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Abstract: Light-induced oxidation of lipids and proteins provokes retinal injuries and results in
progression of degenerative retinal diseases, such as, for instance, iatrogenic photic maculopathies.
Having accumulated over years retinal injuries contribute to development of age-related macular
degeneration (AMD). Antioxidant treatment is regarded as a promising approach to protecting
the retina from light damage and AMD. Here, we examine oxidative processes induced in rabbit
retina by excessive light illumination with or without premedication using mitochondria-targeted
antioxidant SkQ1 (10-(6’-plastoquinonyl)decyltriphenyl-phosphonium). The retinal extracts obtained
from animals euthanized within 1–7 days post exposure were analyzed for H2O2, malondialdehyde
(MDA), total antioxidant activity (AOA), and activities of glutathione peroxidase (GPx) and
superoxide dismutase (SOD) using colorimetric and luminescence assays. Oxidation of visual
arrestin was monitored by immunoblotting. The light exposure induced lipid peroxidation and
H2O2 accumulation in the retinal cells. Unexpectedly, it prominently upregulated AOA in retinal
extracts although SOD and GPx activities were compromised. These alterations were accompanied
by accumulation of disulfide dimers of arrestin revealing oxidative stress in the photoreceptors.
Premedication of the eyes with SkQ1 accelerated normalization of H2O2 levels and redox-status of
lipids and proteins, contemporarily enhancing AOA and, likely, sustaining normal activity of GPx.
Thus, SkQ1 protects the retina from light-induced oxidative stress and could be employed to suppress
oxidative damage of proteins and lipids contributing to AMD.

Keywords: light-induced retinal damage; age-related macular degeneration; oxidative stress;
antioxidant activity; superoxide dismutase; glutathione peroxidase; mitochondria-targeted
antioxidant; SkQ1; visual arrestin; disulfide dimerization of proteins

1. Introduction

The mammalian retina is highly vulnerable to oxidative stress. Indeed, photoreceptor and
retinal pigment epithelium (RPE) cells generate high levels of reactive oxygen species (ROS) due
to a number of factors. First, photoreceptors are constantly exposed to light and contain a number
of different photosensitizer molecules. Second, they metabolize and function under high oxygen
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conditions: the retina is characterized by extremely high oxygen consumption [1]. Third, membranes
of photoreceptor discs are enriched in polyunsaturated fatty acids that are especially susceptible
to oxidative damage [2]. The recycling of photoreceptor discs suffering from oxidative damage is
performed via their phagocytosis by RPE and oxidative damage to photoreceptors induces intense
accumulation of ROS in pigment epithelium [3]. These processes impose a great risk on the retina,
especially in older people, as retinal neurons and RPE cells become especially susceptible to oxidative
damage in the aging tissue [4,5].

Oxidative damage to the retina is commonly induced by prolonged eye exposure to
natural or anthropogenic light sources resulting in progression of light retinopathy (light/photic
maculopathy) [6–10]. Having accumulated over years, light-induced injuries were suggested to
provoke age-related macular degeneration (AMD), the leading cause of vision deterioration and
blindness in the elderly [11,12]. Consistently, there are pronounced similarities between oxidative
retinal damage in experimental animals exposed to bright light, and in late-stage AMD patients [13,14].
Indeed, the essential features of human dry (non-neovascular) AMD can be reproduced in the models
of light-induced retinal damage (LIRD) [15–18]. Our previous histological studies revealed that
retinas of the animals exposed to various doses of light illumination exhibit such hallmarks of AMD
as photoreceptor apoptosis, pigment epithelial cell migration into the neural retina, disturbance in
blood-retinal barrier, and inflammatory infiltration [19,20]. The studies using these models may
provide important information about general mechanisms of retinal photic damage underlying AMD
and other degenerative retinal diseases. The latter include, for instance, iatrogenic light-induced
retinopathies caused by illumination from various devices such as slit lamps, indirect ophthalmoscopes,
fiber optic endo-illuminators and light sources of operative microscopes [21,22]. Current advances in
ophthalmic surgery and eye care increased the incidence of iatrogenic photochemical damage to the
retina, which thereby represents another relevant problem of modern ophthalmology [9,10,21].

An urgent task is identifying approaches to the prevention and treatment of AMD and
light-induced retinopathies, which requires understanding of mechanisms underlying oxidative
damage of the retinal cells. One of the possible mechanisms of photoreceptor cell death induced by
light is mitochondria-mediated apoptosis [23]. Mitochondria serve as the main target of calcium
toxicity, initiated by the influx of calcium ions into the photoreceptor cells in response to light
damage to their outer segments [24]. Light-induced degeneration of RPE cells could also be mediated
by mitochondria. For instance, the function of these organelles is impaired by high levels of
all-trans-retinal, the product of rhodopsin, excessively accumulating in the RPE in response to intense
illumination [25]. Another proposed mechanism of the RPE degeneration is oxidative damage to
mitochondrial DNA [26]. Considering these findings, antioxidant treatment could be regarded as
a promising approach to protecting the retina from light-induced damage.

