedical applications, positive samples

are relatively scarce compared to an abundanceof negative samples, resulting in a noticeable imbalance in their distribution. This imbalancemir-

rors common scenarios inbiological experiments andpractical applications. Therefore, our purpose in adjusting the sample ratio is tomore accu-

rately simulate the data distribution in the real world. After partitioning the dataset into different lengths, the corresponding increase in data vol-

ume enhances the dataset’s capacity to train themodel, consequently improving the model’s performance. Table 1 provides information on the

divided data.

The choice of k-mer size directly impacts the feature representation of DNA enhancer sequences and consequently influences the model’s

prediction performance through the generation of distinct POCD-ND scorematrices. 1-mer and 2-mer features exhibit higher frequencies in se-

quences, with approximately the same frequency across different categories, classifying themas frequent features. However, their distributions in

sequences significantly differ. On the other hand, 3-mer, 4-mer, and 5-mer features vary considerably with increasing k and are less frequent. This

experiment aims to analyze whether different k-mers yield better features for the model. Models were constructed based on data with varying

sequence lengths, and different k-mers were combined separately. To ensure models with strong generalization ability, hyperparameters

Figure 2. Workflow of model PDCNN to predict DNA enhancers

(A) Data Construction.

(B) Feature Extraction.

(C) Convolutional neural Network.

(D) Performance evaluation.
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were optimized, and models were cross-validated using 10-fold cross-validation. The evaluation results of the trained models are illustrated in

Figure 3.

For the human dataset, in Figure 3A, it is noticeable that the SN values for the 6 sequence lengths and the 1-mer combination are generally

low. Only at a sequence length of 250bp does it surpass 80%. However, in Figure 3B, the SP values are notably low. This indicates that for the

1-mer, the model performs well in identifying DNA enhancers at a sequence length of 250bp but struggles to correctly identify non-enhancer

data, leading to an overall inadequate recognition performance. From the evaluation of themodel’s ACC values in Figure 3G, it is evident that

the ACC values for 1-mer are lower than for other k-mers. This suggests that the POCD-ND score matrix generated by 1-mer fails to distinctly

represent the features of both enhancers and non-enhancers, thereby resulting in the model’s unsatisfactory ability to predict enhancers. SN

values represent the model’s ability to recognize positives, while SP values represent the model’s ability to recognize negatives. Among the

values depicted in the figure, 3-mer, 4-mer, and 5-mer all exhibit SN and SP values exceeding 80%. Among these k-mers, as observed in Fig-

ure 3G, themodel achieves the highest ACC values at a sequence length of 200bp, reaching 94.4%, 93.7%, and 92.4%, respectively, surpassing

ACC values for other sequence lengths. This suggests that the optimal sequence length for predictingDNAenhancers by themodel is 200bp,

consistent with the sequence length of theDNAenhancer data usedby Liu et al. Figures 3C and 3F illustrate the evaluation results ofMCCand

AUC values for different k-mers of gene sequences with a length of 200bp. Notably, the MCC and AUC values for 3-mer are higher than for

other k-mers, indicating that the POCD-ND score matrix generated by 3-mer provides a superior feature representation, thus enhancing the

predictive performance of the model. The experimental results for the mouse dataset exhibit similar trends. In Figure 3H, when the gene

sequence length is 200bp, the ACC value for 3-mer is the highest, reaching 93.7%. Furthermore, in Figure 3F, the MCC and AUC values

for 3-mer are also higher than for other k-mers. Consequently, based on the aforementioned results, the optimal performance for predicting

DNA enhancers is achieved through the feature representation generated by 3-mer at a gene sequence length of 200bp. This also indicates

the potential to optimize the model’s ability in identifying enhancers by adjusting its learning of k-mer features, catering to diverse applica-

tions across different scenarios.

Impact of different feature encoding methods on model performance

In recent years, advanced DNA sequence feature encodings such as One-hot encoding, Nucleotide Chemical Property (NCP)-based encod-

ing, and Dinucleotide Physicochemical Property (DPCP)-based encoding have become common in aiding machine learning models to pro-

cess DNA sequences. These feature codes have found applications in bioinformatics research, including enhancer prediction. In this study, we

generated these features and compared them with the 3-mer POCD-ND codes to identify the optimal sequence coding method for model

performance. To ensure accurate results, each set of models was trained ten times using both human and mouse datasets with sequence

lengths of 200 bp, and the experimental results are presented in Figure 4.

