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Role of the Outer Inflammatory Protein
A/Cystine-Glutamate Transporter Pathway in Gastric
Mucosal Injury Induced by Helicobacter pylori

Jie Du, PhD¥?3, Xiao-Hui Li, PhD!, Fen Liu, PhD* Wen-Qun Li, PhD!, Zhi-Cheng Gong, PhD?2 and Yuan-Jian Li, PhD!

INTRODUCTION: Helicobacter pyloriinfection is a major cause of gastrointestinal diseases. However, the pathogenesis of
gastric mucosal injury by H. pylori remains unclear. Exogenous glutamate supplementation protects
against gastric mucosal injury caused by H. pylori. Previously, we showed that aspirin-induced gastric
injury is associated with reduction in glutamate release by inhibition of cystine-glutamate transporter
(xCT) activity. We hypothesized that the xCT pathway is involved in H. pylori-induced gastric mucosal
injury. In this study, we tested the activity of xCT and evaluated the regulatory effect of outer inflammatory
protein (Oip) A on xCT in H. pylori-induced gastric mucosal injury.

METHODS: In the H. pylori-infected mice and cell lines, the activity of xCT and the regulatory effect of microRNA on

xCT were tested, and the effect of OipA from H. pylori on xCT activity was observed.

RESULTS: The results of in vivo and in vitro experiments showed that H. pylori infection induced gastric mucosal
injury. This was accompanied by a reduction in xCT activity, which was attenuated by exogenous
glutamate treatment. Furthermore, the expression of miR-30b was upregulated, and miR-30b
inhibitors significantly restored xCT activity and gastric mucosal injury caused by H. pylori infection.

The OipA, avirulence protein from H. pylori, significantly upregulated the expression levels of miR-30b

and inhibited xCT activity.

DISCUSSION:
micro30b/xCT pathway.

OipA plays a significant role in H. pylori-induced gastric mucosal injury, and the effects are mediated by

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A283
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INTRODUCTION

The development of peptic ulcers involves a variety of factors,
such as dietary, chemical (smoking, alcohol, and drugs), bi-
ological (Helicobacter pylori), mental, and environmental factors
(1,2). H. pylori are considered as one of the most common
pathogens causing chronic gastritis and gastric cancer (3,4).
However, the mechanism of H. pylori-induced gastric mucosal
injury has not yet been full elucidated.

H. pylori-induced gastric mucosal injury is related to changes
in prostaglandins (5,6) and nitric oxide (7,8). Glutamate, as an
extracellular signal mediator in peripheral tissues by autocrine
and/or paracrine (9,10), might play a protective role in gastric
mucosal injury from acute aspirin irritation and cold irritation
(11,12). Exogenous glutamate supplementation might have
beneficial effects on gastric function. For example, dietary

glutamate supplementation improves gastric **C incorporation
rates and nutrition management in postweaning pigs (13). Sup-
plementing partial enteral nutrition with monosodium glutamate
slows gastric emptying in preterm pigs (14). Moreover, an oral
glutamate precursor (glutathione) and a glutamate supplemen-
tation drastically reduce Helicobacter-induced gastric pathologies
(15,16). It is likely that alteration in endogenous glutamate
transportation is also involved in gastric mucosal injury induced
by multiple factors, such as aspirin irritation and cold stress.
Therefore, we explored endogenous glutamate transportation
in Helicobacter-induced gastric pathologies. Extracellular levels
of glutamate are regulated by the cystine-glutamate transporter
(xCT), and its activity is affected by some inflammatory factors
(17). Recently, we reported that aspirin-induced acute gastric
mucosa is associated with a reduction in xCT activity (11). Thus,
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we hypothesized that the xCT/glutamate pathway is also involved
in H. pylori-induced gastric mucosal injury.