In general, conventional antioxidants have low bioavailability especially in the retina, which is
isolated from the bloodstream [27–29]. Consistently, there is mixed evidence on the effectiveness
of dietary uptake of such antioxidants for prevention and therapy of common ophthalmological
conditions [30]. Yet, during the last decade a new class of mitochondria-targeted antioxidants
has emerged as a perspective response to age-related diseases. One of these compounds is
SkQ1 (10-(6’-plastoquinonyl)decyltriphenyl-phosphonium), a plastoquinol derivative modified by
a lipophilic cation that allows penetration of the drug into the mitochondria inner membrane and
its accumulation in mitochondrial matrix [31]. SkQ1 possesses high bioavailability upon topical
administration in the form of eye drops: nanomolar concentrations of SkQ1 were detected in
rabbit retina after instillation of SkQ1-containing eye drops by a liquid chromatography-tandem
mass spectrometry (LC-MS/MS) method (Nevinitsyna et al, 2019, manuscript in preparation).
Therefore, it exhibits prominent protector activity towards different eye tissues when used in nanomolar
to low micromolar concentrations. Due to these features SkQ1 demonstrated efficacy in prophylactics
and therapy of glaucoma and uveitis as well as corneal lesions and dry eye syndrome of different
etiologies [32–34].



Antioxidants 2019, 8, 3 3 of 17

Recently, using a rat model of light-induced retinal degeneration we demonstrated that SkQ1
exhibits prominent protective effect towards photoreceptors and RPE cells [19]. In the current study
we addressed oxidative processes in the retina during 1 week after exposure of the rabbit eyes to
intense light with or without premedication using SkQ1. We demonstrated that the illumination
enhances lipid peroxidation and hydrogen peroxide levels in the retinal cells, which is associated with
decrease in activity of antioxidant defense enzymes, superoxide dismutase (SOD), and glutathione
peroxidase (GPx). Unexpectedly, we observed an increase in total antioxidant activity (AOA) in
the retina suggesting the existence of mechanisms of its upregulation in response to light/oxidative
conditions. These alterations were accompanied by disulfide dimerization of visual arrestin, indicating
development of oxidative stress in photoreceptor cells. Premedication of the retinas with SkQ1
was shown to accelerate normalization of hydrogen peroxide levels and redox-status of lipids and
photoreceptor proteins contemporarily enhancing AOA and sustaining normal activity of GPx.
Our data indicate that SkQ1 protects the retina from light-induced oxidative stress and therefore
it could be employed to suppress oxidative damage of proteins and lipids contributing to ocular
pathology, specifically AMD.

2. Materials and Methods

2.1. Materials

SkQ1 (10-(6′-plastoquinonyl)-decyltriphenylphosphonium) was provided by the Institute of
Mitoengineering of Moscow State University (Moscow, Russia). Phosphate buffer saline (PBS) was
from Thermo Fisher Scientific (Waltham, MA, USA). Tiletamine and zolazepam were from Virbac
(Carros, France). Xylazine hydrochloride was from Nita-Farm (Reutov, Russia). Reagents for histological
examination were from Biovitrum (St. Petersburg, Russia). Trolox (6-hydroxy-2,5,7,8-tetramethylchroman
-2-carboxylic acid), superoxide dismutase and malondialdehyde assay kits were from Sigma-Aldrich
(St. Louise, MO, USA). Glutathione peroxidase assay kit was from Randox (Crumlin, UK). Polyclonal
anti-visual arrestin antibodies were previously produced by animal immunization and affinity
purification from hyperimmune serum [35]. Mouse monoclonal anti-visual arrestin antibodies were
from Santa Cruz Biotechnology (Dallas, TX, USA) (sc-271159). Secondary antibodies were from
Jackson ImmunoResearch (Cambridge, UK) (115-035-003 and 111-035-003). Supplies for Western
blotting were from (Bio-Rad Laboratories Inc., Hercules, USA). Other reagents and supplies were from
Sigma-Aldrich, Amresco (Cleveland, OH, USA), and Serva (Heidelberg, Germany). All buffers were
prepared using ultrapure deionized water.

2.2. Animals and Ethics Statement

The study involved 87 pigmented male rabbits (6 months old, 2.3 to 3 kg) purchased from
a certified farm (Krolinfo, Moscow, Russia). Rabbits were chosen as model animals due to similarities
in ocular morphology and biochemistry between human and rabbit eyes [6]. The rabbits were housed
individually in 795 × 745 × 1776 mm cages at a 12 h light-dark cycle at a temperature of 22–25 ◦C and
humidity of 55–60% with access to maintenance rabbit food and water ad libitum. The health status
of the animals was monitored daily and no adverse events were observed. Before the experiments,
the animals were housed as described above for one week for acclimatization. All experiments were
performed under general anesthesia anesthesia induced with intramuscular injection of 1:2 mixture of
50 mg/mL tiletamine/zolazepam and 20 mg/mL xylazine hydrochloride. After the completion of the
experiments the animals were humanely euthanized by an overdose of the anesthetic. Enucleating of
the eyeballs and harvesting of the retinas were performed postmortem. The treatment of the animals
was performed according to the 8th edition “Guide for the Care and Use of Laboratory Animals” of the
National Research Council and “Statement for the Use of Animals in Ophthalmic and Visual Research”
of The Association for Research in Vision and Ophthalmology (ARVO). The protocol was approved
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by the Belozersky Institute of Physico-chemical Biology Animal Care and Use Committee (Protocol
number 1/2016).