From Figures 4A and 4E, it can be observed that the average SN values for the One-hot, NCP, and DPCP feature encodings in both the

human and mouse datasets all exceed 85%. However, their SP values are relatively low, and the average values from ten training exper-

iments are inferior to those of the POCD-ND encoding. The ACC values of the POCD-ND encoding are generally distributed around 93%,

consistently exceeding 90% overall. This indicates that the POCD-ND encoding can extract more distinctive features of DNA enhancers,

effectively aiding the model in enhancer prediction. Comparing MCC and AUC values, POCD-ND encoding consistently outperforms other

feature encodings in recognizing enhancers for both human and mouse datasets. POCD-ND feature encoding captures the distribution of

nucleotides with different k-mers at specific positions in the sequence, and PSTNPss assigns appropriate scores to different levels of

k-mers, making them more discriminative. In contrast, sequence encoders based on physicochemical properties often overlook the

Table 1. Detail information of the different sequence lengths in the datasets

Dataset Sequence length

Training dataset Testing dataset

Positive Negative Positive Negative

Human 50bp 9370 28112 1017 3061

100bp 4745 14236 534 1603

150bp 3142 9426 332 998

200bp 2318 6954 255 767

250bp 1804 5413 202 608

300bp 1508 4526 167 501

Mouse 50bp 12685 38056 1405 4217

100bp 6241 18724 669 2009

150bp 4079 12239 452 1356

200bp 3063 9189 340 1021

250bp 2395 7186 264 793

300bp 1994 5982 219 657
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positional information of k-mers, and One-hot encoding focuses solely on the distributional information of 1-mer. These results suggest

that existing encoders struggle to effectively capture the position-aware discriminative distribution of k-mers, while the POCD-ND encoder

excels at capturing the nucleotide synthesis discriminative pattern of DNA enhancer sequences, significantly aiding in modeling the pre-

diction of DNA enhancer tasks.

Comparison with classical machine learning methods

Given the extensive application of machine learning methods in predicting DNA sequence elements, we are comparing the convolutional

neural network (CNN) model with five classical machine learning methods: random forest (RF), logistic regression (LF), k-Nearest Neighbors

(KNN), support vector machine (SVM), and extreme gradient boosting (XGBoost). We flatten the 1 3 197-dimensional feature matrix en-

coded with 3-mer POCD-ND into vector form, serving as input for RF, LF, KNN, SVM, and XGBoost. Similarly, we repetitively train each set

of models ten times using human and mouse datasets with a sequence length of 200 bp. The resulting evaluation outcomes are illustrated

in Figure 5.

We calculated the averages of the evaluation results obtained after training all models ten times and summarized them in Table 2.

Figure 5A displays the distribution of SN values for the test human dataset. It can be observed that LR and KNN show relatively scattered

distributions, while SVM and XGBoost present more concentrated distributions. Particularly, XGBoost exhibits significantly higher SN values

than the CNNmodel. However, as indicated in Figure 5B, the situation regarding SP values is less favorable. This suggests that for imbalanced

datasets with unequal proportions of positive and negative samples, machine learning linear models struggle to effectively learn the

Figure 3. Experimental results on model performance with varied sequence lengths and k-mers

(A), (B), and (G): Evaluation results of SN, SP, and ACC values for experiments on the human dataset, respectively.(D), (E), and (H): Evaluation results of SN, SP, and

ACC values for experiments on the mouse dataset, respectively.(C) and (F): Results of MCC value and AUC value assessment for different k-mer experiments at a

200 bp sequence length for human and mouse datasets, respectively.
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distinguishing features within them. The CNNmodels for testing both the human and mouse datasets have higher ACC values compared to

ML models, averaging 93.8% and 92.5%, respectively. Employing the POCD-ND feature encoding for feature extraction, the relative advan-

tage of the CNN model becomes more pronounced in scenarios of sparse positive data in actual datasets. Its capability in predicting DNA

enhancers surpasses that of other machine learning models. When comparing MCC values and AUC values, it is observed that LR, RF, and

SVM achieved similar performance on the mouse dataset, while the XGBoost model outperformed the other four ML models. In summary,

these results suggest that the CNN model demonstrates better performance and is more effective in learning features extracted by the

POCD-ND encoder, leading to more accurate predictions of DNA enhancers.

