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Abstract: There is a need for new antifungal agents, mainly due to increased incidence of invasive
fungal infections (IFI), high frequency of associated morbidity and mortality and limitations of
the current antifungal agents (e.g., toxicity, drug–drug interactions, and resistance). The clinically
available antifungals for IFI are restricted to four main classes: polyenes, flucytosine, triazoles,
and echinocandins. Several antifungals are hampered by multiple resistance mechanisms being
present in fungi. Consequently, novel antifungal agents with new targets and modified chemical
structures are required to combat fungal infections. This review will describe novel antifungals,
with a focus on the Aspergillus species.
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1. Introduction

Invasive fungal infections (IFI) are responsible for over one million deaths annually, which is
a significant global health problem [1,2]. This is mainly due to the increasing number of
immunocompromised individuals with altered immune function including primary immune
deficiency, cancer chemotherapy, HIV/AIDS, hematologic and solid organ transplantation, prematurity,
and immune-modulatory medications [3–5]. The number of at-risk patients and improved diagnostic
techniques resulted in an alarming rise in the number of reported fungal infections [6,7]. Invasive
aspergillosis, an infection caused by fungi of the Aspergillus taxon, remains a significant threat,
particularly in immunosuppressed patients [8]. The most prevalent Aspergillus species are A. fumigatus,
A. flavus, A. terreus, and A. niger [9]. Aspergillus spp. have the capacity to cause a broad range of clinical
diseases, from mild and superficial infections, to life-threatening and invasive illnesses with more than
80% mortality rate [10,11]. Pulmonary aspergillosis is considered the most prevalent manifestation of
invasive aspergillosis [12].

Antifungal drug discovery has been stagnant in the past. Hence, therapeutic possibilities for
IFI are limited [13]. There are currently four major classes of antifungal agents used in the treatment
of systemic mycoses: polyenes, azoles, echinocandins and flucytosine [14]. These antifungals have
several limitations such as toxicity, drug–drug interactions, variable pharmacokinetics, and reduced
bioavailability. The emergence of drug resistance has introduced further limitations [15]. Voriconazole is
recommended for first-line treatment followed by liposomal amphotericin B and isavuconazole [16,17].
The rate of azole-resistant Aspergillus isolates has increased noticeably, contributing to therapeutic
failures [18]. The prevalence of azole-resistant clinical isolates of Aspergillus spp. has reached 30% in
some regions in Europe, with data outside Europe varying between 0.6% and 11.2% [19].

In this review, we evaluate new antifungal compounds and natural products with a focus on
Aspergillus spp. Additionally, potential new pathways will be discussed as promising targets.
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2. Improving Existing Antifungals

This part will briefly address new formulations of existing antifungals, which are active against
Aspergillus spp.

A summary of agents is given along with their mechanism of action, in vitro activity, and clinical
trial phase in Table 1. An overview of different fungal targets is given in Figure 1.

Figure 1. Target sites and potential pathways of the novel antifungals. This diagram of a fungal cell
indicates various molecules that can be tackled by antifungal agents (blue boxes), including cell wall,
cell membrane, and also intracellular targets such as mitochondria and processes like metabolisms and
stress responses.
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Table 1. Summary of antifungal compounds mentioned in the review.

Class Antifungal Compound Mechanism of Action In Vitro Activity (Minimum inhibitory
concentration) (MIC) Advantage Clinical Trial Phase References

Arylamidine T-2307 Inhibits intracellular mitochondrial
membrane respiration potential

0.0156–2 µg/mL
A.fumigatus, A. terreus, A. flavus, A. nidulans

and A. niger
◦ Preferential uptake by fungal cells Phase I [20–22]

Glycosylphosphatidy
linositol (GPI)

inhibitors
E1210/APX001 (Fosmanogepix)

Inhibition of Gwt1,
Glycosylphosphatidylinositol (GPI)

anchor protein synthesis

≤0.008-0.25 µg/mL
A.fumigatus, A. terreus, A. flavus and A. niger

◦ Broad spectrum
◦ Fungal-specific target
◦ Synergizes with

available antifungal

Phase II planned [23–25]

Siderophore VL-2397 (ASP2397)
Uptaking by specific siderophore iron

transporter (Sit1), but an unknown
intracellular target

1-4 µg/mL
A.fumigatus, A. terreus, A. flavus and A. niger Phase II [26–28]

Orotomides F90138 (olorofim)
Inhibition of dihydroorotate

dehydrogenase (DHODH) in pyrimidine
synthesis

<0.03 µg/mL A.fumigatus, azole-resistant A.
fumigatus, A. terreus, A. flavus and A. nidulans

◦ Oral and intravenous formulation
◦ No reported cross-resistance Phase III [29–32]

Tetrazole VT-1598 Inhibition lanosterol demethylase 0.25-2 µg/mL
A. fumigatus

◦ Selectivity for fungal CYP51
◦ Broad spectrum Phase I [33,34]

Polyenes

Amphotericin B (AMB)
New formulations Fungal membrane disruption or Pore

formation by binding to ergosterol

0.25–1 µg/mL
A. fumigatus
1–8 µg/mL

A. fumigatus

◦ Broad spectrum
◦ Oral administration
◦ Less toxicity

Phase II
No human clinical trials

[35,36]
[37–39]
[40–44]Coch-AmB

AMB-conjugated with polysaccharides

Calcineurin inhibitors Tacrolimus (FK506) Calcineurin Inhibition 0.01–0.6 µg/mL (Minimum effective
concentration) (MEC)A. fumigatus