2.3. Experimental Model

The experiments were performed using a single-blind method. 18 rabbits (groups 1–3, 6 animals
per group) were employed in a histological study of LIRD. Group 1 contained intact animals,
groups 2 and 3 were illuminated with bright visible light. One hour before the illumination the
animals were premedicated by 6 subsequent conjunctival instillations (1 instillation per 10 min) of
50 µL of either 7.5 µM SkQ1 in vehicle solution (7 mM PBS, pH 7.4, 0.0001% benzalkonium chloride)
or placebo (vehicle solution) as described in [34]. After that, the animals were placed in a restraining
device, anesthetized as described in Section 2.2 and illuminated with a halogen lamp (30,000 lx,
0.15 W/cm2) from a distance of 40 cm for 3 h. Additional injections of the anesthetic were performed
in the course of anesthesia to uphold continuous narcotic sleep. The animals were sacrificed after
keeping under normal conditions described above for 7 days and their eyes were subjected to fixation
and histological analysis.

A number of 42 rabbits was separated into 7 groups of six animals: intact animals (group 4);
illuminated animals premedicated with SkQ1 (groups 5–7); illuminated animals premedicated with
placebo (groups 8–10). The animals were sacrificed after 1 (groups 5, 8), 3 (groups 6, 9) or 7 days
(groups 7, 10) and their retinas were used for biochemical measurements.

A number of 27 rabbits were separated into 9 groups of 3 animals and their retinal extracts
were used for Western blotting analysis of arrestin dimerization: group 11 contained intact animals,
groups 12–15 received SkQ1 and groups 16–19 received placebo before illumination under the same
conditions as the previous groups. The rabbits were sacrificed 3 h (groups 12, 16), 1 day (groups 13,
17), 3 days (groups 14, 18), and 7 days (groups 15, 19) after the illumination.

2.4. Measurements of Outer Nuclear Layer Thickness

The eyeballs of the animals were enucleated immediately post-mortem and fixed in 4% formalin
in PBS (pH 7.4). Fixed eyes were sectioned through their vertical diameter, yielding material for
histological analysis that contained the central and peripheral retinal areas. The half-eyes were
subjected to routine histological procedure including dehydration in a graded ethanol series and
clearing in xylene in an automatic tissue processor. Samples were embedded in paraffin taking into
account the sample orientation. Four-micron-thick sagittal cross-sections through central areas of
posterior sectors were obtained along the eyes vertical meridian from the paraffin blocks. The sections
were mounted on Menzel–Gläser glass slides (Thermo Fisher Scientific), hydrated, and stained with
Carazzi’s hematoxylin and eosin Y. Histological preparations were examined using a Leica DM4000
(Leica, Wetzlar, Germany). Microphotographs were obtained using a high-resolution digital camera
Leica DFC420 (Leica). Viewing and processing of microphotographs and addition of scales were
performed using AxioVision 8.0 (Carl Zeiss, Oberkochen, Germany) and Adobe Photoshop CS3
software (Adobe Systems Inc., San Jose, CA, USA).

The outer nuclear layer (ONL) thickness was measured by light microscopy on retinal
microphotographs of hematoxylin-eosin stained sections. Images of slides were captured digitally
with standardized microscope and camera settings. In order to standardize all tissue sample locations
measurements were made at two equidistant (1000 µM from the optic nerve head) foci in both the
inferior and superior retinal hemispheres. Measurements were made by personnel unaware of the
study groups.

2.5. Retinal Samples

The retinas from the intact and illuminated rabbit eyes were isolated in a dim red light at 4 ◦C
immediately after the scarification. Each isolated retina was homogenized for 1 minute on ice in
0.3 mL of 50 mM Tris-HCl, 100 mM NaCl buffer (pH 7.5) using HG-15A 27,000 rpm homogenizer
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(Witeg Labortechnik, Wertheim, Germany) and the resulting fraction was centrifuged at 24,000× g
(16,000 rpm) for 20 min at 4 ◦C. The supernatants (retinal extracts) were stored at −70 ◦C until the
further studies. The pellets were homogenized in the MDA lysis buffer (Sigma-Aldrich) and the
resulting fractions (retinal homogenates) were used for lipid peroxidation measurements.

2.6. Total Protein Concentration

Total protein content in retinal extracts was measured by the bicinchoninic acid (BCA) method
using a BCA protein assay kit (Thermo Fisher Scientific) following the protocol provided by
the manufacturer.

2.7. Malondialdehyde Concentration

Lipid peroxidation level was estimated from malondialdehyde concentration in retinal
homogenates via thiobarbituric acid assay, using commercially available kit (Sigma-Aldrich) according
to the manufacturer’s instructions.

2.8. Hydrogen Peroxide Concentration

H2O2 levels were determined using a method previously described by Erel et al. [36]. H2O2 present
in retinal extract oxidizes the Fe2+/o-dianisidine complex to Fe3+, which produces a colored complex
with xylenol orange. The color intensity was measured spectrophotometrically at 560 nm.

