
ORIGINAL RESEARCH
published: 02 August 2019

doi: 10.3389/fonc.2019.00714

Frontiers in Oncology | www.frontiersin.org 1 August 2019 | Volume 9 | Article 714

Edited by:

Sanjay V. Malhotra,

Stanford University, United States

Reviewed by:

Sanja Štifter,

University of Rijeka, Croatia

Shashwat Sharad,

Center for Prostate Disease Research

(CPDR), United States

*Correspondence:

Solomon Oladapo Rotimi

ola.rotimi@covenantuniversity.edu.ng

Specialty section:

This article was submitted to

Genitourinary Oncology,

a section of the journal

Frontiers in Oncology

Received: 02 June 2019

Accepted: 18 July 2019

Published: 02 August 2019

Citation:

Rotimi SO, Rotimi OA, Salako AA,

Jibrin P, Oyelade J and Iweala EEJ

(2019) Gene Expression Profiling

Analysis Reveals Putative

Phytochemotherapeutic Target for

Castration-Resistant Prostate Cancer.

Front. Oncol. 9:714.

doi: 10.3389/fonc.2019.00714

Gene Expression Profiling Analysis
Reveals Putative
Phytochemotherapeutic Target for
Castration-Resistant Prostate
Cancer
Solomon Oladapo Rotimi 1*, Oluwakemi Anuoluwapo Rotimi 1, Abdulkadir Ayo Salako 2,

Paul Jibrin 3, Jelili Oyelade 4 and Emeka E. J. Iweala 1

1Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria, 2Department of

Surgery, Obafemi Awolowo University, Ile-Ife, Nigeria, 3Department of Pathology, National Hospital, Abuja, Nigeria,
4Department of Computer and Information Sciences, Covenant University, Ota, Nigeria

Prostate cancer is the leading cause of cancer death among men globally, with

castration development resistant contributing significantly to treatment failure and death.

By analyzing the differentially expressed genes between castration-induced regression

nadir and castration-resistant regrowth of the prostate, we identified soluble guanylate

cyclase 1 subunit alpha as biologically significant to driving castration-resistant prostate

cancer. A virtual screening of the modeled protein against 242 experimentally-validated

anti-prostate cancer phytochemicals revealed potential drug inhibitors. Although, the

identified four non-synonymous somatic point mutations of the human soluble guanylate

cyclase 1 gene could alter its form and ligand binding ability, our analysis identified

compounds that could effectively inhibit the mutants together with wild-type. Of the

identified phytochemicals, (8′R)-neochrome and (8′S)-neochrome derived from the

Spinach (Spinacia oleracea) showed the highest binding energies against the wild and

mutant proteins. Our results identified the neochromes and other phytochemicals as

leads in pharmacotherapy and as nutraceuticals in management and prevention of

castration-resistance prostate cancers.

Keywords: castration-resistant, prostate cancer, phytochemicals, soluble guanylate cyclase, gene

expression data

INTRODUCTION

Malignancy of the prostate is the most commonly diagnosed cancer in men worldwide and ranked
second as the cause of death, in cancer-related diseases (1). The burden of this disease is on the black
population, who have one in four chance of getting the disease in their lifetime (2, 3). Hence, being
black is a major risk factor for this disease and accounts for the disparity in the risk and outcome
of the disease. Recent data suggest that the developing countries experience, and may continue to
experience, disproportionate morbidity and mortality of this disease (4).