Comparison with existing DNA enhancer predictors

To demonstrate the generalizability and effectiveness of the proposedmethod in recognizingDNAenhancers, we are comparing the PDCNN

model with established state-of-the-art DNA enhancer predictors. The encoder of the PDCNNmodel selects 3-mers for encoding. It is com-

mon for various models, when trained or tested on different datasets, to produce diverse recognition outcomes. To impartially evaluate pre-

diction performance, we conducted a comparative analysis using the dataset created by Liu et al.21 This experiment comprises two phases, as

outlined in Figure 6.

In the first layer, the model determines whether the DNA gene sequence is an enhancer or non-enhancer. If it is recognized as the former,

the model then proceeds to the second layer to evaluate the strength of the enhancer. The details of these comparative models are outlined

in Table 3. It’s important to highlight that the iEnhancer-ELMmodel is exclusively developed for the recognition of DNA enhancers, excluding

an evaluation of their strength. Consequently, during the comparison, the second layer involving iEnhancer-ELM is disregarded.

The abovemethods all used Liu’s dataset to construct the model, trained these methods along with PDCNN, and then evaluated them on

an independent test dataset, with the results shown in Figure 7.

Despite a reduction in the models’ classification effects in the second layer compared to the first layer, the superior performance

of PDCNN over existing methods remains evident. Figure 7 illustrates that the SN and SP values of each model in the first layer are

similar, indicating their effective differentiation between enhancers and non-enhancers. However, in the intensity analysis, iEnhancer-

2L’s SN value is only 40% or more, indicating poor performance in identifying strong enhancers. In contrast, PDCNN demonstrates

superior performance in both identifying enhancers and determining their strengths, with ACC values of 96.3% and 94.2% in both stages.

Figure 4. Experimental results on the impact of various sequence feature encodings on model performance over ten training sessions

(A), (B), (C), (D), and (I): Evaluation results of SN, SP, ACC, MCC, and AUC values for the human dataset.(E), (F), (G), (H), and (J): Evaluation results of SN, SP, ACC,

MCC, and AUC values for the mouse dataset.
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MCC values, reflecting the classification performance, reached 92.6% and 88.5% for PDCNN, achieving the highest accuracy and MCC

values. This suggests that the PDCNN model exhibits stable and effective performance in the task of recognizing and classifying DNA

enhancers.

Model interpretation and visualization

To validate the model’s generalization ability, we downloaded enhancer sequences for the species Drosophila melanogaster from

EnhancerAtlas 2.0, including gene sequences from various cell types such as Kc167, BG3, and OSC. Sequences were partitioned into

Figure 5. Experimental results from ten training sessions comparing ML and DL models

(A), (B), (C), (D), and (I): Evaluation results of SN, SP, ACC, MCC, and AUC values for the human dataset. (E), (F), (G), (H), and (J): Evaluation results of SN, SP, ACC,

MCC, and AUC values for the mouse dataset.

Table 2. Average of the results of the assessment of each model

Dataset Model SN SP ACC MCC AUC

Human CNN 0.92 0.959 0.938 0.877 0.94

RF 0.89 0.761 0.834 0.665 0.822

LR 0.819 0.747 0.789 0.58 0.78

KNN 0.778 0.697 0.742 0.48 0.741

SVM 0.877 0.845 0.863 0.723 0.861

XGBoost 0.924 0.861 0.896 0.789 0.892

Mouse CNN 0.949 0.895 0.925 0.849 0.921

RF 0.855 0.783 0.827 0.655 0.818

LR 0.817 0.798 0.812 0.624 0.811

KNN 0.808 0.584 0.71 0.415 0.685

SVM 0.862 0.811 0.841 0.68 0.833

XGBoost 0.91 0.852 0.884 0.765 0.88
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200bp lengths based on the conclusions drawn from the above experiments. In the training dataset, the ratio of positive to negative samples

for enhancers was 2865:9536, while in the testing dataset, the ratio was 478:1303. We compared and evaluated the performance using the