2.9. Total Antioxidant Activity

Total antioxidant activity of retinal extracts was analyzed by means of hemoglobin/H2O2/luminol
assay according to the standard procedure [37] with modifications described previously [34,38,39].
Briefly, 1–8 µM Trolox or retinal extract (4 mg/mL of total protein) was added to the reaction mixture,
containing 0.01 mM luminol and 0.5 mM hemoglobin in PBS. The reaction was started with addition
of H2O2 to a final concentration of 6 µM and brief vortexing of the sample. Chemiluminescence was
registered each 1 s for 10 min using Glomax–Multi Detection System luminometer (Promega, Madison,
WI, USA). Antioxidant activity of the samples was expressed in Trolox equivalent.

2.10. Antioxidant Enzymes Activity

The activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in retinal
extracts was evaluated using commercially available kits in accordance with the manufacturer’s
instructions. Intensity of the colorimetric reactions was determined using Synergy H4 Hybrid Reader
(Biotek, Winooski, VT, USA) or Ultrospec 1000 (Pharmacia, Kearny, NJ, USA).

2.11. Content of Disulfide Dimers of Arrestin

The content of disulfide dimers of visual arrestin in the retinal extracts was determined by
non-reducing Western blotting as described in [20]. The arrestin was visualized using polyclonal
(monospecific) antibodies obtained previously (1:10,000 in Tris buffer saline with 0.05% Tween-20
(TBST)) [35]. Alternatively, visual arrestin (C-1) mouse monoclonal IgG1 antibodies were used
(1:5000 in TBST). Horseradish peroxidase-conjugated secondary antibodies were applied in dilution,
recommended by the manufacturer (1:1000 in TBST). All samples were normalized by total protein
content (80 µg per lane), as determined by BCA analysis. The protein bands were visualized in
ChemiDoc™ XRS+ gel documentation system (Bio-Rad) using the enhanced chemiluminescence
(ECL) kit (Bio-Rad). The weight fractions of arrestin forms were estimated from the immunoblots
by densitometric scanning of the protein bands and the data analysis using GelAnalyzer v.2010a
software [40].
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2.12. Statistical Analysis

The data were analyzed by the mean standard error (SE) method. Mean scores, SE,
and statistical significance were calculated with SigmaPlot 11 (SYSTAT Software, San Jose, CA, USA).
Statistical significance was evaluated with the Mann–Whitney U test. The probability of 0.05 was
considered significant.

3. Results

3.1. Morphological State of Bright Light-Exposed Retina: Thickness of Outer Nuclear Layer

Light-induced oxidative damage in the retina was simulated in the following animal model.
Both eyes of restrained pigmented rabbits were exposed to short-term (3 h) illumination by visual light
of high intensity (halogen lamp, 30,000 lx; 0.15 W/cm2). Prior to the illumination, the animals from
experimental groups were premedicated with six subsequent conjunctival instillations (1 instillation
per 10 min) of 50 µL of 7.5 µM SkQ1 in vehicle solution (7 mM PBS, pH 7.4, 0.0001% benzalkonium
chloride) and are referred to as “premedicated”. The “control” groups received instillations of placebo
(vehicle solution) administered in the same manner. The rabbits were sacrificed and their eyes were
collected 7 days after the illumination and subjected to histological analysis. The eyes of unexposed
animals were employed as a reference.

LIRD was assessed from the survival rate of photoreceptors in the illuminated retina via
measurement of the mean outer nuclear layer (ONL) thickness at the reference points located at
1000 µM from the center of the optic nerve disc. It was found that 7 days after the illumination the
ONL of control retinas was approximately 19% (by ~4 µM) thinner than in the intact retinas (Figure 1).
Meanwhile, the ONL thickness of the premedicated animals was statistically equal to the norm. Thus,
SkQ1 premedication was demonstrated to prevent light-induced photoreceptor loss.
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Figure 1. Normalized outer nuclear layer (ONL) thickness in the illuminated retinas of rabbits with
or without premedication with 7.5 µM SkQ1. ONL thickness in the intact retinas is taken as 100%.
Each bar represents the data obtained from six animals (12 eyes). * p ≤ 0.05 compared with the values
measured in the intact animals; ** p ≤ 0.05 compared with the values measured in the control animals.

3.2. Light-Induced Oxidative Stress in the Retina: Lipid Peroxidation and Hydrogen Peroxide Accumulation

Oxidative processes in the retina exposed to excessive illumination and effect of SkQ1
premedication on these processes, were assessed in the retinas obtained from the intact and illuminated
rabbit eyes 1, 3, and 7 days after the exposure. The retinal specimen were homogenized in
a detergent-free buffer and centrifuged, yielding membrane pellets and soluble extracts. These fractions
were used to monitor manifestations of light-induced oxidative stress in membrane and cytosol of the
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retinal cells. In particular, the membrane fraction was analyzed for the levels of lipid peroxidation
(expressed in MDA concentration), whereas the soluble extracts were assessed for hydrogen peroxide
content. Without SkQ1, MDA concentration in retinal homogenate elevated 3-fold at the first day and
normalized on day 7 of the post-exposure period (Figure 2). In the animals premedicated with 7.5 µM
SkQ1 MDA elevation was suppressed two-fold as compared to placebo, and restoration of normal
MDA level was achieved on day 3.
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Figure 2. Malondialdehyde (MDA) concentration in homogenates of intact and illuminated rabbit
retinas with or without premedication with 7.5 µM SkQ1. MDA concentration was determined by
thiobarbituric acid assay. Each bar represents the data obtained from six animals (12 eyes). * p ≤ 0.05
compared with the values measured in the control animals.

