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Abstract

Attaining recombinant thermostable proteins is still a challenge for protein engineering. The

complexity is the length of time and enormous efforts required to achieve the desired results.

Present work proposes a novel and economic strategy of attaining protein thermostability by

predicting site-specific mutations at the shortest possible time. The success of the approach

can be attributed to Analytical Hierarchical Process and the outcome was a rationalized

thermostable mutation(s) prediction tool- RankProt. Briefly the method involved ranking of

17 biophysical protein features as class predictors, derived from 127 pairs of thermostable

and mesostable proteins. Among the 17 predictors, ionic interactions and main-chain to

main-chain hydrogen bonds were the highest ranked features with eigen value of 0.091.

The success of the tool was judged by multi-fold in silico validation tests and it achieved the

prediction accuracy of 91% with AUC 0.927. Further, in vitro validation was carried out by

predicting thermostabilizing mutations for mesostable Bacillus subtilis lipase and performing

the predicted mutations by multi-site directed mutagenesis. The rationalized method was

successful to render the lipase thermostable with optimum temperature stability and Tm

increase by 20˚C and 7˚C respectively. Conclusively it can be said that it was the minimum

number of mutations in comparison to the number of mutations incorporated to render Bacil-

lus subtilis lipase thermostable, by directed evolution techniques. The present work shows

that protein stabilizing mutations can be rationally designed by balancing the biophysical

pleiotropy of proteins, in accordance to the selection pressure.

Introduction

Living things evolve naturally with mutation as the tool to survive in various selection pres-

sures-such as extreme temperature. Though thermostable proteins have various industrial

applications, culturing them in laboratory from their natural sources is a daunting task [1].

Thus, spectrum of research efforts is on continuous expansion to attain protein thermostability
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by in vitro mutations. To achieve successful thermostabilizing mutations many researchers

tried to understand the underlying mechanisms behind protein thermostability [2–5]. The

conclusion was that a particular rule does not exist for predicting thermostabilising mutations

and thermostability is said to be a compound effect of various protein stabilising factors [2, 6].

Conventionally, researchers have applied basically three approaches to attain higher protein

thermostability. First, directed evolution strategy was developed-mimicking nature. The pro-

cess involves introduction of random mutations in recombinant protein clones, followed by

colony screening of the desired traits [7–8]. By this method, till date, increase in thermostabil-

ity of up to 35˚C have been attained [9]. However, the main drawback is that the effect of

mutations on the stability of protein is challenging to predict a priori. Further the protocol fol-

lowed is generally laborious and protracted, often leading to screening of up to 108 colonies of

expression hosts to identify stable constructs [9]. A good comparison of the success rate of

such methods has been reported recently by Bednar et al. (2015). They showed that methods

involving colony screening achieve only a 0.1% success rate and experimental statistics reveal

that only 0.5–0.01% of random mutations achieved by such methods are actually beneficial [9].

The second approach was the ancestral or consensus methods [10–12]. This method involves

substitution in the subject protein with conserved amino acid residues present in the fitter

ancestral protein. The success of the method relies on multiple sequence alignments and avail-

ability of a highly homologous ancestral sequence hinders the broad applicability of the me-

thod. The third and the most promising approach is protein structure guided methods. Recent

work by Sikosek et al. in 2014 reported that there are experimental evidences which positively

correlate between protein function and its stability [13]. The fate of mutations can be small or

large depending on the position where the mutation has occurred and its ability to modulate

various intra- and inter-protein attributes resulting in a better stabilised protein [14]. For

example, Eijsink et al. 1992 improved thermostability of neutral proteinase of Bacillus stear-
othermophilus by enhancement of hydrogen bonding networks [15]. In another work, surface

electrostatic interactions were improved in the cold shock, RNase T1, and CheY proteins to

enhance their thermostability after screening 251 and 244 single-mutant structures respec-

tively [16]. Irrespective of the success of this approach, it suffers when few biophysical proper-

ties like disulphide bonds or ionic interactions are targeted for modulation by mutations,

without prior understanding of their effect on the mutated protein [17, 18]. Again the app-

roach can fail if it results in incorporation of mutations which are self-compensatory leading

to no additive effect on protein stability [19].

Therefore, experimentally, these three approaches have their own practical limitation in

their global applicability to enhance thermostability of any preferred protein. Hence, a faster

and more powerful approach to render proteins thermostable was desirable. This necessitated

prediction of point mutations that enhance protein thermostability, prior to performing site

directed mutations and identification of stable constructs. In this direction, up to now, many

computational algorithms are available that predict point mutations which can enhance the

overall thermodynamic stability of proteins (for details about their performance, refer to [20–

29]. Though the algorithms have broad applicability by predicting stabilizing mutations, most

of them predict thermodynamic stability. Whereas, thermal stability (dependent on melting

temperature, Tm) changes upon point mutations, have been less investigated [30]. Most of

such algorithms were also reported to be moderately accurate in predicting protein stability by

Khan et al., (2010), who compared 11 such online stability predictors [31]. Further it was

reported that when the predicted single point stabilising mutations were recombined to pro-

vide additive effects, it often resulted in antagonistic epistatic effects of individual mutations

[32]. It was also reported that the mutants obtained by computational methods rarely showed

increase greater than 15˚C of melting temperature (Tm) [7, 9]. Again the success rate of these
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methods were predicted to be<50% for prediction of stabilizing single point mutations and

>50% success for methods that incorporate the effect of multiple mutations [9]. In this direc-

tion, only two algorithms have been developed that can predict stabilising multi- point muta-

tions, namely ERIS and WET [33–34]. However, the accuracy of WET was reported to drop to

0.57 when it was tested on the hypothetical reverse mutations [4]. Thus, promiscuity in these

reported approaches raises difficulty to scoop out the thermostabilizing mutations in

laboratory.

In this work to render the process of attaining thermostable proteins more comprehensive,

predicting multiple thermostabilizing mutations is what the authors intended. We propose a

novel method to predict thermostabilizing mutations, by ranking intra-protein tertiary inter-

actions, employing Analytical Hierarchical Process. This was carried out by collection of

robust binary protein dataset of thermostable and mesostable homologous protein pairs, prior-

itizing multiple protein biophysical features and development of a thermostabilizing mutation

prediction tool. The tool was validated in a multifold manner to prove rationality and accu-

racy. The developed route was successful to circumvent the requirement of selection pressure

and colony screening, ensuring results in the shortest possible time by utilization of lesser

effort and capital in comparison to the existing methods.

Methods

Dataset creation and feature selection

With thermostability as the selection pressure, the data collection pertained to thermostable pro-

tein structures. The overview of the method is illustrated in Fig 1. Initial key words search of

“thermostable”, “thermophilic” and “hyperthermophilic” resulted in 1280 structures from RCSB

PDB. After removing partially sequenced proteins and putative sequences, 378 thermostable

Fig 1. Overview of the method of developing RankProt with thermostabiility as the selection pressure of choice.

The line drawings were made by the authors. All other images in this figure were adapted from Wikipedia possessing

CC BY-SA 3.0 license.

https://doi.org/10.1371/journal.pone.0203036.g001
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protein structures were retained. Thermostability is relative to mesostability hence, the require-

ment of mesostable homologus counterparts. Mesostable counterparts were chosen by BLAST

search. Only structural protein pairs with sequence similarity >70% and RMSD<2Å were

retained. The final data set contained 127 non-redundant homologous thermophilic-mesophilic

protein pairs (S1 Table). The spectrum of data pertained to the entire phylogeny and all six

enzyme classes with inclusion of the structural proteins. This reflects the global phylogenetic dis-

tribution and unbiased nature of the dataset. An in house tool developed on python platform

enumerated all the biophysical features pertaining to intra-protein non-covalent interactions.