◦ Synergizes with caspofungin No human clinical trials [45–50]

Calcineurin inhibitors Cyclosporin A Calcineurin Inhibition 0.5–1 µg/mL (MEC)
A. fumigatus No human clinical trials [50]

Hsp90 inhibitors Geldanamycin Heat shock protein 90 (Hsp90) Inhibition 4 µg/mL (MEC)
A. fumigatus

◦ Synergizes with caspofungin No human clinical trials [51]

HDAC inhibitors Trichostatin A Histone deacetylase (HDAC) Inhibition 4 µg/mL
A. fumigatus

◦ Synergizes with caspofungin No human clinical trials [52]

HDAC inhibitors MGCD290 Histone deacetylase (HDAC) Inhibition 8->32 µg/mL
A. fumigatus

◦ Broad spectrum
◦ Synergizes with

approved antifungal
Phase II [53]

Glucan synthesis
inhibitors CD101 (Biafungin) 1,3-β-d-glucan synthase Inhibition ≤0.008/0.03 µg/mL

A. fumigatus, A. terreus, A. flavus and A. niger

◦ Improved stability
◦ Long half-life
◦ Safety profile

Phase III [54–58]

Glucan synthesis
inhibitors SCY-078 (MK-3118) 1,3-β-d-glucan synthase Inhibition 0.03-0.25 µg/mL

A.fumigatus, A. terreus, A. flavus and A. niger

◦ Oral and IV formulation
◦ Activity against

itraconazole-resistant
Aspergillus strains

Phase III [59–61]

Glycolipid inhibitors Aureobasidin A
Inhibition of inositol

phosphorylceramide (IPC) synthase,
sphingolipid syntheses

4 µg/mL
A. fumigatus

◦ Synergize with caspofungin No human clinical trials [62–65]
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2.1. CD101

CD101 (Cidara Therapeutics) (Biafungin) (Rezafungin), a novel structurally formulated
echinocandin, for both intravenous and oral use, is a cyclic hexapeptide with a choline moiety
at the C5 ornithine position [54]. This drug is presently in phase III human clinical trials.

Echinocandins act as inhibitors of the 1, 3-β-d-glucan synthase enzyme complex, which play a
role in the synthesis of fungal cell walls [55]. Compared with other echinocandins, the advantage
of CD101 over existing echinocandin drugs lies in its pharmacokinetics. The distinct structural
feature of CD101 confers improved stability, resulting in an extended half-life and an enhanced safety
profile [54–56]. Relative to the 24 h half-life of anidulafungin, CD101 has a half-life of approximately
130h in humans [57]. CD101 is being developed as a weekly intravenous drug for the treatment and
prevention of IFI, replacing the daily doses currently available [54].

Compared to other echinocandins, CD101 has shown an enhanced in vitro potency with minimum
effective concentrations 90 (MEC90) of ≤0.008–0.03 µg/mL against Aspergillus spp., wild-type and
azole non-wild-type isolates, including A. fumigatus (minimum inhibitory concentration (MIC)50/90,
≤0.008/0.015 µg/mL), A. terreus (MIC50/90, 0.015/0.015 µg/mL), A. niger (MIC50/90, ≤0.008/0.03 µg/mL)
and A. flavus (MIC50/90, ≤0.008/≤0.008 µg/mL) [58].

Rezafungin showed in vivo efficacy in a neutropenic murine model with disseminated infection
caused by A. fumigatus (ATCC 13073), providing 10-day survival rates with a one-time dose of
2 mg/kg [66].

2.2. SCY-078 (Formerly MK-3118)

SCY-078 (Scynexis), a class of semisynthetic derivative of the natural product enfumafungin,
is a first-in-class orally formulated inhibitor of active β-1,3-glucan synthase, with in vitro and in vivo
activity against Aspergillus spp. [59,60]. This drug is now in phase III of clinical trials. β-1,3-d-glucan
synthase is a unique membrane-associated protein complex in fungi that require the synthesis of the
main constituent of the cell wall, β-1,3-d-glucan polymers.

Echinocandins also target the fungal cell wall by blocking β-1,3-d-glucan synthase, but SCY-078
is structurally distinct from the currently available echinocandins, constricting its effectiveness to
echinocandin-resistant Aspergillus spp. [61,67–69].

In vitro activity of SCY-078 demonstrates a promising potency against the Aspergillus spp. complex,
with the MEC90/MIC90 value (µg/mL) levels remaining below 0.5 µg/mL, for A. fumigatus (0.25 µg/mL),
A. terreus (0.12 µg/mL), A. flavus (0.12 µg/mL) and A. niger (0.06 µg/mL) [60,61].

The efficacy of SCY-078 has further been shown in a neutropenic mouse model of invasive
aspergillosis caused by wild type and azole-resistant A. fumigatus strains, leading to an increased
survival rate at 15 mg/kg/day and 20 mg/kg/day [70].

2.3. Amphotericin B (AMB) Renovated Structure

AMB-deoxycholate has a potent wide-spectrum fungicidal activity, which prompted the
development of safer and more effective derivatives. The mode of action of AMB remains unclear, but it
is generally believed that it acts via two major mechanisms: an increase in permeation by binding to the
ergosterol of fungal membrane, forming trans-membrane channels leading to leakage of cell constituents
and a pro-oxidant effect causing oxidative damage in target fungal cells [35,36]. The affinity of AMB to
ergosterol-containing membranes is stronger than cholesterol-containing membranes. However, it also
has the ability to bind to cholesterol, leading to toxicity in mammalian cells.