The development of both normal and malignant prostatic cells, as well as the proliferation
of advanced carcinoma of the prostate, is highly dependent on androgens (5). Therefore, it has
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been hypothesized that androgens play a causal role in prostate
tumorigenesis. Consequently, the primary therapeutic goal for
prostate cancer is to reduce the levels of androgen (5). This
is achieved through a group of treatment called androgen
deprivation therapy. This treatment is universally accepted as
the first line of treatment for prostate cancer, and it can
be achieved either pharmacologically (chemical castration) or
surgically (orchiectomy) (6). Despite these treatment options,
a complication associated with a resurgence of androgen and
elevation of prostate-specific antigen (PSA), arises toward the
late stage of the disease. This state is referred to as castration-
resistant prostate cancer (CRPC), and it is characterized by loss
of ability to respond to androgen deprivation therapy and the
recurrence of prostate cancer and subsequent metastasis (7). This
recurrence of disease may occur in up to 40% of the patients
(8, 9). For example, Bello (9) reported that 48 of 161 prostate
cancer patients in Sub-Saharan Africa treated with androgen
deprivation therapy developed CRPC, over a period of 4 years.
Hence, CRPC continues to make prostate cancer the leading
source of cancer mortality for men, particularly among the black
race (4).

The transformation of hormone-dependent prostate cancer
cells to castration-resistant ones is largely driven by upregulation
of the activity of androgen receptor (10). This upregulation is
often a consequence of: (1) the overexpression of the androgen
receptor, which is observed in 22–30% of CRPC (11), (2) gain-of-
function mutation of androgen receptor gene which occurs more
often in 10–30%CRPC patients (12, 13), or (3) metabolic changes
to the source of intratumoral dihydrotestosterone, as reviewed by
Sharifi (14). Despite the cocktail of drugs targeting these well-
established mechanisms, most of the pharmacological agents are
ineffective against CRPC.

The limited treatment options for CRPC include secondary
hormonal manipulations (with agents such as diethylstilbestrol,
cyproterone and megestrol acetate), radiotherapy (with radium
223) (7, 15), drugs (such as docetaxel-which was approved by
US Food and Drug Administration due to survival benefit only)
(16) and novel drugs (like abiraterone, which has shown more
promise in men of African ancestry in clinical trial) (17). Hence,
CRPC continues to be a major factor contributing to the high
mortality rate of prostate cancer, particularly in low resource
countries, where the incidence of the disease is on the rise (3).
In order to understand the factors that underlie the development
of CRPC, previous studies have employed differential gene
expression analysis to characterize the genetic and molecular
factors that drive a prostate cell into being resistant to castration
(18). It is therefore expedient to explore the available data in
identifying novel targets, and subsequently, putative therapeutics
for this disease in order to improve clinical outcomes and
increase survival.

One significant and continuous source of novel drug-
leads is the medicinal plants (19, 20). Phytochemicals derived
from medicinal plants are structurally complex and diverse.
Furthermore, many phytochemicals have been reported to
possess cytotoxic properties and potentially useful as anti-
cancer agents (21, 22). For example, Taxol, derived from
Pacific yew tree (Taxus brevifolia) has been a success story and

remains the best-selling anticancer drug for the treatment of
ovarian cancer, breast cancer, and non-small cell lung cancer
for up to four decades (20), as well as gastroesophageal,
endometrial, cervical, prostate, and head and neck cancers
(23). Also, Omacetaxine mepesuccinate originally derived from
bark extracts of Cephalotaxus harringtonii and Cephalotaxus
fortune with the trade name Synribo R©, is used for the chronic
myeloid leukemia (22). The success story has led to the clinical
trials of over 100 natural products or natural product-derived
compounds, the majority of which are on cancer treatment (24).
Although a derivative of Toxol, Cabazitaxel R©, is now in phase
III clinical trial for the CRPC, the extension of life expectancy
has only been by 3 months (25). Yet more phytochemicals have
been suggested to be useful as preventive nutraceuticals and/or
neo-adjuvant for prostate cancer in diverse populations (26, 27).

There is, therefore, need to use reverse pharmacology
approach in developing the treatment for CRPC (28). To achieve
this, this study analyzed the differentially expressed genes that
drive CRPC and identified novel drug targets, as well as putative
phytochemicals that can serve as inhibitors for the identified
targets and its somatic variants.