The criteria for the cut-off lengths to be treated as a yardstick were taken from literature. The

details of these have been presented in S2 Table. PROMOTIF and Volume Area Dihedral Angle

Reporter (VADAR) were integrated with the aforementioned code [35–36]. This rendered us

with twenty-five protein structural features. All features were the count of the number of inter-

actions in proteins. The calculation pertaining to surface areas were represented as fractions out

of the total accessible surface area of proteins. All calculated features were normalized with

respect to the number of atoms or the length of the protein sequence and further converted to

their percentage scores. Features were initially filtered through non parametric two-tail Kolmo-

gorov Smirnov (KS) test. Significant features having a p value<0.05 were chosen. In a bipartite

dataset, the significance was based on the calculation of D-statistic that states significant differ-

ence between the distribution for the thermostable and mesostable groups of protein. Two tail

KS test have been used previously by many researchers for feature selection [37–44]. This

resulted in final set of 17 features (Table 1). After feature generation and partial selection by two

tail KS test, it was necessary to know the significance of each feature contributing to thermosta-

bility. The problem in hand involved multiple features. Hence, a robust method that can handle

all such features simultaneously was required. We proceeded with Multi Criteria Decision Mak-

ing approach.

Table 1. The statistically significant features contributing to thermostability obtained by two-tail Kolmogorov Smirmov-test p<0.05.

Sl. No Number of Interactions Abbreviation Software/ Tools

1 Percentage of residues forming Hydrogen bonds HB VADAR

2 Main chain to main chain hydrogen bonds MMH IPI enumerator�

3 Main chain to side chain hydrogen bonds MSH IPI enumerator

4 Side chain to side chain hydrogen bonds SSH IPI enumerator

5 Hydrophobic interactions HI IPI enumerator

6 Ionic interactions II IPI enumerator

7 Aromatic-sulphur interaction ASI IPI enumerator

8 Cation-pi interactions CPI IPI enumerator

9 Aromatic-aromatic interactions AAI IPI enumerator

10 Salt bridge SB IPI enumerator

11 Packing volume PV VADAR

12 Beta turns BT PROMOTIF

13 Total gamma turns GT PROMOTIF

14 Inverse gamma turns IGT PROMOTIF

15 Fraction non polar Accessible surface area (ASA) NASA VADAR

16 Fraction polar ASA PASA VADAR

17 Fraction charged ASA CASA VADAR

�In house developed tool in python. The cut-offs taken for the calculations are the standards available in literature. The details of these have been presented in S2 Table.

https://doi.org/10.1371/journal.pone.0203036.t001
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Ranking features contributing towards protein thermostability

The heuristic model of Analytical Hierarchical Process (AHP) was employed to rank thermo-

stabilizing features. The method has been used in industrial engineering applications, selecting

ecological indicators for river flow restoration, and in health care research [43, 44]. Fig 2A

illustrates the method developed to classify thermostable proteins and to identify thermostabi-

lizing mutations. It involved four phases, the hierarchical structuring of complexity into

homogeneous clusters of factors with objective i.e., classifying thermostable protein and pre-

diction of thermostable mutations; criteria (17 statistically significant features) and alternatives

(thermostable and mesostable proteins or mutated and wild type proteins). Secondly deriving

at weights for criteria and alternatives and representing those with numbers. Thirdly, using the

numbers to calculate the priorities of the criteria and alternatives and lastly completing the

synthesis of these results to determine the most important alternative [45]. The derived

Fig 2. The rationalized method for predictioin of thermostability of proteins. A The hierarchy of thermostability is

composed of three tiers. First tier is the goal and second is the criteria. The third tier was the alternatives. The alternatives are a

set of wild type or engineered proteins. In Step 1 the 127 thermostable and mesostable proteins along with their 17 features form

a 127x17 matrix, where TP: Thermostable proteins; MP: Mesostable proteins; F: features where i� � �n represents number of

features; P: Protein ID where i� � �n stands for the number of proteins. In Step 2 feature weights are generated where, Δ_l:

difference in the normalized feature; l = i� � �n features, FTP: normalized feature of the TP set; F_(v) MP: normalized feature of

the MP set. Then the difference in the features was represented by vectors where each difference in attribute, Δ_l takes the value

of 1 if the feature of type F is positive, and 0 if F is negative or there is no difference. Further the number of proteins in the

difference matrix having the value of 1 for each of the features was summed. In Step 3, percentage weight showing increase, ξιw.

r.t. the total number of thermostable proteins, N = 127, and ι = 1� � �n features was derived and converted into the 1–9 scale

where, W_in is the converted weight, in = 1� � �n features, α is the minimum value in the weight for feature and β is the

maximum value in the weight of feature. This weight was further converted to ratio weight for each feature. In Step 4 this ratio

was supplied to a pairwise comparison matrix. In Step 5, calculation of eigen or priority vectors was performed by calculating

the sum of the column Sn where n = 1� � �n features. In Step 6, Consistency index (CI) was derived by calculating λmax which is

the consistency measure of each row which is calculated as the dot product of pairwise comparison matrix with the priority

vector matrix which is then divided by N, where N = total number of features. Further, consistency ratio (CR) was derived and

according to Alonso et al. (2006), RI is a random index and is equal to 1.6086 for N = 17. B The priority values obtained by AHP

for the 17 significant thermostabilizing features. The scale is from 0–1. The highest ranked features were ionic interactions (II)

and Main-chain–main-chain hydrogen bonds. The abbreviations have been provided in the beginning of the paper. (C)

Receiver operating characteristic curve obtained by Leave one out Cross Validation, fitted by maximum likelihood estimation

by LABROC4 for ranks of 100 thermostable proteins w.r.t. mesostable homologous proteins obtained by RankProt. The Area

Under Curve (AUC) was calculated to be 0.927.

https://doi.org/10.1371/journal.pone.0203036.g002
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features were numeric thus, pro-rata weights for the thermostability datasets were generated.

Thus to prioritize the criteria we derived at their weights and formed a positive reciprocal pair-

wise comparison matrix which has been presented as supplementary material (S3 Table). Fur-

ther steps as illustrated in Fig 2A led to the calculation of the priority vectors for the 17

features. The consistency of the method was calculated by deriving at consistency ratio and the

matrix was accepted as consistent if CR < 0.158.

Development of thermostabilising mutation(s) prediction tool: Rankprot

After feature ranking, the thermostability predictor-RankProt was written in Python. The

principle was predicting thermostabilising mutations of a test protein by relatively ranking the

mutated test protein (mutations carried out by in silico strategies) with respect to the non-

mutated native protein, whose temperature stability is already known. This was achieved by

calculating the dot product of 1x17 feature matrix generated for the test proteins by the 17x1

matrix of priority values of the 17 biophysical features obtained by AHP. The dot products

were the relative normalized rank of the test and native proteins, summing to 1. This tool

requires third party software VADAR and Promotif which are freely available. Details of the

method are available with the tool; the source code can be downloaded from https://github.

com/Debamitraiit/RankProt.