PDCNN model against several enhancer recognition models, namely Sbper,19 Biren,20 PEDH34 and iEnhancer-BERT36 (model details can

be found in the introduction section). The encoder for the PDCNNmodel employed a 3-mer encoding. To better interpret the performance

of the PDCNNmodel, we extracted and visualized the input and output of all network layers, including the original input, the output of the first

convolutional layer, the output of the second convolutional layer, and the output of the fully connected layer. To facilitate understanding these

features, UMAP was used to visualize the distribution of positive and negative samples. The results and visualizations are presented in

Figure 8.

As shown in Figure 8A, PDCNN demonstrates excellent performance in recognizing D. melanogaster, achieving an ACC value of 91.2%,

the highest recognition accuracy among the various models. The AUC value is only slightly lower than that of PEDH, indicating the model’s

strong generalization ability in recognizing newdatasets. In terms ofmodel interpretation, the features of negative and positive samples in the

raw input are indistinguishable in Figure 8B. However, as PDCNN learns layer by layer, based on the output features of the first and second

convolutional layers, a progressively clear separation of positive and negative sample boundaries can be observed in the feature space. The

output of the fully connected layer ultimately distinctly separates each sample. These results demonstrate PDCNN’s ability to learn from the

POCD-ND encoder and extract latent features, enabling more decisive recognition of DNA enhancers.

Conclusions

To enhance the efficiency and accuracy of DNA enhancer identification, we introduce a deep learning-based prediction model called

PDCNN. Comparative experiments reveal that PDCNN surpasses state-of-the-art machine learning methods and existing models in the

identification of DNA enhancers. The model’s superior performance is attributed to the encoder, which provides more discriminative fea-

tures, allowing the deep learning model to leverage its powerful learning capabilities effectively. The POCD-ND encoder captures the class

density difference of k-mer incidence at specific locations, statistically regularizing it by its minimum value and assigning effective scores to

k-mers. This approach better expresses informative features of DNA enhancer sequences, feeding them into the convolutional neural

network for learning. However, in the human genome, enhancer sequences are comparatively rare and exhibit substantial positional

Figure 6. Comparison of experimental model workflow

Table 3. Existing advanced DNA enhancer predictors

Model Description Source

iEnhancer-2L Sequences are feature encoded using the PseKNC method and fed into

a support vector machine SVM for recognition

Liu et al.21

iEnhancer-ECNN Sequences are processed using One-hot coding and k-mers, and integrated

models are constructed using CNNs

Nguyen et al.24

iEnhancer-XG Combining the five coding features of the sequence and using XGBoost as the base classifier Cai et al.25

iEnhancer-EBLSTM Input DNA sequences were encoded using 3-mer and then enhancers were

predicted by bidirectional LSTM

Niu et al.26

iEnhancer-DCSV Combining One-hot coding and NCP coding for prediction using improved

DenseNet and improved CBAM attention module

Jia et al.27

iEnhancer-DCSA Combining n-gram segmentation with skip-gram segmentation, employing a

dual-scale fusion convolutional neural network.

Wang et al.28

iEnhancer-GAN Building a CNN architecture by combining word embedding skip-gram and

sequence generation adversarial networks

Bao et al.31

Enhancer-LSTMAtt After simple encoding of sequences, using Bi-LSTM and attention-based deep learning methods Huang et al.33

iEnhancer-ELM A enhancer recognition method based on a BERT-like enhancer language model, DNABERT. Li et al.35
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variability. Future research should address these challenges more effectively and propose corresponding enhancements to improve the

model’s accuracy and applicability. Furthermore, it has been shown that highly methylated DNA regions affect the regulation of genes

by nearby enhancers.43 Therefore future research may take DNA enhancer recognition in combination with epigenetic modification of

methylation as an important direction.