MATERIALS AND METHODS

Derivation of Microarray Data
The gene expression profile of GSE21887 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE21887) (18) was obtained
from Gene expression omnibus (GEO) of the National Center
for Biotechnology Information (NCBI). GSE21887 was based on
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array. These data were derived from a xenograft model
of prostate cancer, KUCaP-2, expressing wild-type androgen
receptor and producing PSA. In order to identify the genes that
drive the proliferation of prostate cancer cell following castration,
we extracted data from eight chips for further analysis. These
chips represented four samples of castration-induced regression
nadir (GSM544233, GSM544234, GSM544235, and GSM544236)
and compared with four samples of castration-resistant regrowth
(GSM544237, GSM544238, GSM544239, and GSM544240).

Differential Gene Expression Analysis
The derived raw Affymetrix expression data were initially pre-
processed and normalized and then analyzed to identify the
differentially expressed genes using Limma package in R language
(29). First, the raw data from the probe set were summarized
by calculating the expression values for the probe set using
Microarray Suite 5.0 (MAS5, the standard Affymetrix algorithm)
in R (30, 31). Furthermore, we used the linear regression model
in Limma package to compare the castration-induced regression
nadir samples and castration-resistant regrowth samples. Only
the genes with |logFC| > 2.0 and the p < 0.01 were chosen as
differentially expressed genes. Out of the list of the differentially
expressed genes, we considered the gene with the highest fold
change and lowest p-value for further analysis. Hence, we carried
out further analysis on the human soluble guanylate cyclase 1
subunit alpha 2 (GUCY1A2).
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Identification of Gene Variants
Human genes are often highly polymorphic, and protein mutants
determine the outcome of therapy.

In order to identify the somatic genetic variants of human
GUCY1A2 in prostate cancer, we downloaded its missense
mutation data from the Genomic Data Commons (GDC) Portal
of National Cancer Institute (https://portal.gdc.cancer.gov/) (32).
The missense mutation data from GDC was downloaded with
Variant Effect Predictor (VEP) (33), SIFT (34), and PolyPhen
(35) results.

Homologous Modeling of Human
GUCY1A2
The amino acid sequence of wild-type human GUCY1A2
(Uniprot ID: P33402) was retrieved from the UniProt
database (http://www.uniprot.org). This protein sequence
was used for predicting the 3D structure of the wild and
mutant human GUCY1A2 using SWISS-MODEL (https://
swissmodel.expasy.org/) (36). SWISS-MODEL is a fully
automated server for predicting the 3D structure of proteins
using the crystal structure of the similar protein as the
template. For this purpose, we used human guanylate
cyclase soluble subunit alpha-3 (pdb ID: 3uvj.1.A) as
a template.

Functional Consequence of the Missense
Mutations on GUCY1A2
The effect of the mutations on the stability of human GUCY1A2
protein was assessed using I-Mutant adaptation 2.0. I-Mutant
is an internet support vector that evaluates mutation prompted
adjustments in protein dependability (37). It estimates the
free energy changes value (DDG) as the difference between
the unfolding Gibbs free energy value (DG) for the wild-type
protein and that of the mutant protein (DDG or DDG =

DG mutant – DG wild-type). Potential (surge or reduction)
in the DDG is also predicted, along with a reliability index
(RI) for the results, where the lowest and highest reliability
are 0 and 10, respectively (38). Meanwhile, project HOPE
(www.cmbi.ru.nl/hope/) (39) and MutPred (http://mutpred.
mutdb.org/) (40) were used to identify the structural and
functional consequences of the mutations on the human
GUCY1A2 protein.

Virtual Screening of Phytochemicals
Against Human GUCY1A2 Variants
Structural data of 242 experimentally-validated naturally
occurring anti-prostate cancer compounds were obtained
from Naturally Occurring Plant-based Anti-cancer
Compound-Activity-Target (NPACT) dataset (http://crdd.
osdd.net/raghava/npact/index.html) (41). The compounds
and those of the protein variants were imported into
Molegro Virtual Docker (MDV). MDV was used for
structural optimization and virtual screening as earlier
described (42).