MicroRNAs (miRNAs) are the regulators and biomarkers for
human diseases on multiple levels (systemic, tissue, and cellular)
(18-20). Some inflammatory factors affect miRNA profiles in
stomach (21-25). Furthermore, differential expression of miRNA
has been observed in H. pylori-induced gastritis in vivo, in vitro, and
in clinical patients (20,26,27). Therefore, we speculated that H.
pylori infection induces upregulation of certain miRNAs, which
inhibits their target gene xCT, thereby reducing the glutamate
transport activity. Three databases (TargetScan, Starbase, and mi-
Randa) were used to predict the putative miRNAs targeting xCT.
We screened for the expression of 4 gastro-enriched miRNAs in H.
pylori-infected mouse models and cells, which showed upregulated
miR-30b as a candidate miRNA marker. Therefore, the regulatory
role of miR-30b on xCT was tested in a H. pylori-infected model.

H. pylori-induced gastric mucosal injury is associated with the
secretion of multiple virulence proteins from H. pylori, such as,
CagA oncoprotein, vacuolating cytotoxin A, and outer in-
flammatory protein (Oip) A (28,29). The H. pylori OipA (OipA,
HopH, or OMP; 13-34 kDa), one of the most important virulence
factors of H. pylori, was initially identified as a surface protein that
promotes inflammatory cytokine secretion and heightens gastric
inflammation in vivo (30-33). More recently, OipA is believed to
affect intracellular signaling and modulate host signaling path-
ways (34,35). To our knowledge, miRNAs regulation by OipA has
not been elucidated to date. Thus, we explored the regulatory
effect of OipA on the miRNA/glutamate pathway in H. pylori-
induced gastric mucosal injury.

METHODS

Animal and cell experiments
H. pylori Sydney strain (SS) 1 was purchased from the American
Type Culture Collection and cultured on agar plates containing
10% sheep blood under microaerophilic conditions at 37°C. We
used a rapid urease test, Gram staining, and polymerase chain
reaction (PCR) amplification of specific urease genes for identifi-
cation of certain virulence markers. Then, the purified bacteria
were used to establish an experimentally infected model. The mice
were perfused with H. pylori for 6 weeks. C57BL/6 male mice (8
weeks old, 19-22 g) were randomly divided into 4 groups (n = 12):
(i) The control group was perfused with phosphate-buffered saline
(PBS) daily. (ii) The H. pylori-infected group was perfused with H.
pylori dissolved in PBS, 2 X 10° colony-forming units/mouse/d for
6 weeks, (iii) The r-glutamate group was perfused with H. pylori
bacteria solution after 30 minutes of lavage with either of 2 different
doses of glutamate (3 mg/kg/d or 6 mg/kg/d) and defined as L-
glutamate (L) group and L-glutamate (H) group. The administra-
tion of L-glutamate began 2 weeks after the start of infection period.
All animals were killed at 6-weeks postinfection. Age-matched
uninfected mice were included as controls in all experiments.
Gastric tissues of all mice were separated by cutting along
greater curvature of the stomach, washed, and photographed. H.
pylori infection was confirmed using Giemsa staining and
a polyclonal rabbit anti-H. pylori antibody. In addition, the ex-
pression of 23S rRNA was detected, which can be used to measure
H. pylori colonization in the stomach. Samples of gastric tissue
proteins were extracted for western blot assays. A portion of
gastric tissue was fixed in 4% paraformaldehyde for morpho-
logical analysis as reported earlier (36).
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Human gastric mucosa epithelial (GES-1) cells were serum
starved before treatment for 24 hours in Dulbecco’s Minimum
Essential Medium containing 1% fetal bovine serum. Cells were
prepared by seeding 2 X 10° cells on plates. We used rapid urease
tests, Gram staining, and PCR amplification of specific urease
genes for identification of certain virulence markers. To cause
infection, bacteria were harvested in PBS (pH 7.4) and added to
the host cells at a multiplicity of infection of 100 (37). The cell
viability assay was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide dye reduction assays and lactate
dehydrogenase assays. To evaluate apoptosis, we used Hoechst
staining and caspase-3 activity.

RNA expression analysis

Total RNA was extracted according to the manufacturer’s
instructions, and 500 ng RNA was reverse transcribed using a re-
verse transcription-PCR kit according to the manufacturer’s pro-
tocol (TaKaRa, Kusatsu, Japan). The expression levels of messenger
RNAs (mRNAs) were measured using an ABI 7300 real-time PCR
system (Applied Biosystems, Foster City, CA) with the SYBR Green
PCR Master Mix (TOYOBO, Osaka, Japan). GAPDH was used as
an internal control in quantitative analysis. The gene expression
levels were normalized to GAPDH. For miRNA detection, in situ
hybridization detection of miRNAs was performed using the
miRCURY LNA miRNA ISH Kit (Qidgen, Germany).