The MDA elevation in the control retinas was accompanied by accumulation of H2O2,
which increased 4-fold within 24 h after illumination and fully normalized only after 7 days of
the post-exposure period (Figure 3). Premedication with SkQ1 reduced the initial H2O2 elevation
by 41% and slightly accelerated its recovery: in the premedicated group H2O2 content completely
normalized after 3 days.

Antioxidants 2018, 7, x FOR PEER REVIEW 7 of 17 

 

3-fold at the first day and normalized on day 7 of the post-exposure period (Figure 2). In the animals 

premedicated with 7.5 μM SkQ1 MDA elevation was suppressed two-fold as compared to placebo, 

and restoration of normal MDA level was achieved on day 3.  

The MDA elevation in the control retinas was accompanied by accumulation of H2O2, which 

increased 4-fold within 24 h after illumination and fully normalized only after 7 days of the 

post-exposure period (Figure 3). Premedication with SkQ1 reduced the initial H2O2 elevation by 41% 

and slightly accelerated its recovery: in the premedicated group H2O2 content completely 

normalized after 3 days.  

Taken together, these data indicate that short-term exposure of the rabbit eyes to high-intensity 

illumination results in the development of pronounced oxidative stress that spontaneously resolves 

after 7 days of the follow-up period. Meanwhile premedication of the eyes with SkQ1 alleviates this 

condition and accelerates its recovery. In particular, it suppresses oxidative damage to cellular 

lipids, which is known to generate toxic compounds, contributing to ocular pathology. 

 

Figure 2. Malondialdehyde (MDA) concentration in homogenates of intact and illuminated rabbit 

retinas with or without premedication with 7.5 μM SkQ1. MDA concentration was determined by 

thiobarbituric acid assay. Each bar represents the data obtained from six animals (12 eyes). *p ≤ 0.05 

compared with the values measured in the control animals. 

 

Figure 3. Hydrogen peroxide content in extracts of intact and illuminated rabbit retinas with or
without premedication with 7.5 µM SkQ1. Hydrogen peroxide concentration was measured by
Fe2+/o-dianisidine/xylenol orange colorimetric assay. Each bar represents the data obtained from six
animals (12 eyes). * p ≤ 0.05 compared with the values measured in the control animals.
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Taken together, these data indicate that short-term exposure of the rabbit eyes to high-intensity
illumination results in the development of pronounced oxidative stress that spontaneously resolves
after 7 days of the follow-up period. Meanwhile premedication of the eyes with SkQ1 alleviates this
condition and accelerates its recovery. In particular, it suppresses oxidative damage to cellular lipids,
which is known to generate toxic compounds, contributing to ocular pathology.

3.3. Antioxidant Activity in the Bright Light-Exposed Retina: Total Antioxidant Activity and Antioxidant
Enzyme Functioning

Considering that light illumination induced ROS accumulation and triggered oxidative processes
in the retina, we next explored the responses of its intrinsic antioxidant mechanisms to the stress
conditions with or without premedication with SkQ1. First, we monitored total AOA of the retinal
extracts by hemoglobin/H2O2/luminol assay that detects presumably low-molecular weight ROS
scavengers, such as glutathione and ascorbate. Unexpectedly, no latency of luminol oxidation was
detected in the presence of intact retina extracts indicating very low AOA, the level of which likely
remained beyond the method detection limits (Figure 4). However, the illumination resulted in
an increase of AOA in the retina, although it remained significantly lower than that in the other eye
tissues measured by the same method [34,38]. SkQ1 had a moderately positive effect on this increase,
especially on day 3, when AOA in was 2.4-fold higher than in placebo group.
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Figure 4. Total antioxidant activity (AOA) in extracts of intact and illuminated rabbit retinas with or
without premedication with 7.5 µM SkQ1. AOA was determined by hemoglobin/H2O2/luminol assay.
Each bar represents the data obtained from six animals (12 eyes). * p ≤ 0.05 compared with the values
measured in the control animals.

In addition to the total AOA, the activity of antioxidant enzymes was reliably changed upon the
pronounced light-induced oxidative stress in the retina. Thus, in the placebo group the activity of SOD
and GPx concomitantly decreased on day 3 post exposure by 21% (Figure 5a) and 57% (Figure 5b),
respectively. Both enzymes remained downregulated during the next 7 days reflecting long-term
response to the oxidative stress. Yet, the impacts of premedication with SkQ1 on these enzymes were
small and possessed a different tendency. Thus, no statistically significant effect of the antioxidant
towards SOD was found, although a slight decrease in activity of the enzyme could be noted in the
premedicated animals already on the first day after illumination. By contrast GPx activity was likely
sustained at normal level until day 7 of the post-exposure period.
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Figure 5. Antioxidant enzyme activity in extracts of intact and illuminated rabbit retinas with or
without premedication with 7.5 µM SkQ1. (a) Superoxide oxidase (SOD) activity; (b) glutathione
peroxidase (GPx) activity. Enzyme activities were determined using standard colorimetric assays as
described in the Materials and Methods section. Each bar represents the data obtained from six animals
(12 eyes). p ≤ 0.05 compared with the values measured in the control animals.