Absorption, Distribution, Metabolism, and
Excretion (ADME) Assessment of the Lead
Phytochemicals
Characteristics of theoretical ADME and toxicological effects
of the phytochemicals were determined by in silico analysis,
using the SwissADME software (43). SwissADME is an
online computational tool that also allows the prediction of
the following pharmacokinetic characteristics: gastrointestinal
absorption (GI), P-glycoprotein (P-gp) substrate, the inhibitor of
some cytochromes P450 (CYP) known to be regularly involved
in the interactions with xenobiotics (CYP1A2, CYP2C19,
CYP2C9, CYP2D6, and CYP3A423) and blood-brain barrier
permeant (BBBP).

RESULTS AND DISCUSSION

The normalized Affymetrix data were used to determine the
biological significance of each gene in driving castration-induced
regression of prostate cancer into castration-resistant regrowth.
The results for genes with |logFC| > 2.0 and the p < 0.01
are presented in Table S1. Meanwhile, Figure 1 represents
the volcano plot of the distribution of the level of expression
of genes not just according to statistical significance but also
biological significance, as demonstrated by fold change. The
genes represented by points at the upper far right of the graph
are those considered to be significantly important in driving
the castration responsive prostate cancer cells into castration
resistance. The analysis showed that GUCY1A2, GRIN3A, and
SYT4 are the most biologically important genes involved in the

FIGURE 1 | Volcano plot of –log10 (p values) vs. log2 fold change. The –log10

(p values) represents the level of significance of each gene while log2 fold

change represents the difference between the levels of expression for each

gene between the castration-induced regression nadir and castration-resistant

regrowth groups.
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TABLE 1 | Compounds with highest binding energies against GUCY1A2 protein.

Compound name Class Source Structure

(8′R)-neochrome Terpenoids Spinacia oleracea

(8′S)-neochrome Terpenoids Spinacia oleracea

22-epicalamistrin Polyketides Ampelocissus sp

3-beta-O-(E)-feruloylbetulin Terpenoids Celtis philippinensis

3-hydroxy-6′-desmethyl-9-O-

methylthalifaboramine

Alkaloids Thalictrum faberi

Aculeatin A Polycyclic aromatic Toddalia asiatica

Annoglaucin Polyketides Annona glauca

Bullatetrocin Polyketides Asimina triloba

cis-3-O-p-Hydroxycinnamoyl Ursolic

Acid

Terpenoids Vaccinium macrocarpon

(Continued)
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TABLE 1 | Continued

Compound name Class Source Structure

Desacetyluvaricin Polyketides Uvaria accuminata

Foveoglin A Benzofuranoids Aglaia foveolata

Foveoglin B Benzofuranoids Aglaia foveolata

Longimicins A Polyketides Asimina longifolia

Melianin B Terpenoids Melia volkensii

Melianin C Terpenoids Melia volkensii

Meliavolkinin Terpenoids Melia volkensii

Muricatetrocin C Polyketides Rollinia mucosa

(Continued)
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TABLE 1 | Continued