Validating RankProt

Multi-fold validation of RankProt was carried out to check the applicability of the developed

method. The first blind test was carried out by randomly choosing 100 thermostable-meso-

stable protein pairs from RCSB Protein Data Bank. These were processed using RankProt to

derive at the ranks. A second blind test was carried out with a set of 40 mesostable proteins

with another mesostable counterpart chosen randomly from the final dataset. The proteins

were assigned ranks, the mean rank value and the pairwise difference were calculated for the

thermostable-mesostable as well as mesostable-mesostable dataset. In the latter case, the pairs

will not be homologous but both the proteins being mesostable was predicted to have marginal

rank difference. For the former test set, the rank difference was predicted to be considerable.

The next phase consisted of three more validity tests of RankProt. (I) All the mutated thermo-

stable structures of Bacillus subtilis lipases were retrieved from RCSB Protein Data Bank and

were ranked with respect to their wild type mesostable structure (PDB ID: 1i6w). (II) Mutated

structures that led to gain of stability of bacteriophage T4 lysozyme (PDB ID: 2lzm) were

ranked. Finally, (III) mutated structures of human lysozyme (PDB ID: 1lz1) that led to loss of

stability as compared to wild type were ranked. The final performance of RankProt was ana-

lysed by calculating its accuracy. Where, accuracy is defined as number of correct assessments

upon the number of all assessments. Receiver operating characteristic (ROC) curve was drawn

and Area Under Curve (AUC) derived by fitted Maximum likelihood estimation by LABROC4

(http://www.jrocfit.org).

Case study: Predicting thermostabilising mutations for Bacillus subtilis
lipase

The final step in validating RankProt was by carrying out a case study. Bacillus subtilis lipase

was the candidate of choice as the candidate lipase has all required features for qualifying as an

industrially important catalyst. The sequence for the wild type lipase of Bacillus subtilis 168

(1i6w) was collected from Uniprot Knowledgebase release 2010_06 (Uniprot ID: P37957).

Mutations were predicted using RankProt. To validate the stability of mutations, they were also

analyzed through I-Mutant2, Cupsat and ERIS web servers [21–23]. Biophysical
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characterization was performed using VADAR ver 1.8 web interfaces. Promotif and in-house

developed python tool was used for calculating intra-protein interaction. Docking with Triacyl-

glycerol (C8) substrate was performed through Autodock. Wild type and mutated structures

were superimposed by using PyMol V0.99. The ranks of the mutated structures and wild type

lipases were calculated through RankProt tool and only those mutations, which led to an

increase in the rank of the mutated structures with respect to the wild type, were chosen for fur-

ther in vitro validations. Furthermore, a comparative analysis was drawn about difference in

thermostability of mutants generated by RankProt and other directed evolution strategies. Four

available crystal structures of engineered thermostable mutants of Bacillus subtilis lipase

obtained by directed evolution (PDB ID: 1t2n, 1t4m, 3d2c, 3qmm).

Contact map analysis and molecular dynamics simulations–an insight into the biophys-

ical property of the obtained mutations. The role of the predicted mutations in enhancing

thermostability in Bacillus subtilis lipases were analyzed by contact map analysis and molecular

dynamic simulations. Protein contact map represents the contact distance between amino acid

residues in a protein structure using a binary matrix. It has been reported that two residues in

a protein are in contact if their Euclidian distance is <8Å [46]. This is presumed to differ from

protein to protein and thus can be instrumental in analysis of differences in contacts between

mutated thermostable and mesostable Bacillus subtilis lipase. Therefore, contact maps of the

mutated and wild type structures were constructed using CMView [47]. Combined contact

map and 3D structure visualization was performed through PyMol software. As controls of

this experiment, comparative analysis of four engineered structures of Bacillus subtilis lipase

(1t2n, 1t4m, 3d2c, 3qmm) and their wild type structure (1i6w) were also performed. Number

of unique contacts in each structure were calculated. Further, HB-plot tool was employed to

analyze the network of hydrogen bonds in wild type and the mutated structures [48]. After

that MD simulation was carried out using GROMACS-4.5.3 in conjunction with the OPLSA

force field for 30ns at 320, 330 and 350K. Secondary structure analysis was performed using

the DSSP program. Other analyses such as root-mean-square deviation (RMSD), root-mean-

square fluctuation (RMSF), radius of gyration, solvent accessible surface area (SASA), and

hydrogen bonds, were performed using tools within the GROMACS simulation package.

RMSD calculation was carried out using the starting structure of each simulation as a refer-

ence. For hydrogen bond calculations, a donor−acceptor cut off distance of 0.35 nm and

acceptor−donor−hydrogen bond angle cutoff of 30˚ were considered. The visual analysis of

structures and preparation of figures was carried out using Pymol and Xmgrace.

In vitro analysis of the predicted mutations. Bacillus subtilis 168-lipase clone in pET21b

was a kind gift from Dr. N. Madhusudhan Rao of CCMB, India. The lipase gene of 639bp

cloned with the restrictions sites BamHI and NdeI. It was sub-cloned into pET28a vector with

the same restriction sites. Multi-site directed mutagenesis was carried out according to the

protocol of Agilent Technologies, Quick Change Light multi-site directed mutagenesis kit.

Two double mutations were chosen as per ranking given by RankProt. The amino acids in

wild type Bacillus subtilis lipase (1i6w), T47 and Q121 were mutated to T47S, T47N and

Q121N. The primers were 5’-aggcgcttccgggaacagatccaaataataagattttatacacatc-3’ for Q121N

mutation, 5’-gttgatttttgggacaagacaggcaataattataacaatggaccggtattat-3’ for T47N mutation and

5’-ataccggtccattgttataattgctgcctgtcttgtcccaaaaatc-3’ for T47S mutation. The mutations were

confirmed by sequencing. Plasmids harboring the wild type and two mutant genes (mut 1 and

mut2) in pET28a vector were transformed into E.coli BL21 cells. Transformed cells were

induced with IPTG, harvested by centrifugation, washed with STE buffer, resuspended in lysis

buffer and sonicated. The sonicated cells were centrifuged at 20,000 rpm at 4˚C for 30 minutes

and the supernatant was checked for protein expression by SDS- polyacrylamide gel electro-

phoresis (SDS–PAGE) carried out as described by Laemmli method. Further Ni–NTA
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purification of the wild type and mutants were performed and finally eluted in 1X TE buffer

pH 8 with 250mM imidazole. Fractions showing the presence of protein were pooled and dia-

lysed in 50mM phosphate buffer to remove imidazole. The estimation of protein concentration

of the purified fraction was performed in microtitre plate by standard Bradford assay tech-

nique using BSA as standard at 595nm [49].

Enzyme assay and kinetics of the attained mutations. Lipase was routinely assayed for

the wild type and mutants, spectrophotometrically in microtitre plate reader using p-nitro-

phenyloctanoate (p-NPO) as substrate following the protocol of Glogauer et al. (2011) [50].

One enzyme unit (U) was defined as the lipase activity that liberated 1 μmol equivalent of

p-NP ml-1min-1 under the standard assay conditions. All assays were performed indepen-

dently and in triplicates. The enzyme activity, specific activity, percentage yield and fold

purification was calculated for the wild type and mutant enzymes. The influence of substrate

concentration on the reaction velocities of purified lipases was studied with pNPO ester

under standard assay conditions. The Michaelis-Menten constant (Km) and the maximum

velocity for the reaction (Vmax) were determined from Lineweaver-Burk plot. Enzyme speci-

ficity (Kcat) and specificity constant (Kcat/Km) were also calculated.