To develop a soluble and less-toxic formula, AMB has been structurally modified and conjugated
with various soluble macromolecules such as nanoparticle suspensions and conjugated polysaccharides
(AMB-arabinogalactan or AMB-polyethylene glycol), leading to lower toxicity and high efficacy
in vivo [40–44]. Alternative structures might have different strategies for improving the cellular
selectivity or accessing certain body compartments to reduce membrane toxicity of AMB [37].
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One proposed mechanism is through minimizing the disruptive power of aggregated forms by
attaching to an umbrella-derived molecule and increasing the selectivity of AMB to target fungi [37].

Unlike the existing formulations of AMB, which are only approved for intravenous injection,
an oral drug delivery consisting of AMB cochleate lipid–crystal nanoparticles (Matinas BioPharma) is
a remarkable improvement as it is structurally more stable against degradation by the gastrointestinal
tract [38,39]. AMB cochleate is made up of phosphatidylserine with phospholipid-calcium precipitates,
constructing a multilayered structure with a solid, lipid bilayer, with no inner aqueous space [39].

In vivo, orally administered AMB-cochleate has shown high efficacy in a murine model of systemic
aspergillosis resulting in 70% survival rates (20 and 40 mg/kg/day of body weight/day for 14 days) [71].
This drug is now in phase II of clinical trials (NCT02971007 and NCT02629419).

3. New Antifungal Compounds with Novel Targets in Aspergillus

The focus of this section describes targets and mechanisms of action of new anti-Aspergillus
compounds that have reached the early stages of human clinical testing.

3.1. T2307

T-2307 or 4-{3-[1-(3-{4-[amino(imino)methyl] phenoxy} propyl) piperidin-4-yl] propoxy}
benzamidine is a novel arylamidine structure that belongs to the category of aromatic diamidines and
is synthesized by the Toyama Chemical Company [20]. In 2015, phase I safety trials in healthy young
and elderly volunteers were examined. (clinicaltrials.gov Identifier: NCT02289599).

The specific structure of the amidine (functional group) of T-2307 is associated with its distinct
mechanism of action [72]. In Candida albicans, this component is selectively transported in through a
high-affinity spermine and spermidine transportation system (polyamine transporters) regulated by
Agp2 [21]. The high affinity of transporters in C. albicans for T-2307 compared to other diamidines such
as pentamidine, leads to different rates of uptake, which may lead to the different in vitro antifungal
activities [22].

Furthermore, the selectivity of the mechanism of action of T-2307 in fungal and mammalian cells
may reflect the high affinity with fungal mitochondria. Once it accumulates inside the fungal cells,
T-2307 results in the collapse of the mitochondrial membrane respiration potential, eventually leading
to fungicidal activity [73].

T-2307 exhibits broad-spectrum activity against most of the clinically relevant pathogenic yeasts
and filamentous fungi including Aspergillus spp., Candida spp., and Cryptococcus neoformans, with notably
low MICs [20]. The MIC of T-2307 against Aspergillus spp. ranged from 0.0156 to 1 µg/mL, which is
similar to those of voriconazole and micafungin. However, T-2307 indicates fungicidal activity against
A. nidulans and A. niger (0.0313 to 0.0625 µg/mL) whereas it is categorized as fungistatic against other
Aspergillus spp. (4 to >64 µg/mL).

In vivo activity in a murine model with systemic infection caused by A. fumigatus resulted in more
than 80% survival rate (1 mg/kg). Nevertheless, T-2307 in a disseminated candidiasis mouse model
was more effective than micafungin and amphotericin B but in a disseminated aspergillosis mouse
model was comparable to the activities of micafungin and amphotericin B [20].

3.2. Fosmanogepix (APX001)

APX001 (formerly E1210, 2-amino-3-(3-{4-[(pyridine-2-yloxy) methylbenzyl}-1-2-isoxazol-5-yl)
pyridinium-1-yl] methyl hydrogen phosphate) is a small cell wall-active antifungal compound
discovered by Eisai Company (Tokyo, Japan), which is being synthesized by Amplyx Pharmaceuticals,
SanDiego, CA. APX001, an N-phosphonooxymethyl, is a prodrug that is rapidly broken down by
systemic alkaline phosphatases to the active component, APX001A [23,74].

Phase 1 clinical trials have shown safety in both healthy volunteers and patients with severe
leukemia [74]. Phase II studies are ongoing.

clinicaltrials.gov
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E1210/APX001 demonstrates selective antifungal activity by inhibiting fungal adhesion and
invasion. Glycosylphosphatidylinositol (GPI) cell wall anchor proteins, known as mannoproteins,
display various functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism,
and immune response [75]. In C. albicans, GPIs mediate cross-linking of cell wall mannoproteins to
β-1,6-glucan, preserve the integrity of the fungal cell wall and play a role in adhesion. APX001 targets
the fungal enzyme GPI-anchored wall transferase (Gwt1), subsequently inactivating an early step of
posttranslational modification of GPI anchor proteins [24,76,77]. Since Gwt1 catalyzes the inositol
acylation of fungus-specific GPI, Gwt1 inhibition leads to the disruption of GPI-anchored protein
maturation. A lack of these proteins in C. albicans revealed that the cell wall weakens, resulting in
β-1, 3-glucan exposure, hyphal growth suppression and increase in the recognition of the fungus
by immune cells [25]. Interestingly, even though mammals possess the Gwp1 homolog gene, PigW,
E1210 is only active against fungal Gwt1ps. E1210 has no inhibitory effect on human inositol acylation,
rendering it an effective therapeutic target for fungal infections [25].