Limitations of the study

While the PDCNN model exhibits strengths, there are still certain limitations. While the PDCNN model exhibits strengths, there are still

certain limitations. The optimal k-mer length for the model’s encoder is determined through experiments on specific datasets. Although it

performs well on other datasets, the reliance on manually defined rules introduces uncertainty. An avenue for future improvement involves

enabling themodel to autonomously learn the optimal k-mer length during the recognition process, thereby enhancing result accuracy. Addi-

tionally, it is worth noting that the dataset utilized in this study is balanced across classes.
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Figure 7. Experimental results for each comparison model

(A) SN and SP values of the model for identifying enhancers at the first layer.

(B) SN and SP values of the model at the second layer of intensity analysis.

(C) Results of the model’s ACC and MCC evaluations at the first layer.

(D) Results of the model’s ACC and MCC evaluations at the second layer.
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Figure 8. The visualization results of the model recognizing the D. melanogaster dataset

(A) Comparative results of the model recognizing the D. melanogaster dataset.

(B) Distribution of positive and negative samples in the 2D feature space.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact – Li Mengshan, msli@gnnu.

edu.cn.

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data: All the enhancer data used in this study are available free of charge at GitHub. (https://github.com/xing1999/PDCNN).
� Code: Our code is publicly accessible at https://github.com/xing1999/PDCNN.

� Other: Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Datasets

We obtained the latest positive and negative sequence data of DNA enhancers for both human (hg19/GRCh37) and mouse (mm9/NCBIM37)

from the VISTA Enhancer Browser,44 an online tool designed to assist researchers in exploring and analyzing enhancer elements in vertebrate

genomes. This platform provides a database of enhancer recognition candidate sequences. To avoid redundancy and reduce homology bias

while better preserving the original distribution, we employed the CD-HIT program45 to eliminate sequences with over 30% sequence sim-

ilarity. For experimental purposes, we categorized the dataset into two classes, human (hg19) and mouse (mm9), further dividing it into

training, validation, and test sets in an 8:1:1 ratio. Throughout the training process, the validation set, derived from the training set, was em-

ployed to fine-tune the model’s hyperparameters and detect overfitting. The test set was reserved for the final evaluation of the model’s per-

formance post-training.The breakdown of the benchmark dataset is as follows:

S = S+WS� (Equation 1)

where S represents the complete dataset of a species, S+ signifies the positive data subset containing enhancers, and S� represents the

negative data subset. The union of these two subsets is denoted as W.

To ensure a fair comparison with prior studies, we incorporated the dataset established by Liu et al.,21 a widely utilized resource in

enhancer prediction research. Liu et al. compiled enhancer sequences from nine distinct cell lines, extracting equal-length 200 bp fragments.

They applied the CD-HIT software45 to eliminate sequences with a similarity exceeding 80%. The dataset was subsequently divided into two

segments: the training dataset for model training and the independent test dataset for model testing.The training dataset comprises 1484

samples, consisting of 742 strong enhancers, 742 weak enhancers, and 1484 non-enhancer samples. The test dataset includes 200 samples,

featuring 100 strong enhancers, 100 weak enhancers, and 200 non-enhancer samples. Specific information about the utilized dataset is

detailed in Table S1.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Human and Mouse Dataset VISTA Enhancer Browser https://enhancer.lbl.gov/

D.melanogaster Dataset EnhancerAtlas 2.0 http://www.enhanceratlas.org/

Software and algorithms

PDCNN This paper https://github.com/xing1999/PDCNN

Python v3.8 Python https://www.python.org/

NumPy v1.17.0 NumPy https://numpy.org/

PyTorch v1.2.0 PyTorch https://pytorch.org/

scikit-learn v0.0 scikit-learn https://scikit-learn.org/stable/
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The position-aware encoding of positive and negative modification classes of nucleotides