Compound name Class Source Structure

Rollidecin A Polyketides Rohia emorginoto

Silvestrol Terpenoids Aglaia foveolata

Vinblastine Alkaloids Catharanthus roseus

pathogenesis of CRPC in this patient-derived xenograft model.
This differential expression analysis identified GUCY1A2,
as the most significantly upregulated gene and biologically
important in driving prostate cancer from castration-induced
regression to castration-resistant growth. Hence, it was selected
as the putative drug target for virtual screening. This gene
codes for one of the peptides that make up soluble guanylyl
cyclase (sGC) (44). sGC is a heterodimeric hemoprotein that is
made up of two alpha and two beta subunits and serves as the
intracellular receptor for nitric oxide. It mediates the biological
function of nitric oxide, resulting in the formation of 3′, 5′-cyclic
guanosine monophosphate and activation of protein kinase G
(45). However, the alpha subunit of this protein complex has
now been recognized to be regulated by the androgen receptor,
in a non-nitric oxide-dependent mechanism, to mediate the
growth of prostate cancer, both in the presence or absence
of physiological concentration of androgen (46). Cai et al.
(46) further reported an elevated level of expression of the
alpha subunit of sGC in hormone-refractory prostate cancer at
both mRNA level and protein (47). This is consistent with the
immunohistological data in the Human Protein Atlas (48), that
show the localization and elevated expression of this protein at
the cytoplasmic/membranous nuclear in high-grade prostate
adenocarcinoma. A major mechanism by which sGCα promotes
prostate cancer is by associating with and sequestering p53 in
the cytoplasm, leading to suppression of apoptosis (46). This
observation strongly suggests that sGCα is a drug-able target
for CRPC.

Interestingly, valproic acid, an anticonvulsant derived from
Valeriana officinalis and shown to repress the expression of sGCα

mRNA, has been reported by previous studies and a clinical trial
to be useful in treating CRPC (49). However, this effect has solely
been attributed to its histone deacetylases-inhibitory property
(50, 51), without considering its anti-GUCY1A2 property. It
is, therefore, possible that the suppression of GUCY1A2 is
a complementary mechanism that was not explored by these
previous investigators.

Although previous studies (44, 46, 52) have identified sGCα

as a drug-able target for prostate cancer, our investigation
represents the first to single it out as a major drug target,
particularly, for CRPC. Again, these previous efforts have
been directed at developing novel peptide that targets
and inhibits sGCα activity (44, 52). However, therapeutic
peptides have some significant drawbacks which include
low membrane permeability, poor stability, and short
half-life (53).

Since plant-derived chemicals have served, and continue
to serve, as major sources for cancer chemotherapeutic and
chemopreventive agents from time immemorial, we, therefore,
exploited this vast resource of experimentally determined anti-
prostate cancer phytochemicals to identify compounds or leads
that could inhibit this protein.

The 242 plant-derived natural compounds with
experimentally determined anti-prostate cancer activity
were downloaded from NPACT database (41). The molecular
docking results of the top 20 of these compounds are presented
in Table 1. Also presented in the table is the chemical class
of the compounds, the sources, and chemical structures. The
highest number of the compounds are terpenoids with (8′R)-
neochrome being the putatively most active compound. The
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TABLE 2 | Biding energies, molecular weight, and targets of anti- GUCY1A2

phytochemicals.

Compound name MolDock

score

Molecular

weight (g/mol)