APX001A is active against a broad range of pathogenic yeast and molds, including Aspergillus spp.,
Fusarium spp., and black molds [24]. The in vitro activity of E1210 and comparator antifungal agents
(e.g., caspofungin, itraconazole, posaconazole and voriconazole) against wild-type, polyene- and
triazole-resistant strains of Aspergillus spp., including A. flavus, A. fumigatus, A. niger, A. terreus exhibited
an exceptional potency in vitro (i.e., MIC≤0.06 µg/mL) [24]. Compared to reference antifungals
(e.g., voriconazole, caspofungin, liposomal amphotericin B), E1210 showed higher efficacy and
improved survival rate in murine pulmonary aspergillosis models [78]. Animal models (rats and
monkeys) indicate that APX001 was rapidly absorbed and widely distributed for oral and intravenous
administration [78].

3.3. ASP2397 (VL-2397)

ASP2397 is a cyclic hexapeptide natural antifungal compound, cyclo{Asn-Leu-dPhe-[(N5-acetyl-
N5-hydroxyOrn)3]-} Al(III), derived from Acremonium persicinum [26].

In a phase I study, healthy volunteers who received single or multiple intravascular doses of
increasing concentrations displayed adequate tolerance of up to 1200 mg without any accumulation [79].
Phase II clinical trials (registration no. NCT03327727) focused on the treatment of patients with acute
leukemia suffering from invasive aspergillosis and bone marrow transplantation. However, this study
was prematurely terminated due to a financial decision [80,81].

ASP2397 has the ferrichrome type siderophore structure, a low-molecular-weight siderophore with
high specificity for iron [82]. Siderophores (iron chelators) are produced by microorganisms in response
to iron deficiency. Under iron-deficient conditions, they increase their uptake of iron by enhancing
the expression of the siderophore transporter [83,84]. The exact mechanism of ASP2397 within fungal
cells remains unknown. Nevertheless, ASP2397 is believed to localize within fungal cells, such as
A. fumigatus, via the uptake of siderophore iron transporter 1 (Sit1) [27]. It is shown that the presence
of an iron chelator in medium intensifies the potent antifungal activity of ASP2397 against Aspergillus
spp. Hence, the study proposes the uptake of ASP2397 by specific siderophore iron transporter 1 (Sit1)
in A. fumigatus as a potential antifungal therapeutic approach. Inactivation of Sit1 results in resistance
to ASP2397 [85]. Complementary investigations revealed that an additional intracellular target of
ASP2397 probably exists. This may be explained by the observation that AS2524371, an ASP2397 analog
with a similar siderphore structure, with the exception of an amino acid substitution (Gly-Ser-Gly
replaces Asn-Leu-dPhe), has no antifungal activity against A. fumigatus [26]. The in vitro testing
of ASP2397 showed excellent fungicidal efficacy against most Aspergillus spp., including wild-type
strains as well as azole-resistant mutants of A. fumigatus, A. terreus, A. flavus and A. nidulans. With the
exception of A. niger, the MIC ranged between 1 to 4 µg/mL in human serum [27,85].

In contrast to liposomal amphotericin B and azoles (voriconazole and posaconazole), ASP2397 has
a faster and more effective fungicidal activity in vitro. This fungicidal activity has also been observed
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against germinated conidia of some Aspergillus spp. in vitro in human serum, suggesting that it may
produce more suitable therapeutic outcomes for patients with invasive aspergillosis [27].

Remarkably, ASP2397 showed excellent in vitro efficacy against wild-type strains as well as
azole-resistant mutants of A. fumigatus (Cyp51A). However, MICs of both ASP2397 and azoles were
elevated in the isolate of A. terreus with M217I CYP51A mutation [28]. Compared to A. fumigatus,
higher MIC of ASP2397 in A. terreus isolates may suggest that it is less effective against this species.
Since CYP51A is not the target of ASP2397, further studies are required to investigate the underlying
mechanisms behind the MIC elevation against mutant A. terreus isolate.

The effect of delayed treatment of ASP2397 in an in vivo mouse model of invasive aspergillosis
showed a high survival rate (100% survival), compared to posaconazole (40% survival rate) [27].
Given that ASP2397 has no target in mammalian cells, and possesses distinct modes of antifungal
mechanisms compared to azoles and amphotericin B, it is hypothesized that ASP2397 will have
selective fungal toxicity and could be a promising substitute for the treatment of azole-resistant
Aspergillus infections.

3.4. F901318 (F2G) or Olorofim

F901318, a representative member of a novel class of antifungal drugs, the orotomides, clinically
exhibits exceptional potency against a broad range of dimorphic and filamentous fungi, particularly
Aspergillus spp. [29]. It is currently in phase III of clinical trials and in phase II as an oral and intravenous
agent with a specific emphasis on aspergillosis (NCT0286178).