Protein detection

For western blot analysis, primary antibodies against xCT (1:1,000;
Abcam, England), GAPDH (1:2,000, Abcam), and Helicobacter (1:
2,000, Abcam) and a secondary HRP-anti-rabbit (1:5,000; Sangon,
Shang hai) antibody were used. The relative optical density of each
band was analyzed, and the results were expressed in relation to
GAPDH levels. For immunofluorescence detection, cells were washed
with PBS and fixed with paraformaldehyde for 15 minutes at room
temperature (~25°C), before being incubated with 0.25% Triton X-
100 in PBS at room temperature for 20 minutes. The cells were blocked
with 1% bovine serum albumin at 37°C for 1 hour and rinsed 3 times
with PBS before incubation with anti-xCT (1:200) antibody at 4°C
overnight. This was followed by incubation with an anti-rabbit sec-
ondary antibody (1:200, FITC488) for 1 hour before immunofluo-
rescence detection. Nuclei were stained with 4’,6-diamidino-2-
phenylindole 2HCI for 1 minute. Images were acquired using an
immunofluorescence microscope (Olympus, Japan) equipped with
a X20 objective lens and were analyzed and processed with a Nikon
camera with a SPOT image acquisition system. For immunohisto-
chemistry staining, acetate buffer (pH 6.0) was used as the immersion
solution for heat antigen pretreatment step. Rabbit polyclonal anti-
body and the Envision (DAKO, Germany) polymer detection system
were used with diaminobenzidine acting as the chromogen.

Dual luciferase reporter assay

GES-1 cells were transfected in 12-well plates with Renilla
luciferase-based SLC7A11 (xCT) 3"UTR reporter constructs us-
ing Lipofectamine 2000 reagent (Invitrogen, Beijing). After 24
hours, the cells were supertransfected with miRNA mimics at 50
nM final concentration using Lipofectamine 2000. The cells were
harvested 24 hours after reporter transfection and analyzed using
a Dual-Luciferase Reporter Assay System (Promega). Renilla lu-
ciferase signal of each sample was normalized for differences in
transfection efficiency using the activity of the cotransfected pCI-
firefly reporter as control.
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Statistical analysis

TargetScan (http://www.targetscan.org/), Starbase (http://star-
base.sysu.edu.cn/), miRanda (http://www.microrna.org/), and
miRDB (http://www.mirdb.org/) databases were used to predict
the putative miRNAs targeted to xCT (SLC7A11). All data are
expressed as mean * SE. Multiple mean comparisons were per-
formed by ANOVA and Student-Newman-Keuls multiple com-
parison tests. Statistical analysis was performed using SPSS 17.0
software, and P < 0.05 was considered statistically significant.

RESULTS

Decreased xCT activity in gastric tissues of H. pylori-

infected mice

H. pylori infection was confirmed using Giemsa staining and
polyclonal rabbit anti-H. pylori antibody. H. pylori antigen positivity
was intensely observed in the gastric mucosa of the H. pylori-infected
group but was undetected in the control group. Giemsa staining
showed similar results (see Supplementary Figure 1A, 1B, Supple-
mentary Digital Content 1, http://links.Iww.com/CTG/A283). The
relative levels of 23S rRNA were increased up to 10-fold in H. pylori
group (see Supplementary Figure 1C, Supplementary Digital Content
1, http://links.Iww.com/CTG/A283).

After confirming the success of the model, we detected gastric
mucosal injury in mice. Photographs of gastric mucosal lesions showed
sporadic hemorrhagic spots in gastric mucosa. The hematoxylin-eosin
staining showed gastric mucosal damage with dilation and exfoliation
of gastric epithelial cells and disruption of mucosa in H. pylori-infected
mice (Figure 1a). Meanwhile, the expression of xCT mRNA was
significantly downregulated (Figure 1b), and a similar result was
obtained for protein expression (Figure 1c, d). These results

Inflammatory Protein A/Cystine—Glutamate Transporter

suggest that disturbances of glutamate transporter expression might
be associated with the development of gastric ulcer caused by H. pylori.