Overall, we revealed for the first time that intact mammalian retina possesses low AOA,
which increases upon intense light exposure suggesting existence of specific mechanisms of its
upregulation in response to light/oxidative conditions. In addition, our data demonstrate an overall
positive effect of SkQ1 on antioxidant defense of the illuminated retina involving enhancement of total
AOA and sustaining normal GPx activity.

3.4. Redox-Sensitive Proteins in Light-Induced Oxidative Stress: Visual Arrestin

Light-induced oxidative stress is known to be initially triggered in photoreceptor cells of the
retina, which contain primary photosensitizing molecules [8]. To explore oxidative changes in
photoreceptors in our model and to assess the effect of SkQ1 premedication on these changes,
we examined the redox-state of visual arrestin, a crucial photoreceptor-specific protein possessing
redox-sensitivity in vivo [20,41]. Particularly, we monitored the content of the disulfide dimers of
arrestin in retinal extract by means of non-reducing Western blotting. In previous models, the maximal
arrestin oxidation was observed within a few hours after the light exposure. With that in mind,
in the arrestin experimental groups the animals were sacrificed before illumination or after 3, 24,
72 or 168 h after the exposure. As can be seen from Figure 6a, no band corresponding to arrestin
dimer was observed in unexposed animals. Meanwhile, illumination triggered the formation of
the dimer, which gradually accumulated in the retina within the course of the post-exposure period
(Figure 6a). The band corresponding to arrestin dimer was absent in the Western blots performed under
reducing conditions (data not shown), thereby confirming that arrestin dimer is stabilized by disulfide
bonds. Remarkably, premedication with SkQ1 almost completely suppressed disulfide dimerization of
arrestin (Figure 6b). The effect of the antioxidant was most noticeable late in the observation period,
when the dimer content was 5.5-fold lower in SkQ1 premedicated animals as compared to the placebo
group. Thus, premedication with SkQ1 protects visual arrestin from light-induced oxidation reflecting
prominent inhibition of oxidative stress in photoreceptor cells.
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Figure 6. Monitoring of visual arrestin forms in extracts of intact and illuminated rabbit retinas with
or without premedication with 7.5 µM SkQ1. (a) Western blotting of retinal extracts (normalized by
total protein content) under non-reducing conditions using anti-visual arrestin antibodies; (b) weight
fractions of disulfide dimers of arrestin determined from the Western blotting data. Each bar represents
the data obtained from three animals (6 eyes). * p ≤ 0.05 compared with the values measured in the
control animals.

4. Discussion

The main aim of this study was to characterize oxidative stress and intrinsic antioxidant
responses in the retina exposed to bright light with or without premedication using SkQ1 in
order to trial the potential of the antioxidant in prevention of oxidative processes contributing to
photoreceptor loss. In our model, the illumination of rabbit eyes with visible light of high intensity
(0.15 W/cm2, 3 h) induced almost a 20% decrease of ONL thickness over 7 days (Figure 1). Death of
photoreceptors occurred simultaneously with the development of pronounced oxidative stress in the
retina, which affected both the membranes and cytosol components of the retinal cells and resolved only
at the seventh day after exposure. First, the illuminated retina exhibited increased lipid peroxidation
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manifesting in elevation of MDA content (Figure 2). These data are generally in agreement with
the results obtained using similar animal models [42,43]. MDA is widely regarded as marker of
light-induced oxidative stress in the illuminated retina. In RPE, MDA is produced by photoreactive
lipofuscin granules, which also generate H2O2 and other potentially cytotoxic molecules in response
to light [44]. Photoreceptor outer segments represent another major source of lipid oxidation products,
due to high content of polyunsaturated fatty acids [45,46]. Remarkably, one hallmark of the dry
(non-neovascular) form of AMD is the accumulation of debris in the form of large drusen within the
Bruch’s membrane and/or RPE in the macular region and geographic atrophy of the RPE, followed by
degeneration of the adjacent photoreceptor cells [6,47]. The proteins contained in the drusen of AMD
patients were demonstrated to be modified by MDA [48]. Furthermore, they possess modifications by
carboxyethyl pyrrole, induced by oxidation of docosahexaenoic acid, which originates mainly from
photoreceptor membranes [49,50]. The latter observation supports the involvement of light-induced
lipid damage in photoreceptor cells in AMD pathogenesis.

Second, we report for the first time a dramatic increase in H2O2 concentration in extracts of the
rabbit retinas exposed to short-term bright light (Figure 3). Previously, it was shown that progression
of retinal damage induced by low-intensity light in rats is associated with H2O2 accumulation in
photoreceptor cells [51]. Hydrogen peroxide is an important mediator of photoreceptor phototoxicity
as indicated by efficacy of the specific H2O2 and hydroxyl radical scavengers for treatment of
their light-induced damage in model animals [42,52,53]. Indeed, H2O2 is capable of oxidizing and
consequently damaging photoreceptor lipids and proteins [8,20,48]. In RPE cells, H2O2 induces
selective damage to mitochondrial DNA [26]. Interestingly, these cells display similar responses
being incubated with hydrogen peroxide or preparations of photoreceptor outer segments [54].
This observation confirms H2O2 accumulation in photoreceptors, which makes their phagocytosis toxic
to RPE cells by imposing a collateral oxidative burden in addition to intrinsic lipofuscin-dependent
ROS generation [3,44].