Deep learning models typically cannot process raw DNA sequences directly due to their reliance on numerical inputs. DNA sequences,

composed of four basic nucleotides, need to be transformed into numerical values for use in models. Various encoding methods have

been proposed for this purpose, with common ones includingOne-hot encoding,27,46 NCP encoding,27,46 andDPCP encoding.29,46 However,

these encoders still fall short in fully capturing the positional feature information of nucleotides in DNA sequences.To generate a more

comprehensive numerical representation of DNA sequences and capture the distribution patterns of nucleotides at different positions, we

have adopted a position-aware K-mer coding method based on the normalized difference of positive and negative modification class den-

sities (POCD-ND).47

To convert a DNA sequence into a numerical representation, k-mers are generated by sliding a window of a fixed size k with a specific step

size. In this process, the DNA sequence is divided into sub-sequences, each referred to as a k-mer, representing a set of nucleotides. The size

of the k-mer, or sub-sequence, depends on the size of thewindow inwhich theywere generated. All independent k-mers in a subsequence are

collected to form a vocabulary. The size of the lexicon depends on the size of \(k\), assuming there are enough samples of sequences.For

example, when k = 1, the size of the vocabulary base is 41 = 4, corresponding to A, C, G and T. When k = 2, the size of the vocabulary

base is 42 = 16, containing 16 types of k-mers such as AA, AC, AG, and AT, etc. In each sequence, the position of generating k-mers can

be denoted by Pi = P1;P2/. As the size of the k-mers increases, the size of the lexicon increases, and as the length of the sequence increases,

the number of positions increases accordingly.

After splitting the sequences into k-mers, the frequencies of the lexicon at different positions in each sequence were counted separately

for the positive and negative sequences. These counts were then organized into two matrices, Apos and Aneg, where the dimensions of the

matrices are z positions and n words, as shown in Equation 2.

Apos =

24 f1;1 f1;2 / f1;n
« « 1 «
fz;1 fz;2 / fz;n

35;Aneg =

24 f1;1 f1;2 / f1;n
« « 1 «
fz;1 fz;2 / fz;n

35 (Equation 2)

where each item f_(i,j) of the matrix is represented as the frequency of the jth word at the ith position of the sequence.

After obtaining the frequency distributionmatrices for the positive and negative class sequences, the total number of k-mers in the positive

and negative sequences, denoted as NS, is further counted. The frequency distribution matrices are then normalized to obtain their density

distribution matrices, Aposden and Anegden, as shown in Equation 3.8>><>>:
Aposden =

Apos

NSpos
; 0%Aposden % 1

Anegden =
Aneg

NSneg
; 0%Aposneg % 1

(Equation 3)

To achieve a more comprehensive statistical representation of the DNA sequence, we proceeded to calculate the PSTNPss score for the

jth lexical k-mer at the ith position in the gene sequence using the density distributionmatrices of the positive and negative classes. Equation 4

provides a generalized mathematical expression to compute the PSTNPss score.

PSTNPss = Aposden � Anegden (Equation 4)

The k-mer density distributions of positive and negative category sequences at the same position often differ, and may even be extremely

different. In order to enhance the discriminative nature of the PSTNPss scores, category tradeoff values are introduced, resulting in the POCD-

ND score matrix, as shown in Equation 5.

POCD � ND =
PSTNPss

min
�
Aposden;Anegden

�;min
�
Aposden;Anegden

�
> 0 (Equation 5)

Significantly, when calculating POCD-ND fractions, the denominator becomes zero if one of the positive and negative class densities of a

particular k-mer is zero, leading to the fraction becoming unsigned infinity. This situation rarely occurs,but to handle it effectively, a small

nonzero value is introduced for division. In our experiments, this nonzero value was analyzed for performance with a step size of 0.1, ranging

from 0.1 to 0.9. The experimental results revealed optimal performance when the minimum value was set to 0.1. Therefore, when the denom-

inator is zero, the calculation is performed using 0.1.