Effect of H. pylorion xCT activity in GES-1 cells
In vitro, we conducted experiments on the human gastric epithelial
immortalized cell line (GES-1). When GES-1 cells were cocultured with
bacteria for 24 hours, cavity lesions and prolonged degeneration could
be seen in the cytoplasm of cells, and some cells gradually peeled from
the surface and were suspended in the medium. Reduced cell viability
and increased apoptosis were detected after exposure to H. pylori SS1
(Figure 2a, see Supplementary Figure 2, Supplementary Digital Con-
tent 1, http://links.lww.com/CTG/A283). These experimental results
were consistent with previous results of H. pylori-infected cells (37).
In addition, we found that xCT mRNA levels changed over time
when GES-1 cells were cocultured with H. pylori SS1 (Figure 2b). In
agreement with the results of quantitative polymerase chain reaction,
western blots and cell immunofluorescence results also showed
a significant reduction in xCT protein levels (Figure 2c, d). Xc~
system transports 1 molecule of cystine into the cell and simulta-
neously releases 1 molecule of glutamate from it. To further observe
the activity of xCT, we tested glutamate concentration in the extra-
cellular fluid (Figure 2e). These results suggested that the decreased
release of endogenous glutamate might contribute to GES-1 apo-
ptosis caused by H. pylori infection.

Exogenous glutamate supplement attenuates H. pylori-induced
gastric mucosal injury

To evaluate the effects of L-glutamate on H. pylori-associated
gastric mucosal ulceration, animals were pretreated with glutamate at
doses of 3 mg/kg/d or 6 mg/kg/d. In morphological studies, gastric
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Figure 1. Decreased cystine-glutamate transporter (xCT) activity in gastric ulcer of H. pylori-infected mice. (a) Photographs of gastric mucosal lesions showed
sporadic hemorrhagic spots in gastric mucosa. Hematoxylin-eosin staining showed gastric mucosal damage with dilation and exfoliation of gastric epithelial cellsand
disruption of mucosal in H. pylori-infected mice with an infiltration of inflammatory cells in the mucosa and submucosa. (b) Decreased expression of XCT mRNA in
Hp* group was detected. (c) Immunohistochemical staining for xCT antigen in gastric tissue. (d) Western blot for xCT in gastric tissue. Data are means = SEM, N =
8-12, *P < 0.05vs Hp~, **P < 0.01 vs Hp~. GAPDH, glyceraldehyde phosphate dehydrogenase; Hp, Helicobacter pylori mMRNA, messenger RNA.
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Figure 2. Effect of H. pylorion cystine-glutamate transporter (xCT) activity in GES-1 cells. (a) Cell viability of GES-1 were detected when coculturing with H.
pyloriSS1. (b) Decreased expression of xCT mRNA in H. pylori SS1 group. Western blot (c) and immunofluorescence (d) for xCT were detected in GES-1
cells. (e) The concentration of glutamate in cell culture supernatant of GES-1. Data are means + SEM, N = 3, *P < 0.05vs H. pyloricontrol, **P < 0.01 vs
control. CFU, colony-forming units; DPAI, 4’,6-diamidino-2-phenylindole 2HCI; GES-1, gastric mucosa epithelial; GAPDH, glyceraldehyde phosphate
dehydrogenase; Hp, Helicobacter pylori; mMRNA, messenger RNA; SS1, Sydney strain 1.

mucosal damage with dilation and exfoliation of gastric epithelial cells
and disruption of mucosal layer were observed in the H. pylori group,
whereas mice pretreated with glutamate had a smaller degree of loss
of mucosal architecture and exfoliation than those observed in the H.
pylori group (Figure 3a). In addition, lower caspase-3 activity in
gastric tissues in the glutamate group was observed when compared
with that in the H. pylori group (Figure 3b). Then, we verified these
phenomena in cell-based experiments. We pretreated GES-1 cell line
with L-glutamate. The results of caspase-3 activity and apoptosis
staining suggested that glutamate treatment inhibited the process of
apoptosis induced by H. pylori (Figure 3c, d). These results suggest
that exogenous glutamate might be a potential supplementary ther-
apeutic modality for the treatment of H. pylori-induced gastric ulcers.