Third, we revealed that the development of oxidative stress in the retina of the illuminated
animals is associated with an imbalance of intrinsic antioxidants. Thus, light exposure stimulated
AOA, but inhibited activity of antioxidant enzymes in the retina (Figures 4 and 5). AOA encompasses
activity of presumably low molecular weight antioxidants, commonly including glutathione, ascorbate,
α-tocopherol, carotenoids, and flavonoids [55]. Among these compounds, glutathione and ascorbate
are present in the retina in millimolar concentrations, providing the bulk of constitutive antioxidant
activity in the tissue [56]. Unexpectedly, in our experiments the healthy retina was deprived of
intrinsic AOA (Figure 4). In part, this effect could be attributed to limitations of the standardized
luminescence assay [37]: even an unexposed retina contains relatively high amounts of ROS capable of
oxidizing luminol and thereby interfering with AOA measurements [57]. We speculate that in intact
retinas the intrinsic antioxidant components were engaged in scavenging ROS and the remainder was
insufficient to noticeably inhibit luminol oxidation in the assay. In any case, our data indicate that
AOA of healthy retina is considerably lower than in the other ocular tissues measured by the same
method [34,38,39]. Meanwhile, the high-intensity light illumination clearly enhances AOA. These data
suggest that oxidative stress might trigger a compensatory stimulation of the antioxidant defense.
Indeed, prolonged light exposure was previously found to enhance ascorbate and α-tocopherol
generation in rat retina [58].

AOA elevation was contrasted by a decrease in activity of antioxidant enzymes, SOD and GPx,
after 3 days of the post-exposure period (Figure 5). In the retina, the same as in the other tissues,
SOD converts superoxide anion into hydrogen peroxide, whereas GPx catalyzes its reduction by
glutathione to form water [55,59]. Consistent with our data, SOD was found to be downregulated
in the retina of rats and mice in response to light illumination [42,51]. Similarly, GPx activity
decreased or unchanged in rat retinas underwent light-induced oxidative stress [42,60]. Interestingly,
the long-term illumination contrariwise elevated GPx expression both in photoreceptors and RPE
cells [60], suggesting that additional activity of the enzyme activity is required to suppress prolonged
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accumulation of ROS. Consistently, an increased level of GPx was observed in the blood plasma of
AMD patients [55]. One can suppose that the increase in GPx represents one of the compensatory
responses of the retina adapted to long-term oxidative stress. Indeed, improvement of baseline GPx
activity was demonstrated in rats exposed to 800 lx light from birth to the age of 12 weeks [58].
Taken together, these data indicate that GPx malfunction contributes to light-induced ocular pathology
and induction or compensation of its activity can be regarded as a promising approach for prevention
and/or treatment of such conditions.

As it is described above, the oxidative biochemical changes in the retina exposed to intense
light illumination involve mostly photoreceptors and RPE cells. Our experiments confirmed that
oxidative stress engulfed photoreceptors as light exposure of the rabbit eyes induced disulfide
dimerization of photoreceptor-specific protein, visual arrestin (Figure 6). Furthermore, we can
anticipate that photooxidative processes are triggered in photoreceptor outer segments, as arrestin is
known to translocate to these cellular compartments in response to rhodopsin activation by light [61].
Photoreceptor outer segments are believed to be the primary source of ROS in the retina due to the
abundance of photosensitized reactions in these compartments. Indeed, light-dependent accumulation
of all-trans-retinal in photoreceptor discs yields generation of superoxide anion, singlet oxygen,
and organic peroxides [8,22,62]. Superoxide anion is regarded as one of the key mediators of LIRD [24].
SOD and ascorbate convert correspondingly superoxide anion and singlet oxygen into hydrogen
peroxide [63]. Consistently, the level of H2O2 in photoreceptors increases in response to intensive
light illumination (Figure 3, [51]). Hydrogen peroxide is known to primarily affect the cysteines in
proteins, resulting in oxidation of thiolate to form sulfenic acid. The latter interacts with the adjacent
cysteines yielding intramolecular or intermolecular disulfides. Otherwise it can be further oxidized to
sulfinic or sulfonic acid [64,65]. Arrestin is one of the photoreceptor proteins responding to oxidative
stress in the retina by forming disulfide dimers under in vivo conditions [20,41]. In the current study,
we found that arrestin dimers were formed in the retina as early as three hours post exposure and they
accumulated over time, reaching a maximum on day 7, when the oxidative stress ceased and H2O2

levels normalized (Figures 2 and 3). Thus, arrestin can be regarded as an early and stable marker of
light-induced oxidative stress in photoreceptors.