The novel mechanism of action of F901318 is well described in A. fumigatus [29]. It targets
the dihydroorotate dehydrogenase (DHODH) enzyme, which in Aspergillus spp. is encoded by
the pyre gene. DHODH is an oxidoreductase enzyme that catalyzes the fourth step of the de
novo pyrimidine biosynthesis pathway, the reduction of dihydroorotate to orotate. Pyrimidines
are crucial subunits for the synthesis of DNA and RNA and for the formation of precursors for
lipid and carbohydrate metabolism. Despite the presence of a mammalian version of the enzyme,
F901318 has differential inhibitory activity. It is 2000-fold more potent against fungal DHODH than
the mammalian enzyme homolog. Supplementary protein kinetic experiments demonstrated that
F901318 is a reversible inhibitor of A. fumigatus DHODH, which competitively inhibits the ubiquinone
(coenzyme Q) cofactor [29].

This compound with such a unique target displayed potent in vitro and in vivo activity against
several medically relevant molds, including several Aspergillus spp. However, it is not effective
against Mucorales, C. neoformans and Candida spp. [29–32]. The lack of activity against Candida spp.,
C. neoformans, and Mucorales is due to a phylogenetically distant DHODH, although olorofim susceptible
organisms are classified together under the same DHODH phylogenetic tree [29].

F901318 demonstrates efficacy against Aspergillus spp., regardless of species and methods used,
which is of significant importance given the increased prevalence of azole-resistant Aspergillus
spp. [86,87]. MIC ranges of F901318 (0.002–0.063 µg/mL) against Aspergillus spp. including A. fumigatus
(azol-resistant and non-azole resistant strains), A. terreus, A. flavous, A. nidulans, A. tubingensis and
A. tubingensis are relatively low compared to MICs of various azoles and amphotericin B [30,31].
Resistance induction to olorofim assessed by serial passage and drug gradients has no influence, at least
on A. fumigatus [29].

The efficacy of olorofim therapy (15 mg/kg, three times per day) against infection with A. fumigatus,
A. nidulans and A. tanneri in both neutropenic and chronic granulomatous disease (CGD) mouse models
exhibited promising therapeutic outcomes. A 10-day survival rate of 80% to 88% and 63% to 88% in
the neutropenic mouse model and CGD mouse model was reported, respectively [87].

The narrow-spectrum activity of F901318 forces an additional study design with the use of another
antifungal until the specific diagnosis of aspergillosis is reached.
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3.5. VT-1598

VT-1598, an investigational tetrazole from Viamet Pharmaceuticals, is a selective fungal
cytochrome P51 (CYP51) enzyme inhibitor with clinically significant reduced drug–drug interactions.
This compound is currently in phase I of clinical trials [33]. Two main limitations of azole class
antifungals reinforced this developing new formulation: non-selective activity and drug–drug
interaction of the members of this class. Azoles generally inhibit fungal 14α-lanosterol demethylase
(aka Cyp51), a key cytochrome P450 enzyme (CYP450) in ergosterol biosynthesis, resulting in a deficiency
of ergosterol and accumulation of toxic 14α-methylated sterols in membranes [88]. Furthermore, azoles
can hinder other cytochrome P450 enzymes, conducting non-specific activity of this class of antifungals.
The clinical concentrations of some azoles can be influenced by drugs that inhibit or induce the activity
of CYP 450 enzymes since some azoles are substrates of these enzymes.

In A. fumigatus, VT-1598 is a structurally distinct CYP51 inhibitor in that its triazole metal-binding
group is substituted with tetrazole, resulting in more specific inhibition of fungal Cyp 51 enzymes [89].
The X-ray molecular structure of a VT-1598/A. fumigatus CYP51 complex has explained that the
improved hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring
nitrogen of His374 of CYP51 residue is associated with maximal efficacy and broad-spectrum activity
of VT-1598 [90].

VT-1598 demonstrated a comparable in vitro activity against Aspergillus spp. with similar
geometric mean (GM) MICs to those posaconazole and voriconazole for A. flavus (0.685 µg/mL), A. niger
(1.78 µg/mL) and A. terreus (0.533 µg/mL) [34]. In contrast, wild-type isolates of A. fumigatus showed
higher GM MICs ranges of VT-1598 (0.25–2 µg/mL) in comparison to those of posaconazole and
voriconazole. However, the GM MICs of VT-1598 against A. fumigatus CYP51A mutants with elevated
posaconazole and voriconazole MICs showed a noticeably reduction (13.3 µg/mL).

An in vivo 12-day survival study in a disseminated mouse model of invasive aspergillosis showed
100% survival at 20 and 40 mg/kg with a suppressed fungal burden [91].

4. Potential Pathways as Targets against Aspergillus

The following studies discuss fungal molecules displaying potential targets for developing new
antifungal agents with limited or no damage to host cellular functions.

4.1. Calcium–Calcineurin Signaling Network

Calcium signal transduction in fungi has gained importance due to its crucial role in the
survival and adaptation of fungi. Calcium, a second messenger molecule, plays direct roles in fungal
physiological processes, mediates stress responses, and promotes virulence [92–96]. Calcineurin, one of
the regulators of calcium homeostasis with a subtle structural difference in fungi compared to humans,
is a potential target of selective inhibitors that could potentially be used in antifungal therapy [45].