Determination of optimum temperature for activity and melting temperature (Tm) for

stability for wild type and mutant lipases. The temperature giving maximum substrate con-

version over a 30 minutes’ reaction time was determined by incubating the wild type and

mutant enzymes in a reaction volume of 50μL at various temperature within the range of 30˚C

to 90˚C in Agilent SureCycler 8000 gradient PCR system. Enzyme assay was carried out as

described earlier using p-NPO as substrate at 35˚C for 10 minutes. All experiments were per-

formed independently and in triplicates. Specific activity and percentage relative activity were

calculated and used to compare the thermal stability of the enzymes. Further, the protocol pub-

lished by Niesen et al. (2007) was followed to measure the melting temperature of the wild type

and the mutant lipases. Real-time PCR (Agilent Mx3005p) was used to measure the fluores-

cence using 200X SYPRO orange dye (Invitrogen). No protein controls having the dye and

50mM phosphate buffer, pH 8 were used for each experiment. The temperatures (Tm) of the

transitions for melting curves were calculated from the midpoint of transition of the percent-

age relative fluorescence intensity (I) of the maximum as a function of temperature (T). The

midpoint of transition is the temperature at which 50% of the protein has denatured, and is a

measure of the protein’s inherent thermal stability [51].

Results

Dataset creation and feature selection

As thermostability is relative to mesostability, a binary dataset was created comprising 127

structures of thermostable proteins (TP) and their mesostable homologues (MP) (S1 Table).

The data was representation of bacteria (58%) followed by archaea (27%) and eukaryotes

(13%). It also included both eukaryotic and prokaryotic proteins belonging to 132 thermosta-

ble organisms. For feature generation, numerical data of 25 protein structural features previ-

ously reported to contribute to thermostability were calculated. The next step was primary

filtering for feature selection by performing two-tail KS test, after which the attributes nar-

rowed down to 17 features (Table 1).

Ranking features contributing towards protein thermostability

After preliminary feature selection by two tail KS-test, the quest was to find the importance of

each feature in contributing towards thermostability. Analytical Hierarchical Process (AHP)

was employed as it is a multi criteria decision making approach. The steps have been illustrated
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in Fig 2A. The ranks have been presented in a scale of 0–1. As seen from Fig 2B, II and MMH

occupied the highest rank with priority vector of 0.091. It was interesting to note that IGT, SB

and CASA with priority vector of 0.081 were ranked as the second group of major factors con-

tributing towards thermostability.

Notable observations were that total percentage γ-turns (inverse and classic; GT) and

hydrogen bonds (HB) in a protein occupied the third rank with priority vector 0.072 and

fourth rank with priority vector of 0.071 respectively. Another interesting observation was that

total percentage γ-turns (inverse and classic; GT) and hydrogen bonds (HB) in a protein occu-

pied the third rank with priority vector 0.072 and fourth rank with priority vector of 0.071

respectively. This indicates that all type of γ-turns and hydrogen bonds do not equally contrib-

ute towards thermostabilizing proteins. This type of priority obtained for the biophysical fea-

tures indicates that mutations are intricately directed and particular to modulate specific

feature space and the global effect may be quite predictable.

Another interesting feature of this study was that AAI, ASI, NASA, PV and PASA occupied

lower ranks, which may indicate that increase in such factors have less impact on enhancement

of protein thermostability. The next step was finding the accuracy of the method. The CR

value is the litmus paper test of AHP method indicative of its accuracy. The CR of the pairwise

comparison matrix was calculated to be 0.002. Thus according to Saaty, 2000 the aforemen-

tioned judgment to derive at the priority values can be accepted as consistent as the CR value

was less than 0.1. pertaining to thermostability [45].

Development and validation of RankProt

RankProt tool was developed in python as a protein thermostability predictor by using the pri-

ority values of the 17 protein biophysical features obtained by AHP for mutation stability cal-

culations. The input to the tool are the mutated and wild type structures of proteins (.pdb

format). The mutated structure can be derived using Chimera and stable mutations can be pre-

dicted through various available mutation stability prediction tool or designed based on user

requirement. The detail of the mutation derivation protocol is explained with Bacillus subtilis
lipase as a case study in this paper. Another advantage is that multiple mutations can be ana-

lysed at the same time. As an output RankProt provides relative ranks for the mutated protein

and the wild type. If the rank difference of the mutated protein is positive, then it can be pre-

dicted that the mutations performed will lead to enhanced thermostability. It was seen that

higher rank difference ensured better thermostability.

RankProt was validated by multi-fold in silico blind tests. The first blind test involved 100

thermostable-mesostable pairs and 40 mesostable-mesostable protein pairs randomly chosen

from RCSB Protein Data Bank. The dataset used is given in S4 Table and the generated rank dif-

ference have been plotted and presented in top left of S1 Fig. The mesostable-mesostable pairs

were chosen as a control dataset for reverse validation. The prediction was to see that the relative

mean rank differences obtained while ranking thermostable-mesostable pairs are higher (indi-

cating method accuracy) than when mesostable-mesostable pairs are ranked. In line with the

prediction, the mean rank value difference obtained for the thermostable-mesostable and meso-

stable-mesostable protein pairs were 0.09 and 0.01 respectively. This result indicated that Rank-

Prot could successfully identify thermostable proteins. The accuracy that we could attain was

91% with Area Under Curve (AUC) of 0.927 calculated from receiver operating characteristic

(ROC) curve by fitted maximum likelihood estimation by LABROC4 (Fig 2C). The method for

obtaining accuracy has been adopted from Wang et al. 2010 [52]. The result has been presented

in Table 2. It can be conclusively said that this method could differentiate between thermostable

proteins from their mesostable counterparts with 91% accuracy.
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As a second method to report the high accuracy in the performance of RankProt, the devel-

oped tool was tested on (i) 5 mutated thermostable structures available for Bacillus subtilis
lipases (retrieved from RCSB PDB) along with its wild type mesostable structure (PDB ID:

1i6w). (ii) 104 mutated structures of bacteriophage T4 lysozyme (mutations leading to gain in

stability) with respect to its wild type structure (PDB ID: 2lzm) and (iii) 47 mutated structures

of human lysozyme (mutations leading to decrease in stability) with respect to its wild type

structure (PDB ID: 1lz1). The third test set is of special importance as the mutants were lower

in thermostability w.r.t. the wild type which has a melting temperature of 64.9˚C. The results

have been presented in S5 Table and S1 Fig. As can be observed from S5 Table RankProt

assigned higher ranks to the thermostable mutants, thus positive rank differences were obt-

ained. In another blind test 104 thermostable mutated and wild type structures of bateriophage

T4 lysozyme were ranked. From the top right of S1 Fig it can be observed that RankProt per-

formed extremely well in identifying 99 thermostable mutant proteins out of 104 available

mutants, with higher rank than the wild type counterpart. In the third test, bottom of S1 Fig,

42 out of 47 loss of function mutants were given lower ranks, thus negative rank difference was

obtained. Hence it can be inferred that RankProt was successful to assign higher ranks to the

thermostable mutants. It may be noted here that as the ranks are relative the obtained the rank

value of the mesostable counterpart differs from case to case and is not a constant. Thus to

identify thermostabilising mutations, the observable value should be the rank value difference

between the proteins being compared. Therefore, it can be reported here that the method was

successful in identifying multiple stabilizing mutations and predict the consequence of muta-

tion on the protein three-dimensional structures.