Photoreceptor cells are characterized with a high metabolic rate [1]. As a result, light-induced
oxidative stress in the photoreceptor outer segments is aggravated by constant ROS generation
in the mitochondria. Indeed, these organelles are involved in mechanisms of oxidative damage
to photoreceptors under conditions of excessive illumination by visual light [24]. Furthermore,
mitochondria are important mediators of light-dependent oxidative damage to RPE cells [25,26].
Considering these observations, we proposed that LIRD can be effectively prevented by
mitochondria-targeted antioxidants. Indeed, our data demonstrated that SkQ1 prevented photoreceptor
cell loss (Figure 1) and prominently improved redox status of the illuminated retina. Premedication of
the rabbit eyes with SkQ1 alleviated oxidative stress in this tissue (Figure 2): it inhibited oxidation of
membrane components and suppressed generation of H2O2 responsible for oxidation of retinal proteins
(Figure 3). Consistently, pre-treatment with SkQ1 prevented light-induced disulfide dimerization
of arrestin (Figure 6), indicating suppression of oxidative stress in the photoreceptors. Furthermore,
antioxidant premedication produced a long-term enhancing effect on AOA in light-exposed retinas
(Figure 4) and delayed the downregulation of GPx activity in response to oxidative stress (Figure 5b).

The ability of SkQ1 to suppress oxidative stress in ocular tissues was demonstrated in previous
studies [19,32]. The antioxidant possesses high bioavailability upon topical administration in the
form of eye drops and exhibits prominent protector activity towards different eye tissues [32–34].
Meanwhile, our data represent the first direct evidence of the antioxidant effect of SkQ1 in the
retina. We propose that SkQ1 suppresses accumulation of hydrogen peroxide and lipid oxidation via
prevention of ROS generation in the inner segment of photoreceptors, i.e. in the place impregnated with
mitochondria. This effect facilitates neutralization of ROS, the products of photosensitized reactions
in outer segments, by the components of intrinsic antioxidant defense. The suppression of ROS
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production might additionally release AOA components thereby enhancing their compensatory rise in
response to light. Meanwhile, the effect of SkQ1 premedication on the activity of major antioxidant
enzymes was moderate and divergent. Thus, the antioxidant had no reliable effect on SOD activity,
whereas GPx activity was likely delayed in the premedicated animals as compared to control. Slight
improvement of GPx activity by SkQ1 was previously described for other tissues [34,66]. In any case,
topical premedication of the eyes with SkQ1 apparently could help to sustain normal activity of GPx
in the retina under conditions of light-induced oxidative stress. Since oxidative stress together with
GPx malfunction highly contributes to pathogenesis of ophthalmological disorders, specifically AMD
(see above) [55], one can expect efficacy of SkQ1 in prophylaxis of the disease.

The high potential of SkQ1 for ocular protection is further evidenced from its ability to completely
inhibit disulfide dimerization of photoreceptor-specific redox-sensitive protein arrestin. Oxidation of
this protein was speculated to disrupt its function, which consists in shutting down light-activated
rhodopsin [20,41]. Arrestin malfunction is expected to accelerate accumulation of all-trans-retinal and
its light-sensitive toxic metabolites (retinoids) in photoreceptor discs under conditions of excessive
light stimuli [67–70]. Photoreceptor discs are known to be recycled by the RPE cells, which would
thereby be exposed to retinoid toxicity. Similar processes were reported to contribute to pathogenesis
of light-induced retinopathy and AMD [71]. Consistently, arrestin-deficient animals exhibit lower
resistance to retinal damage induced by visible light [72]. Considering these putative effects of arrestin
oxidation, the protection of its redox status by SkQ1 might improve the resistance of the retina to light-
and age-related damage.

It should be added that AMD drusen likely contain the components of photoreceptor outer
segments consumed and incompletely digested by the RPE [73]. Some of the drusen proteins have
oxidative modifications, indicative of their exposure to oxidative stress. The ability of SkQ1 to
prevent disulfide dimerization of visual arrestin reflects its high efficacy in targeting oxidative stress in
photoreceptor cells and maintaining normal redox-status of photoreceptor proteins. Given that the
major oxidative processes triggering AMD progression originate from photoreceptors [24], the prompt
application of SkQ1 might suppress early phases of the disease. Thus, this condition can be added to
the list of age-related ocular diseases responsive to premedication and treatment with SkQ1 [32,33].

5. Conclusions

Exposure to 30,000 lx visible light for 3 h induced pronounced oxidative stress in the retina,
manifesting in lipid peroxidation, H2O2 generation, and decrease of antioxidant enzyme activity,
contrasted by compensatory growth of low molecular weight antioxidants (AOA). Photoreceptor cells
were highly susceptible to these light-induced changes, as indicated by ONL thinning and oxidation
of photoreceptor-specific protein arrestin, which formed disulfide dimers as an early response to the
irradiation. Mitochondria-targeted antioxidant SkQ1 was demonstrated for the first time to prevent
light-induced retinal/photoreceptor damage. Premedication with SkQ1 suppressed lipid and protein
oxidation, as well as stimulated innate antioxidant defense of the tissue. Overall, our data suggest that
SkQ1 can be employed for prevention of light-induced (including iatrogenic) retinopathies, AMD and
other retinal degenerative diseases.
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Abbreviations

AMD Age-related macular degeneration
RPE Retinal pigment epithelium
ROS Reactive oxygen species
LIRD Light-induced retinal damage
SkQ1 10-(6′-plastoquinonyl)-decyltriphenylphosphonium
AOA Total antioxidant activity
SOD Superoxide dismutase
GPx Glutathione peroxidase
PBS Phosphate buffer saline
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