Calcineurin, a conserved Ca2+-calmodulin (CaM) activated protein phosphatase 2B, belongs to the
phospho-protein phosphatase family. The stress response in the fungal cell, including Saccharomyces
cerevisiae and Schizosaccharomyces pombe is initiated by Ca2+ uptake, which then binds to the binding
sites of calmodulin. After a conformational transition, Ca2+-bound calmodulin forms a ternary
complex together with the calcineurin subunits, CnA and CnB. The calmodulin–CnA–CnB complex
acquires a phosphatase activity and dephosphorylates the transcription factor Crz1. Genes activated
by dephosphorylized Crz1 are involved in calcium-dependent signaling and regulation of several
essential cellular processes in many pathogenic fungi including growth, septation, morphological states
transition, cell wall integrity, virulence, stress responses, and drug resistance [46,97]. Furthermore,
calcineurin is associated with heat shock protein 90 (Hsp90) and histone deacetylases (HDACs,
also referred to as lysine deacetylases, KDACs). The molecular chaperone Hsp90 activates its target
protein, calcineurin phosphatase, which plays a key role in stress responses and cell wall repair
mechanisms induced by antifungals exposure [98–100]. The mechanisms displayed by calcineurin
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instigate the emergence and maintenance of drug resistance in various fungal species [101,102]. HDACs
play an essential role in fungal virulence by controlling the expression and function of multiple proteins,
including chaperones, such as Hsp90, and secondary metabolites that are important for basal growth
or stress adaptation [103].

Hsp90 has been identified to have a principal role in the acquisition and evolution of resistance
to azoles and echinocandins. Importantly, growing evidence suggests that this inherent resistance
mechanism is mediated via calcineurin [101,104–106].

Therefore, targeting the Hsp90–calcineurin axis may be a promising antifungal strategy
and enhance the activity of different classes of antifungal drugs, such as the cell-wall-acting
echinocandins and the ergosterol biosynthesis inhibitor azoles. Several studies have demonstrated that
immunosuppressive drugs exert antifungal effects against a variety of pathogenic fungi by inhibiting
calcineurin signaling network and related components. Although these compounds are all currently in
clinical use as immunosuppressive therapy and anti-proliferative agents, the potent immunosuppressive
activity of these drugs hindered their expansion as antifungal agents. Thus, the following section
analyzes some immunosuppressive drugs which have the potential to play a role in antifungal therapy.

4.1.1. Tacrolimus (FK506)

Tacrolimus (FK506 or Fujimycin), a macrolide lactone extracted from Streptomyces tsukubaensis,
is commonly used as an immunosuppressive drug in transplantation [107]. The potential mechanism
of tacrolimus in A. fumigatus is suggested through its binding to the intracellular protein FKBP12,
preventing the calcineurin signal pathway, a principal component in the regulation of intracellular
Ca2+ concentration [46]. The FKBP12–tacrolimus complex suppresses the phosphatase activity
of the calmodulin–CnA–CnB complex, resulting in the inhibition of the transcription factor
calcineurin-responsive zinc finger 1 (Crz1) and corresponding stress-related genes. Subsequently,
calcineurin inhibitors, like tacrolimus, may function as potent antifungals and may reverse resistance
against standard antifungal drugs or increase their efficacy [108,109].

Notably, in vitro antifungal efficacy of FK506 towards planktonic cells and biofilm of Aspergillus
spp. have been investigated, showing variable susceptibility [45,47,48]. Among the Aspergillus spp.,
most of the examined A. fumigatus and A. terreus isolates displayed MECs of 0.025–0.05 µg/mL.
FK506 was especially effective against A. niger (0.006–0.012 µg/mL), reaching >90% growth inhibition.
However, A. flavus isolates tended to have higher MECs (0.1–0.2 µg/mL), and no substantial impact
of FK506 was recognized against A. ustus or A. versicolor [49]. Combinations of tacrolimus with
voriconazole or AMB show synergistic inhibitory activity against Aspergillus spp. biofilms [47].
Furthermore, there is an in vitro fungicidal synergism between FK506 and the normally fungistatic
caspofungin against A. fumigatus, resulting in delayed filamentation and the production of even smaller
hyphae [110].

In vivo, FK506 showed improved survival rates in an invasive aspergillosis CD-1 mouse model
(1 mg/kg of body weight/day), compared to those treated with cyclosporin A. Nevertheless, higher
doses of FK506 (10 mg/kg of body weight/day) resulted in a significant decrease in survival rates. It is
suggested that higher doses of FK506 trigger an immunosuppressive effect, thereby offsetting the
drug’s moderate anti-aspergillosis activity [111].

Calcineurin inhibitors, such as FK506 and cyclosporine A, decrease the immune response by
suppressing T cell proliferation such as interferon gamma (IFNγ) [111,112], thereby increasing overall
survival rate [111]. Since IFNγ plays a role in invasive aspergillosis [112], administration of FK506 and
cyclosporine A may decrease the risk of serious Aspergillus infections and provide a better protection in
transplant individuals [50]. Patients under immunosuppressant therapy are at a higher risk of acquiring
invasive aspergillosis. Therefore, it is essential to determine the optimal dose for the co-administration
of immunosuppressants and antifungal drugs in these patients.



J. Fungi 2020, 6, 213 10 of 21

4.1.2. Cyclosporin A

Cyclosporins, a family of lipophilic cyclic undecapeptides metabolites, are produced by the
filamentous fungi, Trichoderma polysporum. Cyclosporin A, the main representative of the Cyclosporin
family, is a calcineurin inhibitor with a potent immunosuppressive and antifungal activity, either on
its own or in combination with existing antifungals [113,114]. Cyclosporin, in combination with the
antifungals caspofungin or itraconazole, showed in vitro synergy against A. fumigatus [114].

Since calcineurin inhibitors pose immunosuppressive effects, Hsp90 inhibitors might provide
more beneficial strategies.