Case study: Prediction and ranking mutations for thermostabilizing Bacillus subtilis
mesostable lipase. To show the practical applicability of RankProt Bacillus subtilis lipase was

chosen as a case study. 20 single point mutations were predicted to be stabilizing by the avail-

able fourteen mutational stability prediction servers for Bacillus subtilis lipase and the obtained

mutations were ranked by RankProt relative to the mesostable structure (1i6w). Out of these

20 single point mutations, 18 combinations of double mutations were ranked higher than the

mesostable counterpart. Further, the two double mutations that resulted in highest and lowest

rank value difference were chosen for further analysis. The mutations were in residues T47S,

Q121N (mut 1) which had the rank of 0.5 relative to the wild type with rank 0.49. T47N,

Q121N (mut 2) had the rank of 0.54 relative to the wild type with rank 0.45. The rank differ-

ence of mut 2 with that of the wild type (rank difference of 0.09) was greater than mut 1 (rank

difference = 0.01).

In silico validation. Analysis of biophysical properties of wild type and mutated proteins

showed that there was increment in γ- turns (GT), salt bridges (SB), ionic interaction (II), cat-

ion-π interaction (CPI), non- polar accessible surface area (NASA), main-chain side-chain

(MSH) and side-chain side-chain (SSH) hydrogen bonds in mut 1. In mut 2, there was increase

in salt bridge (SB), γ-turns (GT and IGT), charged accessible surface area (CASA), hydropho-

bic interaction (HI), main-chain main-chain (MMH), main-chain side-chain (MSH) and side-

chain side-chain (SSH) hydrogen bonds. The reason behind the obtained lower rank difference

Table 2. Validation and accuracy of RankProt.

Blind test set No. of proteins Homology Accuracy% Mean Rank Rank Difference

1 100 TP Homologous 91 0.54 0.09

100 MP Homologous 0.45

2 40 MP Homologous 0.49 0.01

40 MP Homologous 0.50

https://doi.org/10.1371/journal.pone.0203036.t002
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for mut 1 can be attributed to the decrease in main-chain to main- chain hydrogen bonds

(MMH) and charged accessible surface area (CASA) which were ranked as high priority ther-

mostability predictors. This result led to the prediction that mut 2 will be more thermostable

than mut 1. Further, molecular superimposition in PyMol showed low RMSD values of 0.278

(mut 1 and 1i6w) and 0.312 (mut 2 and 1i6w), indicating that the wild type and mutated struc-

tures were similar without any massive structural changes. Analysis of the effect on activity of

the mutants by molecular docking with (C8) substrate, resulted in binding energy of -4.49

(mut 1), -4.91 (mut 2) and -5.53 (1i6w) for the mutated and the native structures respectively.

This showed that the mutations did not affect the catalytic pocket of the lipase.

To further analyse whether our prediction was accurate regarding the higher thermostabil-

ity of mut 2 than mut 1 due to higher rank difference of mut2 compared to mut1, intra-protein

contact map analysis of the mutants w.r.t. the wild type was performed. Unique contacts in

mut 1 and mut 2 in comparison to the wild type (PDB ID: 1i6w) have been illustrated in Fig 3.

It was calculated that number of unique contacts in mutants were much higher than the wild

type structure. Furthermore, superimposition of wild type and mutant structures with their

unique contacts revealed that the unique contacts were more in the loop region of the 3D-

structure. Analysis of the total number of unique contacts, as illustrated graphically in Fig 4,

for all the Bacillus subtilis thermostable mutants available in RCSB PDB were observed to be

Fig 3. Graphical illustration of unique contacts formed in A mut 1 vs. 1i6w along with the cartoon representation

of mut 1 showing its unique contact. B mut 2 vs. 1i6w along with the cartoon representation of mut 2 showing its

unique contact.

https://doi.org/10.1371/journal.pone.0203036.g003
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greater than the wild type. Backbone unique contacts also increased in the mutants. Through

comparison of four available crystallized thermostable structures of Bacillus subtilis lipases in

PDB, it was further observed that 1t4m and mut 1 did not show any increase in unique con-

tacts pertaining to their side chains. Also, side chain unique contacts were lower for mut 2 and

were more for 1t2n, 3d2c and 3qmm. The total number of contacts formed was also higher

than the number of contacts lost, suggesting an increase in the compactness of the protein.

Similar inferences were drawn by Srivastava et al. 2014 when they performed network analysis

of thermostable mutants of Bacillus subtilis lipases showing gain of contacts leading to “reg-

ional stability” in the loops and termini of the structures. Thus it could be inferred here that

mut 2 had high probability of being thermostable.

The analysis of hydrogen bonding network in wild type and mutated structures of Bacillus
subtilis lipase uncovered that main-chain main-chain hydrogen bonds increased in four

mutated structures (3d2c, 1t4m, 3qmm, mut 1 and mut 2). Main-chain side-chain and side-

chain side chain hydrogen bonds increased in all the mutants (S2 Fig). Along with increase in

the number of hydrogen bonds it was observed that hydrogen bonds <3Å were much greater

for the mutants in comparison to the wild type structures (S3 Fig). Therefore, it can be con-

cluded that as the temperature stability increases, number of short distance hydrogen bond

also increases. It was also observed that intra-molecular hydrogen bonding networks increased

near the β-strand and α-helices of the mutants. Therefore, it can be concluded that as the tem-

perature stability increases, number of short distance hydrogen bond also increases.

MD simulation at higher temperatures for wild type (1i6w: WT), mut 1 and mut 2 were

also performed to analyse the stability of the mutated structures with respect to the rank value

differences they were associated with. RMSD, RMSF, Radius of gyration, hydrogen bonds and

secondary structure analysis of the trajectory, were performed after 30 ns MD simulation at

three different temperatures (320K, 330K and 350K). The global average RMSD was similar

for mut 1 and wild type at all temperatures. But at higher temperature of 350K the RMSD of

mut 2 was much lower than mut 1 and wild type. Thus it was assumed that mut 2 was more

Fig 4. Comparative bar graphs of unique contacts in thermostable mutants of Bacillus subtilis lipase and wild

type (1i6w). A 1i6w vs. 1t2n; B 1i6w vs. 1t4n; C 1i6w vs. 3d2c; D 1i6w vs. 3qmm; E 1i6w vs. mut 1; F 1i6w vs. mut 2. All

represents all unique contacts in PDB structure, ca represents backbone unique contacts and sc represents side chain

unique contacts.

https://doi.org/10.1371/journal.pone.0203036.g004
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thermostable than mut 1 and the wild type. Average RMSF plot showed global reduction in

flexibility for mut 2 at 350K while mut 1 shows an increase. Appreciable difference of RMSF

between wild type and mutants was observed at the C- terminus. Thus it could be inferred that

the C-terminus of Bacillus subtilis lipase played important role in its stability. At 320K (S4 Fig)

the C-terminus was more stable in mut 1 than mut 2. At 330K (S5 Fig), both N- and C-termi-

nus were less flexible than wild type. This showed that the predicted mutations by RankProt

resulted in lowering of flexibility of the mutants. At 350K the flexibility of the wild type and

mutants, arranged in descending order was mut 2> mut1>wild type (S6 Fig). Again, the aver-

age value of RMSF showed that mut 2 had considerable reduction in the RMSF values globally.