A gene sequence of length L is divided into L � k + 1 k-mers. Subsequently, these k-mers are encoded into a 13ðL � k + 1Þmatrix cor-

responding to the POCD-ND score matrix in the order of their positions in the sequence. This encoded matrix is then fed into the model for

learning. The gene sequence encoding process is illustrated in Figure S1.
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A model of convolutional neural network based on position awareness of positively and negatively modified nucleotide

classes

In contemporary times, most DNA gene sequence data are processed using recurrent neural network architectures such as LSTM, GRU,

etc.26,33,48 However, the output of the POCD-ND encoder is a feature matrix containing information about the distribution of nucleotides

at specific positions. In reality, DNA enhancer sequences are only related to the information within their neighboring windows. Tomore effec-

tively extract the hidden information in the feature matrix, this paper employs a convolutional neural network to process the encoded input

feature matrix for the task of predicting DNA enhancers. A convolutional neural network model based on the POCD-ND encoder, referred to

as PDCNN, is constructed using the PyTorch framework in the Python package. The specific network architecture is illustrated in Figure 2,

incorporating a series of convolutional layers, amaximal pooling layer for extracting position-aware features independent of encoding spatial

transformations, and a fully-connected layer for nonlinearly processing the extracted information from the upstream convolutional layers.

The PDCNN distinguishes itself from previous CNNs by having an input that includes location-specific distribution-aware information of

k-mers in enhancer and non-enhancer sequences. The convolution operation in PDCNN is akin to extractingmotifs from sequences with high

activation feature information using a slidingwindow. Therefore, the PDCNN incorporates two 1D convolutional layers. The first convolutional

layer is responsible for detecting motifs in the DNA enhancer sequences, while the second layer describes the associations between the mo-

tifs extracted on a larger scale. Following these convolutional layers, the model includes a fully connected layer, which integrates information

from the entire sequence. Finally, the probabilities obtained using Sigmoid-type functions are utilized for prediction. The mathematical rep-

resentation of the first convolutional layer is provided in Equation 6.

ConvðZÞi;j = ReLU

 XS� 1

s = 0

XN� 1

n = 0
Wj

s;nZi + s;n

!
(Equation 6)

where Z represents the encoded feature matrix of the gene sequence, i is the index of the output position, and j is the index of the filter. Each

convolutional filter Wj is an S3N matrix, where S is the filter size determined by hyperparameter optimization and N is the number of input

channels. In the case of the first convolutional layer, N is the input dimension of the feature matrix after encoding the augmented subse-

quence. The ReLU function is expressed as:

ReLU =

�
x; if xR 0
0; if x <0

(Equation 7)

The objective of the position-aware k-mer feature coding fusion convolutional neural network is to establish a mapping relation:

bY = arg max f ð POCD � NDnðiÞ;WÞ (Equation 8)

where bY represents the predicted result by the convolutional neural network for DNA enhancers; POCD � NDn denotes the featurematrix of

DNA gene sequences encoded by POCD-ND; W is the parameter of the convolutional neural network, and f is the mapping function

searched by the neural network.

To establish this mapping relationship, it is necessary to define a loss function that measures the difference between the predicted labels

and the true labels. This loss function is then iteratively updated using gradient descent to minimize the overall loss. In this paper, a common

cross-entropy loss function is employed,49 formulated as follows:

L = � 1

N

XN
n = 1

�
yðnÞ log pðnÞ +

�
1 � yðnÞ� log�1 � pðnÞ�� (Equation 9)

whereN represents the sample capacity, yðnÞ is a binary variable, and pðnÞ is the prediction probability of the neural network for the n-th DNA-

enhanced subsample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model performance evaluation metrics

To assess the classification performance of the model, commonly used metrics for classification performance are employed, consistent with

previous evaluations. These metrics encompass sensitivity (SN), specificity (SP), accuracy (ACC), and Mathew’s correlation coefficient (MCC).

Additionally, the area under the working characteristic curve (AUC)50 is utilized for evaluation. The specific calculation process for these eval-

uation metrics is outlined below.
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8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

SN =
TP

TP + FN

SP =
TN

TN+ FP

ACC =
TP +TN

TP + FN+TN+ FP

MCC =
TP3TN � FP3 FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞ3 ðTP + FNÞ3 ðTN+ FPÞ3 ðTN+ FNÞp

AUC =

P
i˛pos

ranki �
numpos

�
numpos + 1

�
2

numposnumneg

(Equation 10)

Where TP, TN, FP, and FN represent the number of samples with true positive, true negative, false positive, and false negative predictions,

respectively. AUC (Area Under Curve) is defined as the area under the ROC curve enclosed by the axis. A value closer to 1.0 for AUC indicates

better performance of the model.
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