Target

Methylene blue −67.2156 319.85 Wild

(8′R)-neochrome −160.75 601.88 Wild, G723S,

Q217H, P676L

(8′S)-neochrome −152.102 601.88 Wild, G723S,

Q217H, P676L

22-epicalamistrin −151.131 593.43 Wild, G723S,

R381Q

3-beta-O-(E)-feruloylbetulin −145.363 604.86 Wild, G723S,

Q217H, P676L

3-hydroxy-6′-desmethyl-9-

O-methylthalifaboramine

−140.511 667.77 Wild, G723S, P676L

Aculeatin A −142.851 418.61 Wild

Annoglaucin −138.378 638.92 Wild, R381Q

Bullatetrocin −137.773 638.92 Wild

cis-3-O-p-

Hydroxycinnamoyl Ursolic

Acid

−138.318 602.84 Wild, G723S

Desacetyluvaricin −144.891 606.92 Wild

Foveoglin A −142.354 650.72 Wild, G723S,

Q217H, R381Q

Foveoglin B −144.479 650.72 Wild, G723S,

R381Q, P676L

Longimicins A −151.925 622.92 Wild, G723S,

R381Q, P676L

Melianin B −137.738 694.89 Wild, Q217H

Melianin C −137.917 620.77 Wild, G723S,

Q217H, R381Q

Meliavolkinin −153.697 574.7 Wild, G723S,

Q217H, R381Q

Muricatetrocin C −137.563 596.88 Wild P676L

Rollidecin A −138.529 638.92 Wild, G723S

Silvestrol −156.426 654.66 Wild, G723S,

Q217H, R381Q

Vinblastine −141.78 810.97 wild, G723S,

Q217H, R381Q

binding energy and parameters of these compounds compared
with methylene blue showed that all 20 phytochemicals
have stronger binding energy than methylene blue (Table 2).
However, the structural alterations induced by the somatic
mutations alter the binding of these ligands. The compounds
investigated have been experimentally validated for anti-
prostate cancer activity, and because some are from edible
plants, they may serve as neo-adjuvants or nutraceuticals in
the prevention of CRPC (26). It is worthy of note that the
phytochemicals we selected have higher binding energy to the
modeled GUCY1A2 protein than methylene blue-which has
been approved a pharmaceutical antagonist of guanylate cyclase
(54). (8′R)-Neochrome being the compound with the higher
binding energy −160.75 Kcal/mol, followed by (8′S)-neochrome
(−152.102 Kcal/mol), 22-epicalamistrin (−151.131 Kcal/mol),
3-beta-O-(E)-feruloylbetulin (−145.363 Kcal/mol), 3-hydroxy-
6′-desmethyl-9-O-methylthalifaboramine (−140.511 Kcal/mol)
and Aculeatin A (−142.851 Kcal/mol).

TABLE 3 | Impact of somatic functional mutations on GUCY1A2.

Mutation Impact

VEP SIFT PolyPhen

R381Q Moderate Tolerated Probably damaging

G723S Moderate Deleterious (low confidence) Probably damaging

Q217H Moderate Deleterious Probably damaging

P676L Moderate Deleterious Probably damaging

TABLE 4 | Effects of mutation on stability of GUCY1A2 protein.

Mutation Stability Reliability index DDG (Kcal/mol)

R381Q Decrease 8 −1.32

G723S Decrease 8 −0.97

Q217H Decrease 6 −0.62

P676L Increase 1 1.17

The somatic mutations of GUCY1A2 that have been
experimentally recorded in the prostate cancer were retrieved
from TCGA and presented in Table 3. The mutations are R381Q,
G723S, Q217H, and P676L. Polyphen recognizes all mutations
as probably damaging while only R381Q is considered tolerated
following SIFT analysis. However, as illustrated in Table 4,
all the mutations could alter the stability of the protein, with
P676L increasing the stability but with a low reliability index.
Furthermore, functional analysis of the structural impact of
these mutations predicted substantial alterations, not just in the
function but also, in the ability of the protein to bind ligand
(Table 5). This has clinical and pharmacological implications
because such mutations now constitute a major problem
resulting in the reduction of the efficacy of cancer chemotherapy.
In order to account for this, we studied the effects of reported
non-synonymous somatic mutation in GUCY1A2 on its protein
structure and function. We further investigated the alterations in
the binding energy between the phytochemicals and the mutant
GUCY1A2 proteins. The phytochemicals have varying degrees
of preference for different forms of this protein. We observed
that none of the phytochemical could effectively bind all the
mutant protein. (8′R)-neochrome, (8′S)-neochrome, 3-beta-
O-(E)-feruloylbetulin, Foveoglin A, Foveoglin B, Longimicins
A, Melianin C, Meliavolkinin, Silvestrol, and Vinblastine were
able to effectively bind three of the four mutant protein, with
the neochromes having the highest binding energy (Table 2).
This phenomenon has been reported in different cancer drug-
receptor interaction and often results in the reduction of drug
efficiency or drug resistance and an important factor in drug
pharmacogenomics (55). For example, somatic mutations in the
aromatase gene CYP19 alter the efficacy of aromatase inhibitors
when used as neoadjuvant therapy for breast cancer (56), while
T790M mutation (rs121434569) reduces the effectiveness of
Epidermal growth factor receptor inhibitors in treating lung
adenocarcinomas (57). It is therefore of clinical importance
to consider the somatic mutations in the drug receptors and
target in the drug development process. Our results showed
that (8′R/S)-Neochromes have a high binding affinity for all
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TABLE 5 | Schematic structures of the original (left) and mutant (right) amino acid for each mutation with the functional consequence.