The difference plots of RMSF of mut 1 (Red lines) and mut 2 (blue lines) with wild type (green

lines) at 320K, 330K and 350K has been illustrated in Fig 5. The comparison highlighted that

the reduction in the flexibility was observed in regions where mutations were performed

Fig 5. Graph showing difference in RMSF between mut 1, mut 2 and wild type lipase at A 320K, B 330K, C 350K.

https://doi.org/10.1371/journal.pone.0203036.g005

Multi criteria-ranking platform to attain protein thermostabilizing mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0203036 October 4, 2018 13 / 25

https://doi.org/10.1371/journal.pone.0203036.g005
https://doi.org/10.1371/journal.pone.0203036


which were specifically at the atom numbers 689–702 for T47 and 1783 to 1796 for Q121 in

mut 1 and mut 2.

Further, the radius of gyration was analysed in a time-dependent manner to investigate the

compactness of wild type and mutants. Lower average Rg of mutants at all the three tempera-

tures reflected that the mutants were more compact than the wild type. The radius of gyration

reflects on the packing of amino acids throughout the simulation thereby stability and folding

rate. At 320K mut2 was more compact than mut 1 and wild type. However, at 330K mut 1

becomes more compact than mut 2 but the compactness of mut 2 was still lower than the wild

type. Further, at 350K mut 2 was more compact. Therefore, mut 2 was considered more stable

than mut 1 and wild type at elevated temperatures. Analysing the average number of hydrogen

bond changes in the trajectory revealed that the average number of intra-protein hydrogen

bonds was much higher for mut 2 throughout the simulation at different temperatures (Fig 6).

Interestingly average number of main chain hydrogen bonds was also much higher for mut 2

followed by wild type and the least was observed for mut 1. The highest prioritized criteria by

RankProt are main chain hydrogen bonds. Therefore, proteins which show an increase in such

bonds will be more thermostable. It can be estimated that mut 2 will be more stable than mut

1. Analysing the secondary structure changes in mut1 and mut2 showed that at all three simu-

lated temperatures, the percentage regular secondary structures did not undergo drastic alter-

ations (S6 Table). It was also interesting to observe that residues forming the turns and beta

Fig 6. The average number of hydrogen bonds per frame of the 30 ns MD simulations A All hydrogen bonds.

B Main chain. C Side chain hydrogen bonds at 320, 330 and 350K.

https://doi.org/10.1371/journal.pone.0203036.g006
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sheets at higher temperature were more stable in mut 2 than mut 1. This shows that mutants

were more stable than the wild type at higher temperatures.

In vitro validation. The wild type lipase was successfully cloned into pET28a vector with

N-terminal His tag. Mutations at Q121N, T47S (mut 1) and Q121N, T47N (mut 2) performed

through site directed mutagenesis was successful as observed through sequencing results. S7

Fig is the gel electrophoresis picture after restriction digestion of the wild type and mutants

through NdeI and BamHI. Wild type and mutant proteins gave bands on a stained SDS-PAGE

gel which is corresponding to 23KDa (S8 Fig). The purity of lipase after affinity purification

increased by 10.8, 2.9 and 4.7 folds over the crude extracts of wild type, mut 1 and mut 2 lipases

respectively. The percentage yield was calculated to be 84%, 74% and 79% for wild type, mut 1

and mut 2 lipases respectively. The specific activities of wild type and mutant lipases on hydro-

lysis of p-nitrophenyloctanoate were observed to increase after affinity purification. Kinetic

parameters for Km, Kcat and (Kcat/Km) were calculated (Table 3). It was observed that mut 1 did

not show an enhancement in activity (Kcat/Km). mut 2 showed 3-fold enhancement in activity.

From Table 3, mut 2 can be called catalytically more efficient with a lower Km value than wild

type. However, the Km value increased for mut 1. Therefore, it can be concluded that mut 2

was the most catalytically efficient lipase among mut 1 and wild type.

Temperature stability of the thermostable mutants. The temperature effects catalyzed

by wild type and mutant lipases from Bacillus subtilis has been illustrated in Fig 7 for different

temperature range at pH 8.0. The enzyme relative activity for wild type lipase was maximum at

35˚C, being stable with temperature in the range of 30˚C– 50˚C, with a sharp decrease at tem-

peratures above 50˚C with only 20% of activity left at 60˚C. It was observed that mut 1 retained

optimum activity in between 30˚C to 45˚C; attaining maximum activity at 40˚C and the activ-

ity dropped slightly thereafter. The temperature stability of mut 2 was observed to increase

from 30–55˚C and the activity dropped thereafter. The maximum activity was observed at

55˚C. Comparison of the temperature stability of mut 1 and mut 2 with previously reported

thermostable mutants of Bacillus subtilis lipase obtained by directed evolution strategies

(Table 4) showed that this represents the fewest number of predicted mutations that resulted

in enhancement in thermostability by 20˚C.

Calculating the melting temperature (Tm) by Thermofluor technique resulted in thermal

profiles of wild type, mut 1 and mut 2 as illustrated in Fig 8. The Tm of the mutants was calcu-

lated to be 63˚Cand 66˚C with respect to the wild type which has a Tm of 59˚C. Therefore, mut

2 was more thermostable than mut 1. Further, the Tm of the mut 1 and mut 2 were comparable

to those of previously reported thermostable mutants of Bacillus subtilis lipase; 3d2a and 3d2b

respectively (Table 4) with 4 and 6 mutations induced randomly through error prone PCR. It

can be concluded here that though both the mutants possessed increased temperature stability

than the wild type, the thermostability of mut 2 was greater than mut 1 because the rank of

mut 2 was greater than 0.54 which was in-turn greater than mut 1. Moreover, contact map and

MD simulation analysis also predicted mut 2 to have greater stability than mut 1. Therefore,

Table 3. Enzyme kinetics parameters of the wild type and mutant lipases.

Lipase Km (mM)� Kcat × 103 (min−1) Kcat/Km × 103 (mM−1min−1)

WT 0.64 ± 0.85 2.208 ± 1.28 3.450

mut 1 1.33 ± 1.24 1.399 ± 0.97 1.051

mut 2 0.44 ± 1.53 4.280 ± 0.43 9.727

�Kinetic parameters were estimated from assays conducted at 35˚C using PNPO as substrate.

https://doi.org/10.1371/journal.pone.0203036.t003
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the methodology employed for attaining thermostable Bacillus subtilis mutants by ranking of

mutations through RankProt was successfully validated.

Discussions

A complete understanding of the rationale behind protein thermostability and to use this

understanding to develop thermostable proteins in laboratories will require more investiga-

tions in the future. We have however made some progress towards this goal. This work showed

that features related to intra-protein non-covalent interactions (biophysical interactions) can

be used to select multiple mutations that will enhance protein thermostability. This was ach-

ieved by enumerating the intra-protein biophysical interactions as features from a binomial

protein dataset comprising of 127 thermostable and mesostable homologous protein struc-

tures. Restricting the binomial dataset only to protein three dimensional structures was taken

as a mandate as it is known that function of a protein is determined by the conformational

Fig 7. Graph showing % relative activity of wild type, mut 1 and mut 2 lipases from temperatures 30–90oC. Error

bars are the standard deviations of experiments done independently and in triplicates.

https://doi.org/10.1371/journal.pone.0203036.g007

Table 4. Temperature stability of Bacillus subtilis lipase mutant crystal structures obtained from PDB generated by directed evolution.