Overexpression of the xCT(SLC7A1 1) gene could reduce GES-1
apoptosis induced by H. pylori
After cloning xCT gene templates, PCR product sizes were examined
by running 5 wL products on 3% agarose gel. The targeted band
appeared between 1.5 kb and 2 kb, as expected (1,552 bp). Positive
clones of the competent Escherichia coli transformed by granulosis
virus core vector with xCT gene were confirmed by PCR, and the
sequence alignment showed 100% alignment with the targeted gene.
After plasmid transfection, enhanced green fluorescent protein
(Figure 4a) expression in GES-1 cells was detected. We transfected
GES-1 with the help of a recombinant plasmid and cocultured it with
H. pylori. The results showed that xCT overexpression restored xCT
protein levels (Figure 4b) and increased endogenous glutamate re-
lease to a certain degree (Figure 4c), accompanied by reductions in
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cellular damage (Figure 4d) and apoptosis (Figure 4e). These results
further confirmed that both endogenous and exogenous glutamate
are involved in H. pylori-infected gastric ulcers.

MiRNAs expression were altered in GES-1 and mice in response
to H. pyloriinfection, and the xCT was regulated by miRNA-30b
The above-mentioned results have demonstrated that reduced glu-
tamate was closely associated with downregulation of xCT expression
and abnormal glutamate transport was associated with gastric toxicity
in H. pylori infection. However, it remained unknown how xCT
expression was altered under H. pylori infection conditions. We
screened for the expression of miRNAs enriched in stomach, which
showed upregulation of miR-30b levels in both stomach tissue and cell
line (Figure 5a, b). MiRNA-30b expression has been linked to xCT
using bioinformatics analysis and has been shown to be associated
with H. pylori infection leading to gastritis (38,39).

To corroborate the hypothesis, we examined the expression levels
of miR-30b in H. pylori-infected mice using in situ hybridization and
confirmed that the levels of miR-30b were significantly elevated
(Figure 5¢). To validate xCT as a target of miR-30b, we constructed
aluciferase expression vector containing the 3’-UTR segments of xCT
along with the putative miR-30b binding sites. After cotransfection of
miR-30b mimic and the xCT 3’-UTR expression vector, we found
that the miR-30b mimic resulted in significant suppression of xCT
luciferase activity, whereas mutating the putative miR-30b binding
sites completely eliminated this inhibitory effect (Figure 5d). These
data strongly indicated that upregulated miR-30b was indeed a target
for xCT under H. pylori infection.
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The effect of miRNA-30b loss on cystine/glutamate transporter
(xCT) activity and cell damage

As mentioned earlier, aberrant expression of miR-30b contributes
to gastric ulcer through targeting XCT, so we explored the effect of
miR-30b inhibitors in gastric ulcer. GES-1 was transfected with

miRNA-30b inhibitor or a negative control (U22 inhibitor) and
were exposed to H. pylori for 24 hours. MiRNA-30b inhibitor
upregulated xCT mRNA expression (Figure 6a), which was ac-
companied by recovery of glutamate release (Figure 6b) and de-
creased damage of GES-1 (Figure 6¢, d). These results showed that
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miRNA-30b loss reduced cell damage and apoptosis induced by
H. pylori infection.

OipA protein regulates the miR-30b/xCT pathway

Our findings suggested that the miR-30b/xCT pathway was in-
volved in H. pylori-induced gastric mucosal injury. However, how
the host miRNAs were regulated by the bacteria toxic compo-
nents remained unknown. We transfected the recombinant OipA
protein encoding pET28a plasmid (see Supplementary Figure 3,
Supplementary Digital Content 1, http://links.Iww.com/CTG/
A283). Our results showed that recombinant OipA protein in-
creased miR-30b levels significantly (Figure 7a) and the expres-
sion of xCT and glutamate concentration was inversely related to
miR-30b levels (Figure 7b, c). These results supported a regulatory
effect of OipA on the miR-30b/xCT pathway.