Mutation Structure Functional consequence

R381Q The mutant residue is smaller, positively charged, and located in a domain that is important for the main

activity of the protein. Hence, mutation of the residue might disturb the function. The change in net

charge can cause loss of interactions with other molecules or residues.

G723S The mutant residue is bigger than the wild-type residue.

The wild-type residue is a glycine, the most flexible of all residues. This flexibility might be necessary for

the protein’s function and mutation of this glycine can abolish this function. This mutation will force the

local backbone into an incorrect conformation and will disturb the local structure.

Q217H The mutant residue is bigger than the wild-type residue and located in a domain that is important for

binding of other molecules.

P676L The mutant residue is bigger than the wild-type residue.

The wild-type residue is a proline. Prolines are known to be very rigid and therefore induce a special

backbone conformation which might be required at this position. The mutation can disturb this special

conformation. Also, the mutated residue is located in a domain that is important for the main activity of

the protein. The residue is located on the surface of the protein, mutation of this residue can disturb

interactions with other molecules or other parts of the protein.

TABLE 6 | Druglikeness properties of anti- GUCY1A2 phytochemicals.

Compound name Lipinski

violations

Ghose

violations

Veber

violations

Egan

violations

Muegge

violations

Bioavailability

Score

Brenk

alerts

Leadlikeness

violations

Synthetic

accessibility

(8′R)-neochrome 2 4 0 1 2 0.17 2 3 7.69

(8′S)-neochrome 2 4 0 1 2 0.17 2 3 7.69

22-epicalamistrin 2 2 1 0 2 0.17 2 3 4.73

3-beta-O-(E)-feruloylbetulin 2 4 0 1 2 0.17 2 2 7.82

3-hydroxy-6′-desmethyl-9-

O-methylthalifaboramine

1 3 0 0 1 0.55 0 1 7.27

Aculeatin_A 0 2 1 1 1 0.55 0 3 6.82

Annoglaucin 1 4 1 1 3 0.55 0 3 7.76

Bullatetrocin 1 4 1 1 3 0.55 0 3 7.63

cis-3-O-p-

Hydroxycinnamoyl_Ursolic_Acid

2 4 0 1 2 0.56 2 2 6.82

Desacetyluvaricin 2 4 1 1 3 0.17 0 3 7.39

Foveoglin_A 1 3 0 1 2 0.55 2 3 7.37

Foveoglin_B 1 3 0 1 2 0.55 2 3 7.37

Longimicins_A 1 4 1 1 3 0.55 0 3 7.56

Melianin_B 2 4 0 1 2 0.17 2 3 7.49

Melianin_C 2 4 0 1 2 0.17 2 3 6.61

Meliavolkinin 1 4 0 1 1 0.55 2 2 6.63

Muricatetrocin_C 1 4 1 1 2 0.55 0 3 7.34

Rollidecin_A 1 4 1 1 3 0.55 0 3 7.76

Silvestrol 2 3 2 1 3 0.17 0 2 6.6

Vinblastine 2 3 1 1 4 0.17 2 3 9.65

the variants of GUCY1A2 protein. (8′R/S)-Neochromes are
neoxanthins that are naturally derived from vegetables such as
spinach (Spinacia oleracea) during gastrointestinal digestion
(58). Previous studies have reported the cytotoxic effects of
Neochromes and their contribution to the anticancer effect of
spinach (59, 60). Precisely, Kotake-Nara et al. (61) reported it to

be cytotoxic against PC-3 human prostate cancer cells with IC50

of 1.2µMol/L, and it has been suggested that p53 plays a minimal
role in its mechanism of cytotoxicity (62). Although p53 protein
is critical to cancer therapy due to its universal inactivation in
human malignancies, the observation of Kotake-Nara et al. (61)
and that of Cai et al. (46) imply that (8′R/S)-Neochrome may
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TABLE 7 | Pharmacokinetics properties of anti- GUCY1A2 phytochemicals.