PDB ID No. of mutation mutation: location Tm˚C Topt˚C

1i6w (WT) 0 None (wild type) 56 35

1t2n 3 L114P: loop 61.2 45

3d2a 4 I157M: 310 helix 63.4 N/A�

3d2b 6 F17S: 310 helix, N89Y: C-terminal helix 67.4 50

3d2c 9 A15S: loop, A20E: N-terminal helix 71.2 55

3qmm 12 M137P: loop, S163P: N-terminal helix 78.2 65

Mut 1 2 T47S:loop, Q121N: loop 63 40

Mut 2 2 T47N: loop, Q121N: loop 66 55

�N/A: Not available

https://doi.org/10.1371/journal.pone.0203036.t004
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arrangement of amino acid residues in the three dimensional structure space. As thermostabil-

ity is said to be independent of phylogenetic diversity, the dataset consisted of proteins from

all phylogenetic groups [53]. Further, the dataset covered all six enzyme classes and structural

proteins. Therefore, the robustness and unbiased nature of the dataset can be inferred which

makes the platform set for further research on protein thermostability.

This binomial dataset was used to calculate features related to biophysical interactions from

the three dimensional structures of the homologous pairs of thermostble-mesostable proteins.

Most of the features selected in this work have been previously mentioned to be important in

enhancing protein stability by various researchers [2, 54–55]. As a new member in the feature

list- γ-turns were introduced. Such turns have been reported to be an important feature for

protein thermostability in lipases in one of our earlier work [55]. It can be noted here that fea-

tures and their subtypes were considered together due to the belief that in contributing to-

wards certain functional properties of any protein, the overall contribution of certain features

is the cumulative effect of the contributions of its sub-types. Individually they may show posi-

tive or negative effect but globally their effects can balance out- in comparison to their meso-

stable counterparts, resulting in a subtler effect. Good examples can be found in the earlier

works [2, 54–57]. This can be observed for the feature of total percentage of hydrogen bonds

and its sub-types (main-chain to main-chain, main-chain to side-chain and side-chain to side-

chain) and total percentage of γ- turns with its sub-types (classic and inverse).

The originality of this work was in using multiple biophysical interactions as feature predic-

tors of protein thermostability and ranking these features by employing AHP in accordance to

their importance in contributing towards protein thermostability. AHP has been previously

used in industrial engineering applications, selecting ecological indicators for river flow resto-

ration, and in health care research. As per our knowledge, it is being employed for the first

time to solve multi criteria decision making problem for predicting protein thermostabilizing

Fig 8. Thermostability graph of wild type and mutant lipases. W for wild type lipase; M1 for mut1 and M2 for mut 2

lipases. The mid-point of fluorescence transition or where 50% relative fluorescence is achieved is the T_m of the

enzymes. The calculated T_m for wild type, mut 1 and mut 2 were: T_m1: 59oC, T_m2: 63oC, T_m3: 66oC.

https://doi.org/10.1371/journal.pone.0203036.g008
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mutations. [43–44]. After applying AHP for feature ranking and obtaining their corresponding

eigen values, it was interesting to observe that the features were clustered to ranked- groups

and each group corresponded to equal priority of these features in contribution towards ther-

mostability. The highest ranked group of features as predictors of protein thermostability con-

sisted of ionic interactions and main-chain to main-chain hydrogen bonds. Previous research

reported ionic interactions and main chain hydrogen bonds as important factors contributing

towards protein thermostability [58–59]. For example, Vetriani et al. (1998) observed reduc-

tion in inter subunit ion-pair network in the less stable mutated glutamate dehydrogenases

from Thermococcus litoralis. Restoring the interactions resulted in enhancement in thermosta-

bility at 104˚C in comparison to the wild type [59]. Again, ample literature exists on the

enhancement of thermostability due to increase in hydrogen bond. For example, Vogt et al.

(1997) examined 16 protein families of thermophilic and mesophilic proteins and concluded

that increase in number of hydrogen bond enhances protein thermostability [60]. Among all

the types of hydrogen bonds, main-chain to main-chain hydrogen bonds can be important in

thermostabilizing proteins as they are considered to have lower configurational entropy [20].

Further, Sadegi et al. concluded main-chain hydrogen bonds to be an important factor con-

tributing towards thermostability by drawing an elaborate analysis on a dataset containing 60

structures of thermophilic proteins and their mesophilic homologues [54].

The next high priority ranked feature group included inverse γ- turns, salt bridges and

charged accessible surface area. In γ- turns, hydrogen bond forms between one main chain

carbonyl oxygen to the main chain N-H group two residues along the chain. Such hydrogen

bonds are also known as short strong hydrogen bonds with a distance <2.7Å and have been

previously reported to increase thermostability of lipases [56]. It is also worth mentioning here

that these results corroborate our previous attempts to relate thermostabilizing features at all

the hierarchies of protein organization through machine learning methodologies which

revealed that main chain hydrogen bonds, inverse γ-turns and aromatic interactions were

important to enhance protein thermostability [57]. Further, the third and fourth ranks con-

sisted of the total percentage γ-turns (inverse and classic γ-turns) and total hydrogen bonds in

a protein respectively. This indicates that all type of γ-turns and hydrogen bonds do not

equally contribute towards thermostabilizing proteins.

It was further interesting to note that aromatic and polar interactions occupied lower ranks,

indicating that increase in such features may have less impact on enhancement of protein ther-

mostability. Findings on enhancement in stability due to increase in aromatic interactions

exist [20, 60]. It has been reported that aromatic interaction improved the thermostability of

mesophilic xylanase [20]. But, literature ceases to exist covering the spectrum of all six enzyme

classes where increase in aromatic interaction have been studied for thermophilicity enhance-

ment. Results of Kumar et al. who examined 18 non-redundant families of thermophilic and

mesophilic proteins, reported that consistent pattern of differences in contribution of packing

volume, polar and non-polar surface area exist between mesophilic and thermophilic proteins

[61]. This corroborates with the low priority obtained for such factor in this study. Karshikoff

et al. (1998) have also reached to similar conclusion about the decrease in packing volume in

thermostable proteins [62].

To proceed further with the work of identifying thermostabilising mutations, the calculated

priority values of features were employed to write a thermostabilising mutation prediction

tool- RankProt. It is based on the AHP approach discussed earlier, trained by ranks of protein’s

biophysical interactions as features, and uses these values to predict thermostabilizing muta-

tions. The existing state-of-the-art tools to predict stability changes on point mutations in

chronological order are FoldX (3.0, beta 6.1) [20], I-Mutant [21], CUPSAT [23], ERIS [22],

PoPMuSiC [25], SDM [26], STRUM [27], EASE-MM [28], HoTMuSiC [30], T-MP-2 [29].
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These stability prediction algorithms are mostly knowledge based, few are machine learning

based and further lesser are based on molecular dynamics [21]. These tools predict thermody-

namic stability (ΔΔG) or Tm (melting temperature) changes upon mostly single site mutations

except ERIS (predicts changes on single and multi-site mutations) [22]. It can be also said here

that predicting accuracy of the existing methods is also restricted by the availability of mea-

sured and well documented ΔΔG of proteins and by the training datasets. On the other hand,

the outputs of RankProt are relative ranks of the mutated and wild type protein structures.