DISCUSSION

Adequate levels of glutamate are crucial for cellular and tissue
function. High concentrations of glutamate can exert toxicity
effects in the brain (40); by contrast, excess glutamate can protect
against gastric mucosal injury (11). Glutamate also protects
against gastric mucosal injury induced by other factors, such as
deoxynivalenol (41), aspirin (11), and cold stress (12). Our results
confirmed earlier observations that, in cells and animal models,

Clinical and Translational Gastroenterology

the exogenous glutamate pathway significantly reduces H. pylori-
induced gastric mucosal injury (42). Taken together, exogenous
glutamate has a protective effect on gastric mucosal injury in-
duced by different factors. In stomach, glutamate plays protective
roles as a substrate for various metabolic pathways, an energy
source for intestinal mucosa, a mediator for cell signaling, and
a regulator for oxidative reactions, and in immune responses.

Our earlier reports have shown that aspirin-induced gastric
mucosal injury is related to reduction in endogenous glutamate
levels and is accompanied by reduced activity of xCT. According
to the inhibitory effect of some inflammatory factors on the xCT/
glutamate pathway (43,44), we hypothesized that the xCT/
glutamate pathway might be involved in H. pylori-induced gastric
mucosal injury. The results of this study showed that H. pylori
induced cell apoptosis with a decrease in glutamate release and
xCT activity in cultured GES-1 cells, and these effects of H. pylori
were attenuated by xCT (SLC7A11) overexpression. In mice, H.
pylori infection induced gastric mucosal injury with down-
regulation of xCT expression. These results supported the hy-
pothesis that H. pylori-induced gastric mucosal injury might be
associated with a reduction in glutamate release by inhibition
of xCT.

MiRNAs mediate multiple responses, including inflammatory
response (45). H. pylori induce alterations in some miRNAs
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Figure 7. The regulatory of OipA on miR-30b/xCT pathway. The GES-1 cells were incubated with different concentrations of recombinant OipA protein for 24
hours. (a) The effect of recombinant OipA protein on microRNA-30b expression in GES-1. (b) The effect of recombinant OipA protein on xCT expression in
GES-1. (c) The concentration of glutamate in cell culture supernatant of GES-1. Data are means = SEM, N = 4, *P < 0.05 vs control, ** P < 0.01 vs control.
GAPDH, glyceraldehyde phosphate dehydrogenase; GES-1, gastric mucosa epithelial; OipA, outer inflammatory protein A.
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(46,47). Interestingly, some miRNAs regulate xCT expression (48). It
is likely that the reduction in xCT activity by H. pylori might involve
specific miRNA pathways. Our results based on in vivo and in vitro
systems have shown that H. pylori-induced gastric mucosal injury led
to an increase in miR-30b expression. MiR-30Db is closely related to H.
pylori-induced gastric ulcers (38). In this study, we found that miR-
30D inhibitors attenuated the reduction in xCT activity caused by H.
pylori, thus supporting the hypothesis that the regulatory effect of
miR-30b on xCT activity plays an important role in H. pylori-induced
gastric mucosal injury.

OipA is a virulence protein from H. pylori, which promotes
inflammatory cytokines secretion and heightens gastric in-
flammation (49,50). OipA, in addition to inducing injury directly,
can also weaken the protective effects of gastric tissue. Thus, the
effect of OipA on the miRNA/glutamate pathway in H. pylori-
induced mucosal injury was explored. The recombinant OipA
protein increased miR-30b levels, accompanied by a reduction in
xCT activity. Taken together, a reduction in xCT activity by H.
pylori might involve the OipA/miRNA pathway.

In conclusion, decreased glutamate levels caused by reduction
inxCT activity play an important role in H. pylori-induced gastric
mucosal injury. Furthermore, OipA reduced the protective effects
of the xCT/glutamate pathway on gastric mucosa by regulating
miRNA-30b.
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Study Highlights
WHAT IS KNOWN

/ Exogenous glutamate protected against gastric mucosal
injury.

WHAT IS NEW HERE

\/ OipA plays a key role in H. pyloriinfection, and the effects are
mediated by micro30b/xCT pathway.

TRANSLATIONAL IMPACT

\/ Our study provide a new potential target for the treatment of H.
pyloriinfection.
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