4.1.3. Geldanamycin

Geldanamycin is a member of the ansamycin antibiotic family with anti-tumor activity [51].
Geldanamycin acts as an Hsp90 inhibitor by preventing the chaperone activity of the Hsp90
by competing for ATP binding [115]. Hsp90 accelerates the development of drug resistance by
triggering new mutations that have immediate phenotypic consequences. Abrogation of resistance
in fungi by Hsp90 inhibitors has been suggested as a new therapeutic strategy [101]. The Hsp90
inhibitor geldanamycin and its derivatives, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG)
and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), display modest in vitro
activity against molds, with an MEC ≥50% range of 0.015–16 µg/mL [49].

Nevertheless, the combination of geldanamycin with caspofungin in A. fumigatus results in
fungicidal activity, as well as in azole-resistant strains [110]. Moreover, combination therapy of
geldanamycin and caspofungin in the Galleria mellonella model has enhanced the survival rate of larvae
with A. fumigatus infections [105]. Prior to this study, A. fumigatus has been shown to be lethal in larvae,
despite monotherapy with each agent, including azole-resistant strains [105]. It has also been shown
that geldanamycin enhances the efficacy of caspofungin against A. fumigatus and A. terreus by the
synergistic effect [116].

4.1.4. Trichostatin A

Hindering HDACs in pathogenic fungi establishes a promising therapeutic strategy. It was
showcased in A. nidulans, A. oryzae, and A. fumigatusas as an epigenetic therapy via the modified
expression of related genes of virulence or drug resistance, by regulating chromatin structure and
transcription through lysine deacetylation of histones [103]. HDACs eliminate acetyl groups from
lysines on core histones and other cellular proteins that are involved in gene regulation of stress
responses [103]. HDACs have been associated with virulence, expression and regulation of essential
drug resistance-related proteins, such as the chaperone Hsp90 protein and drug efflux pumps [52,53].

Trichostatin A, a broad spectrum HDAC inhibitor, exhibits variable antifungal activity against
clinical isolates of Aspergillus spp., including azole-resistant A. ustus [106]. In vitro, trichostatin A has
shown weak activity against A. fumigatus and A. flavus isolates, but had better activity against 90%
of A. niger, A. terreus, A. versicolor and A. ustus isolates with an MEC of 2 µg/mL [106]. Concerning
antifungal interactions, synergistic activity between trichostatin A and caspofungin was observed
against some Aspergillus spp. [49,117].

4.1.5. MGCD290

MGCD290 is another selective HDAC inhibitor, which shows a high MIC (8 to >32 µg/mL) against
molds, including Aspergillus spp. However, it acts synergistically with azoles (voriconazole and
posaconazole) against azole-resistant fungal isolates [118].

4.2. Ras and Sphingolipid Synthesis Pathways

In C. neoformans, it has been shown that two signaling pathways of Ras and sphingolipid synthesis
are necessary for the efficient propagation of infections [119,120]. Concerning the role of these pathways
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in virulence and structural differences of these molecules in mammalian and fungal cells, blocking
the synthesis and/or function of these pathways has emerged as possible a unique target for the
development of new drugs. Sphingolipids, a major class of eukaryotic lipids, present a variety of roles
in fungal cellular metabolisms, heat stress response, signal transduction and virulence [62,121,122].

Various studies in Candida and Aspergillus spp. have recently shown that plasma membrane
sphingolipids, such as inositol phosphoryl ceramide and glucosylceramide, have essential roles
in fungal pathogenesis and drug resistance [63,64,123,124]. Targeting the enzymes involved in
the sphingolipid biosynthetic pathways via inhibition or gene deletion can potentially reduce
the virulence of fungal pathogens, including Aspergillus spp. [62,122]. Several new sphingolipid
inhibitors have been discovered, which reduce the levels of fungal sphingolipids in contrast with
mammalian cells such as Aureobasidin A, d-threo-1-phenyl-2-palmitoyl-3-pyrrolidinopropanol,
d-threo-3′,4′-ethylenedioxy-P4), N′-(3-bromo-4-hydroxybenzylidene)-2-methyl benzohydrazide and
3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide) [65,124–126].

The Ras family are a cluster of membrane-associated guanosine triphosphatase (GTPase) proteins
that play a major role in signal transduction pathways in eukaryotic cells. Ras proteins are stimulated
by binding to guanosine nucleotide exchange factors (GEFs) and are inactivated by interaction with
GTPase activator proteins (GAPs) [127]. Mature Ras proteins could be transported to the plasma
membrane via two pathways, either through trafficking by the secretory system in their palmitoylated
form or being non-palmitoylated by a non-classical pathway [128].

It has been described that a lack of Ras signaling pathways in A. fumigatus through
palmitoylation-driven inhibition, results in decreased fungal growth, decreased cell wall integrity, and
loss of virulence [129,130]. Ras signaling pathways have been investigated extensively for developing
anticancer therapeutics. Since the mechanisms of Ras activation and post-translational modifications
are common in both humans and fungi, this information could be translated into novel strategies
in treating Aspergillus infections. Several antifungal targets within the Ras signaling pathway could
be of interest, including a) hindering Ras Proteins and their interactions [131], b) inhibition of Ras
post-translational modifications such as farnesylation, and [132] c) inhibition of palmitoylation [133].

Therefore, designing or discovering inhibitors with high selectivity to fungal homologs could be a
promising therapeutic approach.