Thus, comparing the AUC (0.927) obtained by RankProt with other existing tools that predicts

thermodynamics or melting temperature changes as outputs was not justified. Further, restric-

tion due to the unavailability of the source code of these tools, we could not compare our data-

sets performance accuracy with that of the available tools. It can be reported here that

RankProt is advantageous than the ones explained above as it is also capable of enumerating

the effect of multiple mutations. This relates to the probability of higher success rate of attain-

ing in vitro thermostable mutants, as multi-point mutations were predicted to have>50% suc-

cess rate [9]. The other concern is that unlike RankProt, the available algorithms do not

provide the details about the biophysical interaction rearrangements occurring due to the

mutations. Thus, RankProt performs better in all these contexts being simple in execution and

depending on relative ranks of mutated and wild type structures rather than being dependent

on thermodynamics or melting temperature changes. Hence, the present developed method

would be highly instrumental in the area of recombinant production of thermostable proteins

in the shortest possible time.

Regarding the practical applicability of RankProt it can be said that, RankProt passed all in
silico validation tests with AUC 0.927. It could classify thermostable mutants (Bacillus subtilis
lipases, bacteriophage T4, Human lysozyme) by providing them with higher ranks relative to

their non-mutated wild type. Thus RankProt was further used to evolve thermostable Bacillus
subtilis mesostable lipase by predicting thermostabilizing mutations. Mutations were predicted

for Bacillus subtilis mesostable lipase and two double mutants were developed in vitro (mut 1

and mut 2; mut 2 had higher stability rank difference with the wild type structure than mut 1).

The biophysical interactions which showed increase in the mutant lipases (in silico studies) rel-

ative to the wild type, have been previously implicated to increase thermostability of proteins

by various researchers [2, 54–55]. The results suggest that the mutants were more compact

than the wild type structure. It was interesting to note that packing volume decreased in both

the mutants. Compactness has been earlier proposed to enhance temperature stabilily by

increasing protein rigidity [63]. Analysis of the secondary structure of wild type and mutants

further uncovered that new inverse γ-turns formed in the mutants, near helix 7. Such turns

may be involved in stabilization of the helices by formation of intra-molecular hydrogen

bonds. Hydrogen bonds were reported to be dominantly involved to achieve temperature sta-

bility. Further, main chain and side chain hydrogen bonds have been previously linked to pro-

tein thermostability by various researchers [2, 54]. It was also observed that intramolecular

hydrogen bonding networks increased near the β-strand and α-helices of the mutated lipases.

This can result in better packing due to pinning of helices and stands rendering them rigid to

unfolding at elevated temperatures. These aforementioned results substantiate previous find-

ings that increment in hydrogen bonds leads to thermostabilization of proteins [55]. Increase

in short distance hydrogen bonds can lead to better stability of proteins as it was reported that

as distance becomes smaller, the charge transfer contribution to the hydrogen-bond energy

increases and the angle decreases [64].

Further, extensive analysis by performing contact map analysis, molecular docking and 30

ns MD simulation for the two mutants and the wild type structures, revealed that the predicted

mutations were stabilizing. RMSD plots of the thermostable mutants were comparable with
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the work by Huang et al. who reported low RMSD value of thermostable mutant of Cocaine

esterase and Singh et al. (2015) who showed that RMSD plots of the thermostable mutants

obtained by directed evolution (PDB ID: 1t4n, 1t2n, 3d2a, 3d2b, 3d2c) were lower than that of

the wild type Bacillus subtilis [65–66]. RMSF analysis of the simulated trajectories showed low-

ered flexibility in the N- and C- terminal of the mutants. It was earlier reported that docking of

N- and C- terminus resulted in reduction of flexibility and thus was responsible for enhancing

protein stability [2, 65–67]. Therefore, the obtained results corroborated previous work and

suggests that reduced flexibility of N-terminal and C-terminal of mut 1 and mut 2 can play

crucial role in their temperature stability. Number of hydrogen bonds were also enhanced in

the simulation trajectories of the mutants. This corroborates with results of Srivastava et al.

(2014) who by performing MD simulation found that hydrogen bonds increase in thermosta-

ble mutants of Bacillus subtilis lipase [68]. This endorses our finding that AHP prioritized

main chain to main chain hydrogen bonds to be a major contributor for increasing protein

thermostability. It has also been previously reported that total number of residues occurring in

regular secondary structure is an indicator of the stability of a protein [68]. This corroborates

with the observation that at all three simulated temperatures, the percentage of regular second-

ary structures and average number of residues forming these secondary structures were higher

in mutants compared to the wild type. β-sheets were also observed to be enriched in the

mutants. This corroborates with results obtained by Leuenberger et al. (2017) who reported

enrichment of beta sheet structures in thermostable proteins [69]. Notably, it was observed

earlier that mutants have higher number of γ- turns in the loop region than the wild type.

Therefore, it adds strength to our earlier statement that γ- turns may increase the stability of

the mutants by stabilizing the turns.

As the in silico experiments showed that the mutations were thermostabilising, the pre-

dicted mutations were then incorporated by performing multi-site directed mutations on the

wild type clone of Bacillus subtilis lipase. Protein purification, enzyme assay of the purified

mutated and wild type lipases showed enhancement in thermostability and kinetic stability.

Such type of enhancement in the kinetic stability of Bacillus subtilis mutants engineered by

directed evolution was observed by Acharya et al. (2004) [70]. The stability of mut2 (stability

rank difference 0.09) was higher than mut 1 (stability rank difference 0.01). This corroborates

with our results obtained by in silico studies. It can be inferred here that the present method

not only enhanced the thermostability of mutants but also had a positive effect on their cata-

lytic efficiency. Conclusively it can be said that RankProt can be employed for prediction of

thermostabilizing mutations and generation of thermostable mutants in laboratory. It can be

reported here that this is the minimum number of mutation in Bacillus subtilis lipase that led

to such an increase in temperature stability as compared to those thermostable mutants previ-

ously obtained by directed evolution techniques.

Conclusions

In this article, we presented a significant progress toward the design thermostable mutants.

The novelty of this work was in using a multi criteria decision making method (AHP) in devel-

oping a tool to predict protein thermostabilising mutations based on prioritizing protein bio-

physical interaction as features as contributors of thermostability. The different priority

groups comprising of combinations of various biophysical features related their importance in

contribution towards protein thermostability. The ranks obtained for the features also revealed

that mutations can be intricately directed by modulating the biophysical feature space leading

to increase in protein thermostability. The relevance of this work is that by employing the

developed tool, circumventing the requirement of selection pressure and colony screening to
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obtain thermostable mutants was made possible. It is more robust than the existing tools that

predict protein thermostability changes upon mutations, being independent of predicting

thermodynamic or melting temperatures changes which is a challenge in itself requiring com-

plicated calculations, computational powers and proficiencies. Additionally, this tool can not

only be applicable to predict thermostabilising mutations of enzymes, but also can be used for

predicting thermostabilising mutations for any non enzymatic or structural proteins. Further,

being able to predict the effect of multiple mutations is an added advantage of RankProt in

achieving higher probabilities of success for in vitro evolution of recombinant thermostable

proteins. This ensures results in a shorter possible time by utilization of lesser effort and capital

in comparison to the random approaches of directed evolution. In future, the rationality of

this method can be further tested on other selection pressures that enhance protein stability in

extreme conditions.
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