Compound name GI

absorption

BBB

permeant

P-glycoprotein

substrate

CYP1A2

inhibitor

CYP2C19

inhibitor

CYP2C9

inhibitor

CYP2D6

inhibitor

CYP3A4

inhibitor

log Kp

(cm/s)

(8′R)-neochrome Low No Yes No No No No No −3.24

(8′S)-neochrome Low No Yes No No No No No −3.24

22-epicalamistrin High No Yes No No Yes No No −1.04

3-beta-O-(E)-feruloylbetulin Low No Yes No No Yes No No −2.78

3-hydroxy-6′-desmethyl-9-O-

methylthalifaboramine

High No Yes No No Yes No No −8.03

Aculeatin_A High No No No No No Yes Yes −3.69

Annoglaucin Low No No No No No No Yes −4.65

Bullatetrocin Low No No No No No No Yes −4.26

cis-3-O-p-

Hydroxycinnamoyl_Ursolic_Acid

Low No No No No No No No −3.13

Desacetyluvaricin Low No Yes No No No No Yes −2.03

Foveoglin_A Low No Yes No No No No No −6.18

Foveoglin_B Low No Yes No No No No No −6.18

Longimicins_A Low No No No No No No Yes −3.21

Melianin_B Low No Yes No No No No Yes −5.75

Melianin_C Low No Yes No No Yes No Yes −5.13

Meliavolkinin Low No Yes No No No No No −5.61

Muricatetrocin_C Low No No No No No No Yes −3.71

Rollidecin_A Low No No No No No No Yes −4.4

Silvestrol Low No Yes No No No No Yes −9.13

Vinblastine Low No Yes No No No No Yes −8.49

be potent in inducing apoptosis in cancer cells with or without
p53 inactivation.

It is worthy of note that most of these phytochemicals failed
the in silico drug-likeness test and showed poor gastrointestinal
absorption (Table 6). However, this is not unusual of anticancer
phytochemicals including polyphenols such as curcumin and

green tea polyphenols; hence, it has been suggested that
bioavailability of a compound cannot be accurately predicted

(63). For many phytochemicals in this class, the uptake and
efflux transporters at the epithelial cell surface also play a

critical role in their bioavailability. One of such transporters

that is relevant to cancer prevention and treatment is P-
glycoprotein (64). Although some of these compounds are

also P-glycoprotein substrates and this could eventually reduce
their bioavailability, the coadministration of the P-glycoprotein

inhibitors, such as erythromycin or clarithromycin, to patients
receiving such P-glycoprotein substrate drugs have been noted
to increase in their plasma and tissue concentrations (65). P-
glycoprotein inhibitors have been employed as adjuncts in cancer
chemotherapy, but their use in routine clinical practice is not
approved due, in part, to inhibition of the CYP P-450 drug
metabolizing enzyme (64). Our data also identified some of these
compounds that do not inhibit CYP P-450 (Table 7). It is worthy
of note that the Neochromes, although, are the substrate for
P-glycoprotein, does not inhibit any of the CYP P-450 reported.

In conclusion, while these compounds may also have other
targets in inducing cytotoxicity in prostate cancer, their ability to
inhibit sGCα makes them more useful in addressing a complex
disease like CRPC, rather than the usual “one gene, one target,

one disease” approach which has limited the success of most
anticancer drugs (66). The results of this investigation, therefore,
suggest Neochrome a putative lead and possible nutraceutical in
the treatment of CRPC.
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