4.3. Trehalose Synthesis Pathway

Trehalose, a non-reducing disaccharide, acts as a reserve carbohydrate source in cell processes such
as glycolysis, sporulation, and germination in fungal spores and vegetative cells, including A. niger,
S. cerevisiae, and Neurospora crassa [134]. It functions as a protectant under environmental stress and
nutrient limitation [135], maintaining the cell membrane under stressful conditions by interacting with
proteins and phospholipids. Therefore, the structure of the membrane under dehydrated conditions
and thermal-related stress is preserved [136]. Trehalose biosynthesis is one of the pathways that exist in
fungi, including C. albicans, C. neoformans, and A. fumigatus but not in humans, rendering it a promising
target for novel antifungal agents [135]. The main characteristics of this pathway are its direct link to
glycolysis [137] and the participation of two primary synthesizing enzymes, trehalose-6-phosphate
synthase (Tps1), and trehalose-6-phosphate phosphatase (Tps2), which are specific to this path [138].

Several investigations have focused on the trehalose pathway in Aspergillus spp. [139–142],
confirming the critical role of this biosynthesis pathway in development, stress response,
and pathogenicity. In A. fumigatus, the enhanced trehalose content of hyphae is associated with
response to heat shock stress, which is correlated with increased expression levels of two putative
trehalose-6-phosphate synthase genes, tpsA, and tpsB. It has also been demonstrated that blocking this
pathway affects conidial germination, thermo-tolerance, and response to high-level oxidative stress
in vitro. Interestingly, mutant strains of tpsA and tpsB resulted in more virulence in a murine model
of invasive aspergillosis [141]. Compared to compounds targeting Ras and calcineurin pathways,
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few inhibitors have been discovered for this pathway, which makes it an attractive potential target of
antifungal therapy with few consequences on mammal metabolism and biochemical networks.

4.4. High-Osmolarity Glycerol (HOG)-Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway

In S. cerevisiae, the HOG-MAPK signaling pathway controls the adaptation to environmental stress
and regulation of fungal morphology [143]. The HOG-MAPK pathway consists of two cascades of
signaling proteins, the putative membrane protein and the two-component phosphorelay system [144].
Diverse extracellular stimuli activate MAPK cascades through subsequent phosphorylation and
MAPK activation, resulting in the activation of transcription factors and the expression of distinct
genes [145]. However, the function of the HOG-MAPK pathway in filamentous fungi remains unclear.
In A. fumigatus, the contribution of the HOG-MAPK pathway has been discovered to influence adaption
to thermal stress and susceptibility to itraconazole at high temperature [146].

Further studies showcased that the lack of MAPK in A. fumigatus enhanced the sensitivity to
oxidative stress induced antifungals, including amphotericin B and itraconazole [147]. The absence
of two-component phosphorelay systems of MAPK in humans may provide suitable targets for
developing new fungicides without notable toxicity [148]. The HOG pathway has been recognized as
the target for fludioxonil, phenylpyrrole fungicide with a broad spectrum, providing insight into novel
targets for synergistic antifungal drug combinations [149,150]. It is thought to act by interfering with
sugar transport and sugar phosphorylation and by disordering the membrane [151].

The above-mentioned pathways are examples of potential antifungal targets that provide a
framework for the development of antifungal compounds.

5. Natural Products as Anti-Aspergillus Agents

Natural products have been important as a source of bioactive molecules, including potent
antifungals [152]. Amphotericin B and caspofungin have been derived from natural sources [153],
and several investigations have focused on the screening of natural extracts with antifungal
activities [154,155]. Rosemary essential oil (REO) demonstrated in vitro activity against A. flavous,
with an MIC and minimum fungicidal concentrations (MFC) of 500 µg/mL. Further investigations
confirmed changes in fungal morphology and a reduction in ergosterol content, suggesting REO as a
potent compound [155]. Moreover, antifungal activity of 82 essential oils against A. niger, C. albicans,
and C. neoformans has been investigated [156]. A. niger showed weak susceptibility, and 45% of essential
oils displayed activity against C. neoformans isolates.

Humidimycin, a bacterial ring peptide, has been shown to potentiate the activity of sub-lethal
concentrations of caspofungin against A. fumigatus isolates [157]. Humidimycin is thought to be
involved in HOG pathway inhibition, thereby decreasing the protective stress response induced by
caspofungin [157]. Since the HOG pathway has not been found in mammals, humidimycin is a
promising compound for further analysis.

6. Perspective

Given the rise of antifungal drug resistance, novel antifungal agents and new drug targets are
highly needed. Recently, an expanding insight into the fungal cellular structures and related processes
has contributed to the development of promising antifungal drugs with a wide therapeutic index and
potentially without targeting human cells.

Novel compounds with a broad-spectrum of antifungal activity may overcome the lack of sensitive
diagnostic assays and may target drug-resistant representatives. The feasibility and results from
ongoing clinical trials are highly awaited.
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Abbreviations

IFI Invasive fungal infection
MICs Minimum inhibitory concentrations
MEC Minimum effective concentration
GM Geometric mean
GPI Glycosylphosphatidylinositol
DHODH Dihydroorotate dehydrogenase
HDACs Histone deacetylases
GAPs GTPase activator proteins
GEFs Guanosine nucleotide exchange factors
HOG High osmolarity glycerol
MAPK Mitogen activated protein kinase
REO Rosemary essential oil
MFC Minimum fungicidal activity
IFNγ Interferon gamma
Crz1 Calcineurin-responsive Zinc finger 1
Gwt1 GPI-anchored wall transferase 1
GTPase Guanosine Triphosphatase
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